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ABSTRACT
Multiple Sclerosis is an inflammatory demyelinating disease of the Central Nervous System, chronic and with unknown 
pathogenesis. There is no cure for multiple sclerosis and the causes of the disease appear to be related with genetic 
and environmental components. The most accepted theory assumes a break of the immunoregulatory balance ‘active 
T cells/regulatory T cells’ and some evidences show the incidence of oxidative stress in the disease. The therapies 
that can reduce or stop the clinic symptoms and plaques formation cannot stop the illness progression, that’s why 
the efforts for finding a new and efficient treatment still continue. The complementation of clinical information with 
molecular analysis could give more accuracy to a specific treatment. Better combinations of drugs and better therapies 
could be applied if the knowledge about the mechanisms of action of these drugs is improved. 
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RESUMEN
Un acercamiento actualizado a la Esclerosis Múltiple. La Esclerosis Múltiple (EM) es una enfermedad inflama-
toria desmielinizante crónica del Sistema Nervioso Central, y de patogenia desconocida, para la que actualmente 
no existe cura. Las causas que la desencadenan parecen estar relacionadas a componentes genéticos y ambientales 
y la teoría más aceptada enuncia que la enfermedad ocurre ante una ruptura del balance inmunorregulatorio ‘cé-
lulas T activas/células T reguladoras’; mientras que algunas evidencias muestran también la incidencia del estrés 
oxidativo en la enfermedad. Las terapias que pueden reducir o detener los síntomas clínicos y la aparición de las 
lesiones no pueden detener la progresión de la EM, es por esto que numerosos esfuerzos continúan realizándose 
para encontrar un tratamiento nuevo y eficiente. La unificación de la información procedente de la clínica con la 
derivada de los análisis moleculares pudiera brindar mayor precisión en la búsqueda de un tratamiento específico. 
En la medida en que se mejore el conocimiento sobre los mecanismos de acción de estas drogas se podrán aplicar 
mejores combinaciones de drogas y mejores terapias. 
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Introduction
Multiple Sclerosis (MS) is a neurodegenerative, in-
fl ammatory demyelinating disease of the Central Nerv-
ous System (CNS), with unknown pathogenesis and 
a chronic evolution. The elimination of the myelin in 
the axons is one of the events that results from the in-
fl ammatory cascade in the MS plaque [1]. The disease 
is extensively present in the world, but a gradient of 
geographic distribution is observed from the equator 
to the poles; in part supporting the idea of the inci-
dence of environmental factors [2]. 

MS affects near 1 of each 1000 people, 2 women 
for each man [3] and mainly young persons, between 
25-30 years, although there has been early and later 
cases [4]. The illness is considered chronic, no conta-
gious [5] and has no cure at present. 

According to some authors, the MS can be found 
in different forms: primary progressive (PPMS), re-
lapsing progressive (RPMS), secondary progressive 
(SPMS) and relapsing-remitting (RRMS), which is 
the most common (80% of the cases) [6]. Many pa-
tients suffer different forms of MS on their life [7]. 
In general, 1 of 5 patients evolves to a benign stage 
of the illness without important changes on their life; 
1 of 3 patients evolves to an active illness with se-
quels of consideration that limit the patient’s normal 
development in society, but can still live independent; 
fi nally, 1 of 3 patients evolve to a progressive form, 

suffering serious sequels as an important movility re-
duction that affects substantially the patient’s life in 
some cases [8, 9]. MS is the second more frequently 
neurologic disease between young adults, after epi-
lepsy, and the most important in the west world [10]. 

Apparently, environmental and genetic factors are 
involved in the occurrence of the disease. The identifi ca-
tion of Epstein-Barr virus, for example, as a putative en-
vironmental trigger of MS is described for Casiraghi 
in 2011 [11]; the induction of a local breach in the 
blood brain barrier (BBB) and the attraction of auto-
reactive lymphocytes into the brain by the up-regula-
tion of cytokines, chemokines and adhesion molecules 
is the mechanism proposed in this case. Other ways as 
molecular mimic appear to be used for some viruses 
and bacteria [11] as well as the break of immune toler-
ance of the CNS to auto-antigens, in genetically sus-
ceptible persons [12], to trigger the disease.

