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La deshidroepiandrosterona (DHEA) es un 
esteroide que puede modular diferentes 
sistemas de neurotransmisión asociados con 
trastornos neurológicos y psiquiátricos1. En 
los humanos, su concentración plasmática 
aumenta gradualmente hasta alcanzar sus 
máximos niveles durante la juventud y 
posteriormente se reduce hasta alcanzar 
valores mínimos en la edad avanzada2. Por 
esta razón, se ha asociado la deficiencia en la 
secreción de este esteroide con el aumento en la 
prevalencia de trastornos neurodegenerativos 
conforme avanza la edad en los humanos. 

El sistema dopaminérgico puede ser 
modulado por la DHEA 1,3 posiblemente 
a través de la inhibición de monoamino 
oxidasa, lo cual podría tener implicaciones 
para la neuroprotección en los modelos 
experimentales de la enfermedad de Parkinson4. 

Diferentes estudios han reportado un efecto 
neuroprotector de la DHEA en varios modelos 
experimentales, incluyendo el de la enfermedad 
de Parkinson5, el cuál se basa en la muerte 

selectiva de las neuronas dopaminérgicas 
que inervan al cuerpo estriado a través de la 
administración de la toxina yoduro de 1-metil-
4-fenil piridinio (MPP+) por mecanismos que 
involucran al estrés oxidante, entre otros. 
El efecto neuroprotector de la DHEA involucra 
mecanismos antioxidantes, reduciendo la 
formación de especies reactivas de oxígeno 
(ROS)6 y la peroxidación de lípidos7-10; además, 
evita la disminución en la concentración de 
glutatión (GSH)7,9, la disminución en la actividad 
de superóxido dismutasa (SOD) y compensa el 
aumento en la actividad de glutatión peroxidasa 
(GPx), inducidos con estreptozotocina en ratas7. 
De esta forma, la DHEA reduce la muerte 
neuronal inducida con ROS como el peróxido 
de hidrógeno (H2O2)8,10,11 además de reducir la 
muerte apoptótica por otros mecanismos12.
Por estos efectos, la DHEA es una alternativa 
ante la neurotoxicidad del MPP+ ya que los 
mecanismos que ésta última involucra incluyen 
la formación de ROS13,14, la oxidación del GSH (un 
antioxidante endógeno)13,15, muerte apoptótica 
por activación de caspasa 314,16, la disminución 
de las actividades de enzimas antioxidantes 
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como SOD y GPx (17), provocando la muerte 
de las neuronas dopaminérgicas; esto se refleja 
en la disminución del número de células 
inmunoreactivas para tirosina hidroxilasa (TH) 
en la substantia nigra pars compacta17,18 así como 
de la actividad de esta enzima19 y el contenido 
de dopamina en el estriado19-21. La sobre-
expresión tanto de SOD como de GPx protege 
contra el estrés oxidante inducido con MPP+ 14.

Entre las alteraciones bioquímicas que 
favorecen el estrés oxidante en la enfermedad 
de Parkinson se encuentra la disminución en 
la actividad ferroxidasa de la ceruloplasmina22. 
Dado que se trata de una enzima dependiente de 
cobre, esta alteración podría estar relacionada 
con la disminución en el contenido de este metal 
en tejido cerebral de personas que murieron 
con la enfermedad de Parkinson23 y con el 
efecto neuroprotector de la administración de 
cobre (II) en modelos experimentales de esta 
enfermedad 24. 
La denervación dopaminérgica del estriado 
provoca alteraciones motoras que son típicas 
de la enfermedad de Parkinson, pero también 
impacta sobre la cognición y la conducta 
de quienes padecen dicha enfermedad25-27. 
Además de los efectos neuroprotectores 
de la DHEA, también se ha reportado su 
efecto benéfico sobre procesos cognitivos y 
conductuales1,28, por lo que el esteroide podría 
modular a través de diferentes mecanismos, 
los déficits cognitivos, como la flexibilidad 
del pensamiento29 y las compulsiones30; 
los conductuales como las alteraciones de 
la actividad sexual31; y los de integración 
sensorial32, que se han reportado en algunos 
pacientes con la enfermedad de Parkinson.
La participación del cuerpo estriado en la 
manifestación de diferentes conductas más 
allá de los procesos motores en los que está 

involucrado ha sido mostrada en diferentes 
estudios. La presentación de un estímulo 
sexual reduce la expresión de los genes que 
codifican para TH y SOD, entre otros, en el 
estriado33; esto podría tener implicaciones 
para la neurotransmisión dopaminérgica y 
el estrés oxidante en este núcleo cerebral. 
Adicionalmente, la denervación dopaminérgica 
del estriado afecta el aprendizaje de nuevas 
estrategias (flexibilidad del pensamiento) 
dando lugar a la presentación de conductas 
perseverantes tipo compulsivo34 lo cuál se 
evalúa a nivel experimental en modelos de 
aprendizaje de respuestas inversas. Estudios 
de imagen cerebral han mostrado que el cuerpo 
estriado participa en la integración sensorial35 
la cuál está afectada en la enfermedad de 
Parkinson32 y se puede estudiar en modelos 
de inhibición de un reflejo de sobresalto. 
Adicionalmente, las vías de señalización 
activadas por la dopamina en el cuerpo estriado 
también son importantes para el aprendizaje de 
evasión de un estímulo aversivo, como el que se 
consigue con un choque eléctrico en el modelo 
de evasión pasiva36. 
Por todo lo anterior, podemos considerar que la 
modulación de la transmisión dopaminérgica 
y de los mecanismos de muerte celular 
ayudara a definir alternativas para el control 
de las manifestaciones neurológicas y 
psiquiátricas que acompañan a la enfermedad 
de Parkinson, por lo que en es necesario 
caracterizar los mecanismos asociados con 
el efecto neuroprotector de la DHEA en un 
modelo experimental de esta enfermedad 
y su impacto sobre los déficits cognitivos y 
conductuales provocados por la denervación 
dopaminérgica del cuerpo estriado, lo que 
aportará información relevante sobre el posible 
impacto terapéutico de la administración de 
este esteroide en individuos de edad avanzada.
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