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La deshidroepiandrosterona (DHEA) es un
esteroide que puede modular diferentes
sistemas de neurotransmisién asociados con
trastornos neurologicos y psiquiatricos'. En
los humanos, su concentracién plasmatica
aumenta gradualmente hasta alcanzar sus
maximos niveles durante la juventud vy
posteriormente se reduce hasta alcanzar
valores minimos en la edad avanzada? Por
esta razon, se ha asociado la deficiencia en la
secrecion de este esteroide con el aumento en la
prevalencia de trastornos neurodegenerativos
conforme avanza la edad en los humanos.
El sistema dopaminérgico puede ser
modulado por la DHEA '* posiblemente
a través de la inhibicion de monoamino
oxidasa, lo cual podria tener implicaciones
para la neuroproteccién en los modelos
experimentalesdelaenfermedad de Parkinson*.

Diferentes estudios han reportado un efecto
neuroprotector de la DHEA en varios modelos
experimentales, incluyendo el de la enfermedad
de Parkinson® el cudl se basa en la muerte
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selectiva de las neuronas dopaminérgicas
que inervan al cuerpo estriado a través de la
administracion de la toxina yoduro de 1-metil-
4-fenil piridinio (MPP+) por mecanismos que
involucran al estrés oxidante, entre otros.
El efecto neuroprotector de la DHEA involucra
mecanismos antioxidantes, reduciendo la
formacion de especies reactivas de oxigeno
(ROS) v la peroxidaciéon de lipidos’™°; ademas,
evita la disminucién en la concentracion de
glutation (GSH)”7, la disminucién en la actividad
de superodxido dismutasa (SOD) y compensa el
aumento en la actividad de glutatién peroxidasa
(GPx), inducidos con estreptozotocina en ratas’.
De esta forma, la DHEA reduce la muerte
neuronal inducida con ROS como el perdxido
de hidrogeno (H202)21°1" ademas de reducir la
muerte apoptoética por otros mecanismos'’.

Por estos efectos, la DHEA es una alternativa
ante la neurotoxicidad del MPP+ ya que los
mecanismos que ésta ultima involucra incluyen
laformacion de ROS™3 1a oxidacion del GSH (un
antioxidante endogeno)®™, muerte apoptotica
por activacion de caspasa 3¢, la disminucion
de las actividades de enzimas antioxidantes
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como SOD vy GPx (17), provocando la muerte
de las neuronas dopaminérgicas; esto se refleja
en la disminucién del numero de células
inmunoreactivas para tirosina hidroxilasa (TH)
en la substantia nigra pars compacta'’'® asi como
de la actividad de esta enzima' y el contenido
de dopamina en el estriado?. La sobre-
expresion tanto de SOD como de GPx protege
contra el estrés oxidante inducido con MPP+ .

Entre las alteraciones bioquimicas que
favorecen el estrés oxidante en la enfermedad
de Parkinson se encuentra la disminucién en
la actividad ferroxidasa de la ceruloplasmina®.
Dado que se trata de una enzima dependiente de
cobre, esta alteracién podria estar relacionada
con ladisminucion en el contenido de este metal
en tejido cerebral de personas que murieron
con la enfermedad de Parkinson® y con el
efecto neuroprotector de la administracion de
cobre (II) en modelos experimentales de esta
enfermedad ?*.

La denervacion dopaminérgica del estriado
provoca alteraciones motoras que son tipicas
de la enfermedad de Parkinson, pero también
impacta sobre la cognicion y la conducta
de quienes padecen dicha enfermedad®?.
Ademdas de los efectos neuroprotectores
de la DHEA, también se ha reportado su
efecto benéfico sobre procesos cognitivos vy
conductuales'?® por lo que el esteroide podria
modular a través de diferentes mecanismos,
los déficits cognitivos, como la flexibilidad
del pensamiento? vy las compulsiones®;
los conductuales como las alteraciones de
la actividad sexual®; y los de integracion
sensorial®, que se han reportado en algunos
pacientes con la enfermedad de Parkinson.
La participacién del cuerpo estriado en la
manifestacion de diferentes conductas mas
alld de los procesos motores en los que esta

involucrado ha sido mostrada en diferentes
estudios. La presentacién de un estimulo
sexual reduce la expresion de los genes que
codifican para TH y SOD, entre otros, en el
estriado®; esto podria tener implicaciones
para la neurotransmision dopaminérgica vy
el estrés oxidante en este nucleo cerebral.
Adicionalmente, la denervacion dopaminérgica
del estriado afecta el aprendizaje de nuevas
estrategias (flexibilidad del pensamiento)
dando lugar a la presentacion de conductas
perseverantes tipo compulsivo® lo cudl se
evalia a nivel experimental en modelos de
aprendizaje de respuestas inversas. Estudios
de imagen cerebral han mostrado que el cuerpo
estriado participa en la integracién sensorial®
la cual estd afectada en la enfermedad de
Parkinson® vy se puede estudiar en modelos
de inhibicién de un reflejo de sobresalto.
Adicionalmente, las vias de senalizacion
activadas por la dopamina en el cuerpo estriado
también son importantes para el aprendizaje de
evasion de un estimulo aversivo, como el que se
consigue con un choque eléctrico en el modelo
de evasion pasiva®.

Por todo lo anterior, podemos considerar que la
modulacién de la transmisiéon dopaminérgica
v de los mecanismos de muerte celular
ayudara a definir alternativas para el control
de las manifestaciones neurolégicas vy
psiquiadtricas que acompanan a la enfermedad
de Parkinson, por lo que en es necesario
caracterizar los mecanismos asociados con
el efecto neuroprotector de la DHEA en un
modelo experimental de esta enfermedad
y su impacto sobre los déficits cognitivos y
conductuales provocados por la denervacion
dopaminérgica del cuerpo estriado, lo que
aportard informaciéon relevante sobre el posible
impacto terapéutico de la administracion de
este esteroide en individuos de edad avanzada.
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