The incidence of genetic factors in the beginning of 
the illness has been widely studied for many authors; 
maybe the most important founded MS association is 
with many HLA haplotypes (from the extended ma-
jor histocompatibility complex) [13]. For example, 
the reduction in the expression of HLA-DRB1*15 in 
the thymus in early life, appear to be related to the 
loss of central tolerance and the risk of autoimmunity 
in later life [14]. A signifi cant association between 
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HLA-DRB1*1501 and susceptibility to MS have been 
reported for Shahbazi in 2011 [15]. HLA-DRB1*1501 
is also related with a specifi c tumor necrosis factor al-
pha polymorphism (308) that is involved in MS sus-
ceptibility [15].

The Innate Immune Response, the fi rst line of re-
sponse against microbial pathogens, has been also 
identifi ed recently as a factor involved in the regu-
lation of the antigen-specifi c adaptative immune re-
sponse, in the MS pathogenesis [16]. 

Some aspects of MS pathogenesis
An autoimmune attack against the white matter of the 
self-CNS induces the lesions [17] which can be fol-
lowed by multi-systemic effects as paralysis [18]. T 
cells (CD8+) with receptors for myelin epitopes, from 
healthy immune repertoire, can pass across the BBB 
under a pathological activation. These T cells enter 
to the CNS parenchyma and activate a sequence of 
events that leads the formation of a typical multiple 
sclerosis plaque [19].

The autoimmune activation of T cells is produced 
when they recognize auto-antigens presented by the 
local antigen-presenting cells and start secreting 
pro-infl ammatory mediators at the same time that 
they recruit and activate macrophages. The role of 
macrophages is important in the acute neuronal dys-
function; fi rst, they attack the myelin sheaths and the 
oligodendrocytes, becoming responsible of the demy-
elinating process. Second, the macrophages can attack 
the naked axons obtaining direct damage and indirect 
neuronal degeneration [20].

The early lesions, besides the local damage effects, 
succeed the proliferation, activation and circulation 
of new self-reactive T cells. These cells can re-enter 
the CNS and establish a pro-infl ammatory loop that 
carries out successive damages to the axons and oli-
godendrocytes. Irreversible damage to the axons and 
cells of the glia avoids the re-myelinating process and 
leads to persistent neurological damage [21].

T helper (Th) cells with predominant generation 
of interleukin (IL)-17 (Th17 cells) attach to brain en-
dothelial cells better than Th1 (with predominant gen-
eration of IFNγ) cells which is at least in part due to 
the presence of CD146 on the Th17 cells. Moreover, 
Th17 cells express high levels of molecules such as 
CCR6 and CD6, which enhance entry of infi ltrating T 
cells into the CNS and have an important role in the 
development of experimental autoimmune encephalo-
myelitis (EAE) and probably MS [21].

The IL-17-producing T cells (CD4+ or CD8+) have 
been detected in both active and chronic MS, and the 
central role of Th17 produced cytokines (IL-17A,
IL-17F, IL-6, IL-9, IL-21, IL-22, IL-23, IL-26 and 
TNFα) is the induction of infl ammatory reactions. 
High frequency of CNS auto-reactive Th17 cells has 
been detected in the immune periphery before onset of 
clinical disease, but not in the CNS. In acute EAE, the 
large number of CNS auto-reactive Th17 cells is pres-
ent in the infl amed CNS. In recovery from an acute 
EAE, high levels of CNS auto-reactive Th17 cells are 
still present in the immune periphery, but not in the 
CNS. Moreover, the frequency of Th17 cells is sig-
nifi cantly higher in the cerebrospinal fl uid (CSF) of 
RRMS patients during relapse, in comparison with 

RRMS patients in remission or patients with other 
non-infl ammatory neurological diseases. 

Apparently, the main function of IL-17 in immu-
nopathogenesis of MS is the breakdown of BBB. 
Generation of IL-17 enhances the activation of matrix 
metalloproteinase-3 (MMP-3) and attracts neutro-
phils to the site of infl ammation. Neutrophil-mediated 
activation of enzymes such as MMPs, proteases and 
gelatinases participates in BBB disruption. IL-17 
increases the generation of reactive oxygen species 
(ROS) in brain endothelial cells. The oxidative stress 
mediates activation of the endothelial contractile 
machinery. Activation of the contractile apparatus is 
responsible for the loss and disorganization of tight 
junction proteins, which consecutively leads to BBB 
disruption [21]. 

