Dyslipidemia as an associated risk factor in hypertensive women

Dislipidemia como factor de riesgo asociado en mujeres hipertensas

Martín Rosas-Peralta, * Héctor Galván-Oseguera, ${ }^{\ddagger}$ Teresa Velásquez-Vélez, ${ }^{\S}$ Gabriela Borrayo-Sánchez*

Keywords: hypertension, dyslipidemia, women, Mexico.

* Planning and

Innovation Coordination. Central Offices of IMSS.
\ddagger Cardiology Hospital. Centro Médico Nacional SXXI. § Family Medicine Unit No. 13. Zone General Hospital.

INTRODUCTION

TThe current prevalence of arterial hypertension in Mexico has been estimated at $30.05 \% .^{1}$ Its relationship with age, dyslipidemia, obesity, and carbohydrate metabolism disorders is recognized. ${ }^{2}$

An increase in total circulating cholesterol, on the other hand, represents another important marker of cardiovascular risk. ${ }^{3-6}$ Cardiovascular disease (CVD) is the leading cause of death in most middle-income and developed countries and has recently increased in low-income countries. In Mexico, as worldwide, the leading cause of death is cardiovascular disease for both women and men. ${ }^{7}$

Approximately 80\% of CVD are preventable. Atherosclerotic cardiovascular disease (ASCVD) prevention and risk reduction benefit individuals and society, which is why it represents a challenge. The expenditures associated with these diseases are catastrophic and capable of slowing down the social development of a country. Many patients cannot access preventive cardiology. ${ }^{8,9}$

Hypertension and dyslipidemia are important risk factors for CVD. The coexistence of hypertension and dyslipidemia is often observed in daily clinical practice. Epidemiological studies have also reported that gradual increases in blood pressure (BP) or the prevalence of hypertension are associated with increases in circulating lipid levels. One possible explanation for this relationship is that
hypertension and dyslipidemia share common pathophysiological mechanisms, such as obesity and the resulting dysregulation of adipokine release. Dyslipidemia, however, adversely affects functional and structural arterial characteristics and promotes atherosclerosis. These changes may affect BP regulation, which, in turn, predisposes people with dyslipidemia to the development of hypertension. ${ }^{10,11}$

From an epidemiological perspective, several cohort studies have indicated a causal relationship between dyslipidemia and future risk of developing hypertension. ${ }^{8}$ However, with one exception, these studies have been conducted in non-Asian populations. ${ }^{8,12-15}$

Hypertension is a modifiable risk factor to avoid premature death. Evidence supports that effective treatment of hypertension results in a significant reduction in CVD. ${ }^{6}$ The may measurement month (MMM) initiative of the International Society of Hypertension and epidemiological studies such as PURE have concluded that at least a quarter of the Latin American population suffers from hypertension. However, only 20-30\% of them are within the BP control goals, according to the recommendations of the current guidelines. ${ }^{3,4,12}$

These data align with the Global Blood Pressure Screening Campaign of the International Society of Hypertension (MMM). ${ }^{4}$ Of 1'508,130 subjects examined, 32% had never previously undergone BP measurement, only 58.7% of patients with hypertension

[^0]knew their diagnosis, and 54.7% were taking antihypertensive drugs. ${ }^{4}$ In patients taking antihypertensives, only 57.8% were controlled with BP $<140 / 90 \mathrm{mmHg}$ and 28.9% with lower values. Those values mean that only 31.7% of all those with hypertension were controlled with BP $<140 / 90 \mathrm{mmHg}$ and 23.3% of participants had untreated or inadequately treated hypertension.