Pro-infl ammatory cytokines as gamma interferon 
and tumor necrosis factor beta, released by activated T 
cells, can induce the expression of surface molecules 
in antigen-presenting cells and adjacent lymphocytes. 
The expression of MS antigens, mainly components 
of myelin, by these cells, can activate the immune 
response against the antigens or provoke anergy [6]. 
The auto-antibodies against myelin basic protein, and 
other myelin related proteins, have been found in MS 
patients [22].

Recent studies provide a link between micro-RNA 
(miRNA) functions and neurodegeneration. Complete 
loss of miRNA expression in the brain leads to neu-
rodegeneration in several animal models; other evi-
dences from patients showed that miRNA dysregula-
tion could, indeed, contribute to neurodegenerative 
disorders [23]. Thus, miRNAs are rapidly appearing 
to be key regulators of neuronal development and 
function, as well as important contributors to neuro-
degeneration. 

Micro-RNAs are involved in adult neurogenesis 
which may imply the possible role of some miRNAs
in endogenous repair mechanisms in MS. The modu-
lation of these miRNAs may stimulate the differentia-
tion of neural stem/progenitor cells into mature neu-
rons that can replace neurons lost through the disease 
process in MS. New evidences have identifi ed a num-
ber of new transcriptional regulators and miRNAs
as having key roles in oligodendrocyte differentia-
tion and CNS myelination, providing new targets for 
myelin repair [23]. miRNA mediated regulation is es-
sential for immune homeostasis and the prevention of 
autoimmune diseases. So, as biomarkers for the dis-
ease or maybe included in a specifi c therapy, miRNAs 
could be important in the characterization and therapy 
in MS in the near future.

Regulatory T cells can be induced in periphery un-
der an autoimmune response [24]. Their capacity to 
suppress immune response has been observed through 
direct interaction with antigen-presenting cells and 
converting them tolerogenic [25, 26]. The most ac-
cepted theory about autoimmune infl ammation of 
CNS assumes a break of the immune-regulatory bal-
ance between activated T cells and regulatory T cells. 
Dysfunctions of certain regulatory T cells have been 
reported for MS [27]; this fi eld became a goal for re-
searchers looking for the effi cient therapy in MS. 

Venken in 2008, describe the existence of damaged 
regulatory T cells, joined to a reduced expression of 
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FOXP3, in RRMS patients [28]. Damage to regula-
tory T cells CD4+CD25+FOXP3+ could be the ex-
planation for changes in the tolerance to autoantigens 
that brings susceptibility to MS and the autoimmune 
course of the disease [29, 30].

The treatment with Interferon β-1a (IFN-β) im-
proves the expression of the tolerogenic molecule 
B7-H1 in dendritic cells, changing their inhibitory 
properties and contributing to relevant immunoregu-
latory mechanisms in MS [31]. Then, IFN-β functions 
as an inductor of regulatory T cells through the inter-
actions of T cells with dendritic cells [32]. 

Apart from the generalized theory about the auto-
immune cause of MS, Zamboni et al. have recently 
proposed a new theory that relates MS cause with a 
chronic cerebrospinal venous insuffi ciency [33]. Al-
though it has been created a wave of expectation in 
many patients, some studies are now in progress in 
order to verify the theory; that is the case of those 
led by Doepp et al. [34] and Sundstrom et al. [35] in 
2010, which not confi rm the results obtained by Dr 
Zamboni.

Oxidative stress in MS
Healthy cells have several mechanisms of self-defense 
against the damage induced by free radicals; when 
these mechanisms fail the cells are under the oxida-
tive stress phenomenon. The oxidative stress may 
cause cellular damage and cell death due to oxidation 
of essential bio-molecules [36].

Neurons are particularly vulnerable to damage in-
duced by free radicals, they have low levels of antiox-
idants as glutathione [37, 38] and reduced enzymatic 
activities of detoxifi cation as performed by catalase 
or superoxide dismutase [39, 40]. In addition, neurons 
cannot replicate themselves, so, alterations induced on 
this kind of cells may lead to irreversible damage on 
CNS [41].

The reactive oxygen species are particularly active 
in brain; the neurotransmitters and excitatory amino 
acids, unique in the brain, are highly ROS producers. 
Metals as Iron, catalytic for free radical reactions, are 
present at elevated concentrations in several regions 
of the brain; with reduced levels of transferrin. Other 
oxidative stress sources are generated by the constant 
use of oxygen in the mitochondria and other auto-
oxidation enzymatic pathways. ROS attack glia and 
neurons leading to neuronal damage [42].

Some studies explore the effect of antioxidants in 
the EAE model, in mice [43-45]; alpha lipoic acid for 
example, shows the ability to pass through the BBB 
and reduce infl ammation, demyelination and axonal 
damage in the spinal cord [46]. However, these results 
have not been reproduced in humans and the few clin-
ical trials for this kind of molecules have not proved 
to delay MS progression [42].

A good antioxidant drug for MS has to be admin-
istered at an early state of the disease; before the irre-
versible neuronal damage takes place. Also, the drug 
must be able of penetrate the BBB to gain a therapeu-
tic level in the CNS [42]. 

The immunomodulatory effects of Luteolin, a fl a-
vonoid with antioxidant activity [47], seems to be 
caused by the modulation of regulator components 
of cytoskeleton like Rho GTPase family, a group of 

proteins that inhibit NF-kappaB, a protein that has 
been associated to a high number of infl ammatory dis-
eases [48]. This kind of inhibition may lead to reduce 
the expression of MMP9 [49, 50] a protein involved in 
oxidative stress mechanisms. 

MS treatments
Immunomodulatory or immunosuppressive therapies, 
capable of to halt or reduce clinical symptoms and 
plaques development in MS, generally cannot stop 
the illness progression. Drugs like IFN-β and Mitox-
antrone are modifi er therapies licensed to be used in 
SPMS patients. The fi nding of restorative and neuro-
protective therapies is now one of the main goals for 
researchers at the MS fi eld, due to the neurodegenera-
tive component of the disease [17].

All the established drugs for treating MS are only 
partially effective, besides their serious potential side 
effect; that is why many studies are nowadays in prog-
ress to fi nd new agents or to optimize actual therapies. 
Doses modifi cations, changes in the route of adminis-
tration and time or duration of the treatments are some 
of the factors studied [51]. 

Among approved MS treatments are: IFN-β [52], 
Copaxone or Glatiramer Acetate (GA) [53], Immuno-
globulins intravenous injection [54], plasmapheresis 
[55], Natalizumab [56, 57]. Other treatments proposed 
or still being studied are: chemokines receptor antag-
onists [58], immune therapies based on auto-antigens 
[59], stem cells transplant [60], strategies involving 
B cells [61] and T cells [62], and some others study-
ing the effect of immunomodulatory and immuno-
suppressive compounds; that is the case of FTY720, 
Fingolimod [63] and Treosulfan [64], between others. 
According to Fox RJ in 2010, seven therapies were 
approved for FDA to treat RRMS and a dozen are now 
under study [65]. 

IFN-β, a molecule with anti-infl ammatory proper-
ties, is the most widely used drug for treatment of MS. 
The downregulation of T helper 1 cytokines and the 
inhibition of the migration of infl ammatory T cells 
into the CNS are important factors in the therapeutic 
effects of IFN-β.

According to recent reports, osteopontin and IL-17 
play signifi cant roles in the pathogenesis of MS [66, 
67]. Osteopontin is a T-bet-dependent proinfl ammato-
ry cytokine produced by Th1 cells and dendritic cells, 
which regulates expression of downstream infl amma-
tory cytokines such as IL-10, IL-12, IL-17, IL-23 and 
IL-27. IL-17 is expressed by a distinctive cell lineage 
named Th17 cells, also recognized as a key media-
tor of MS. Recent fi ndings indicate that IFN-β down-
regulates expression of osteopontin and the differen-
tiation of IL-17-secreting Th17 cells in MS [68].

GA is a random polypeptide made up of four ami-
no acids (L-glutamic acid, L-lysine, L-alanine, and 
L-tyrosine) in a specifi c molar ratio, that causes an 
immune deviation from a Th1 to a Th2 phenotype and 
induces antigen-specifi c T suppressor cells that cross-
react with putative autoantigens in the CNS, and in-
hibits antigen presentation [69].

Natalizumab is a humanized monoclonal antibody 
that binds to integrins and prevents their interaction 
with their ligands. Integrins mediate the migration of 
T cells in the CNS and constitute a pre-requisite for 
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transmigration of immune cells across the blood-brain 
barrier [70, 71].