The urgent need to implement innovative strategies to reverse this alarming health situation is evident in this context. In recent years, physicians have noted that an increased frequency of out-of-office BP measurements may be helpful to keep patients and physicians in touch and promote better medication adherence and BP control. ${ }^{11,16,17}$ Many systematic reviews and meta-analyses confirm the validity and usefulness of home selfmeasurements that patients can share with physicians via telemedicine. In a study in a Mexican population that included more than 120,000 patients, the prevalence of hypertension was 30.2% in adults aged 20 or over. Interestingly, hypercholesterolemia with cholesterol levels greater than $200 \mathrm{mg} / \mathrm{dL}$ was more prevalent in the hypertensive population than the non-hypertensive population (57.8\% vs 39.8%, respectively, $\mathrm{p}<0.05$).

Hipercholesterolemia $\geq 200 \mathrm{mg} / \mathrm{dL}$ in hypertension group by BMI $\mathrm{Kg} / \mathrm{m}^{2}$, age and gender ($n=36,241$ of 120,005 study population [30.2\%])

Figure 1: Distribution of total cholesterol level $(\mathrm{mg} / \mathrm{dL})$ by age group and gender. The red box corresponds to total cholesterol $>240 \mathrm{mg} / \mathrm{dL}$, the yellow box to total cholesterol $200-240 \mathrm{mg} / \mathrm{dL}$, and the green box to cholesterol less than $<200 \mathrm{mg} / \mathrm{dL}$. $B M I=$ body mass index.

DYSLIPIDEMIA IN HYPERTENSIVE WOMEN IN MEXICO

Thus, it is clear that chronic noncommunicable diseases frequently coexist, and the presence of one enhances the existence of the others. ${ }^{17,18}$ The prevalence of hypercholesterolemia > 200 $\mathrm{mg} / \mathrm{dL}$ in the population aged 20-34 without arterial hypertension was 27.2% vs 36.5% in the group with hypertension of the same age. ${ }^{16,19}$

Interestingly, the prevalence increases in the $35-54$ age group to 44.9% in participants with normal BP and 62.3% in patients with hypertension, without significant differences between both sexes. ${ }^{16}$ However, in the 55-69 age group, the prevalence increases to 47.3% in subjects with normal BP vs 68.6% in the population with hypertension. The differences by gender are notable, observing an increase of more than ten percentage points in women with hypertension (Figure 1). Of the total population of this study, $36,257(30.2 \%)$ were hypertensive; however, 60% were unaware of it. ${ }^{16}$ The prevalence of hypercholesterolemia in the population with hypertension was 52.5%; however, the prevalence was not only associated with the type of hypertension (55.6% systolic vs 53.2% diastolic) but also with the stage. Thus, the prevalence of hypercholesterolemia in stage one patients was 52.3%, while in stage 2 , the prevalence was $56.1 \%{ }^{16}$

CONCLUSIONS

Chronic noncommunicable diseases frequently coexist and enhance their prevalence among them. In this sense, there is a synergy between hypertension and hypercholesterolemia. The female gender shows a peculiar association according to age and body weight, and a higher prevalence of hypercholesterolemia is observed in women with hypertension. Dyslipidemia is a prevalent cardiovascular risk factor, and in women with hypertension, it presents a prevalence of more than 50%, particularly after age 55.