Evidence exists that implicates B cells in the de-
velopment and perpetuation of MS [72, 73]. Some 
strategies that have B lymphocytes as a target are now 
under study, for example, that one that considers B 
cells depletion using specifi c monoclonal antibodies, 
as Rituximab [74]. In this experiment, the effect of 
B cells elimination was observed in peripheral blood 
but not in cerebrospinal fl uid, depending on the levels 
of expression of Rituximab target antigen CD20. The 
effi ciency or not of this or other experiments affect-
ing B cells needs to be validated and studied deeply. 
The serious potential side effect of any new drug has 
to be considered and the cost-benefi t relation for the 
patients must be well established. 

Neuroprotection and neural reparation are new 
strategies recently inserted in clinical trials, although 
the impact of neuroprotective agents on the immune 
system may not always be benefi cial, as recently 
demonstrated for sodium channel blockers in EAE 
[75]. Protecting axons and glia from infl ammatory 
damage and facilitating repair are also future direc-
tions for MS therapy. Theoretically, two strategies are 
in study: boosting of endogenous repair mechanisms 
and cell replacement therapies. Also, the identifi ca-
tion of auto-antigens that can induce axonal injury 
and an immune attack versus both glial and neuronal 
cells [76] is valuable information for neural repara-
tion strategies. 

Prostaglandins (autacoids derivatives of arachi-
donic acid) are implicated in the modulation of many 
physiological systems, such as CNS and the immune 
system. The relation between these molecules and MS 
and other pathologies has been observed, for example, 
implicating some of them (PG-D2, PG-E2/EP4) in the 
inhibition or activation of T lymphocyte proliferation 
and consequently, the infl ammatory response, appar-
ently depending on the prostaglandin concentration. 
Several studies tried to measure the prostaglandins 
levels in CSF and serum of MS patients, and more 
of them suggest that prostagandins are increased in 
CSF of MS patients. PG-E is one of the major effec-
tive factors in pathogenesis and treatment of MS and 
evidences show that PG-E2 may infl uence the remy-
elination process. Some studies have discovered that 
15d-PG-J2 decrease the function of macrophages, 
monocytes, microglial cells; inhibits Th1 differentia-
tion and leads to the amelioration of EAE [77]. Thus, 
the possibility of use these molecules, in particular 
those which have proved potent anti-infl ammatory 
properties, might be a method to considerate for com-
bined therapies in MS.

At the same way, advances in imaging techniques, 
proteomics, pharmacogenomics, metabolomics and 
transcriptomic must be integrated and used in order 
to make better designs of drugs and improve the ap-
plicability of future therapies in MS.

The combination of two drugs or compounds as 
a new strategy for potentiate particular effects and 
lead to more effi cient treatments, is a way investi-
gated today looking for access to superior levels of 
MS patients life. For example, combination of IFN-β 
and Luteolin increases the immunomodulatory effects 
of IFN-β, obtaining a major effi cacy in clinic and re-

ducing neutralizing antibodies and other factors that 
affect the IFN-β treatment [78]. Nevertheless, lower 
intestinal absorption of fl avonoids limits the combina-
tion expected benefi cial effects [79].

Among the aspects to improve in new therapies 
are the reduction of brain lesions, the relapses and the 
prevention of CNS permanent damage. At this mo-
ment, patients continue having relapses and MS pro-
gression, still under IFN-β or GA treatment [80]. The 
combination of IFN-β, the more accepted and used 
drug for the treatment of MS, with other compounds 
that potentiate the neuroprotective effect, is a way to 
consider and study deeply.
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and by limited external validity (with few treatments 
given at clinically appropriate time points) [81].

Pharmacogenomics in MS
Current strategies for treating MS are limited by the 
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in the fi eld of genetics, not completely elucidated.  That is 
why hypothesis in study require advances in the knowl-
edge of those factors involved in the MS pathogeny at 
genomic and transcriptomic levels. A serious study on 
these fi elds could give relevant information about the 
mechanisms involved in response to drugs and other 
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tion obtained with the clinic. Identifi cation of genetic 
variants and biomarkers that may predict the treat-
ment response is very useful in order to guarantee a 
good response and patient satisfaction [82].
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