REFERENCES

[^1]Álvarez E et al. Prevalencia, tratamiento y control de la hipertensión arterial en adultos mexicanos: resultados de la Ensanut 2022. Salud Publica Mex. 2023; 65 (supl 1): S169-S180.
2. Rosas-Peralta M, Palomo-Piñón S, Borrayo-Sánchez G, Madrid-Miller A, Almeida-Gutiérrez E, GalvánOseguera H et al. Consenso de hipertensión arterial sistémica en México. Rev Med Inst Mex Seguro Soc. 2016; 54 (Suppl 1): S6-S51.
3. Morales-Villegas EC, Yarleque C, Almeida ML. Management of hypertension and dyslipidemia in Mexico: Evidence, gaps, and approach. Arch Cardiol Mex. 2023; 93 (1): 77-87.
4. Beaney T, Schutte AE, Stergiou GS, Borghi C, Burger D, Charchar F et al. May measurement month 2019: The Global blood pressure screening campaign of the International Society of Hypertension. Hypertension. 2020; 76 (2): 333-341.
5. Campos-Nonato I, Hernández-Barrera L, FloresCoria A, Gómez-Álvarez E, Barquera S. Prevalencia, diagnóstico y control de hipertensión arterial en adultos mexicanos en condición de vulnerabilidad. Resultados de la Ensanut 100k. Salud Publica Mex. 2019; 61 (6): 888-897.
6. Mancia Chairperson G, Kreutz Co-Chair R, Brunstrom M, Burnier M, Grassi G et al. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension Endorsed by the European Renal Association (ERA) and the International Society of Hypertension (ISH). J Hypertens. 2023. doi: 10.1097/HJH. 0000000000003480.
7. Organización para la Cooperación y el Desarrollo Económicos. OECD Health Statistics 2021. París: OECD; 2023. Disponible en: https://www.oecd-ilibrary.org/sites/ddcd9abf-en/index.html?itemId=/ content/component/ddcd9abf-en\%20\%20
8. Guerra-López A. Hypertension and dyslipidemia. Cardiovasc Metab Sci. 2021; 32 (s3): s273-s276.
9. German CA, Baum SJ, Ferdinand KC, Gulati M, Polonsky TS, Toth PP et al. Defining preventive cardiology: A clinical practice statement from the American Society for Preventive Cardiology. Am J Prev Cardiol. 2022; 12: 100432. doi: 10.1016/j. ajpc.2022.100432.
10. Gheorghe G, Toth PP, Bungau S, Behl T, Ilie M, Pantea Stoian A et al. Cardiovascular risk and statin therapy
considerations in women. Diagnostics (Basel). 2020; 10 (7): 483.
11. Chapman N, Ching SM, Konradi AO, Nuyt AM, Khan T, Twumasi-Ankrah B et al. Arterial hypertension in women: State of the art and knowledge gaps. Hypertension. 2023; 80 (6): 1140-1149.
12. Teo K, Chow CK, Vaz M, Rangarajan S, Yusuf S; PURE Investigators-Writing Group. The Prospective Urban Rural Epidemiology (PURE) study: examining the impact of societal influences on chronic noncommunicable diseases in low-, middle-, and high-income countries. Am Heart J. 2009; 158 (1): 1-7.e1. doi: 10.1016/j.ahj.2009.04.019.
13. Chen S, Cheng W. Relationship between lipid profiles and hypertension: a cross-sectional study of 62,957 Chinese adult males. Front Public Health. 2022; 10: 895499. doi: 10.3389/fpubh.2022.895499.
14. Otsuka T, Takada H, Nishiyama Y, Kodani E, Saiki Y, Kato K et al. Dyslipidemia and the risk of developing hypertension in a working-age male population. J Am Heart Assoc. 2016; 5 (3): e003053. doi: 10.1161/ JAHA. 115.003053.
15. Cheng W, Zhuang J, Chen S. Dyslipidemia and the prevalence of hypertension: a cross-sectional study based on chinese adults without type 2 diabetes mellitus. Front Cardiovasc Med. 2022; 9: 938363.
16. Lara A, Rosas M, Pastelín G, Aguilar C, Attie F, Velázquez-Monroy O. Hipercolesterolemia e hipertensión arterial en México. Consolidación urbana actual con obesidad, diabetes y tabaquismo. Arch Cardiol Mex. 2004; 74 (3): 231-245.
17. Ancona-Vadillo AE. Dyslipidemia in women, a current overview based on cardiovascular risk. Cardiovasc Metab Sci. 2021; 32 (s3): s204-s208.
18. Basoglu OK, Tasbakan MS, Kayikcioglu M. Dyslipidemia prevalence in nonobese, nondiabetic patients with obstructive sleep apnea: does sex matter? J Clin Sleep Med. 2023; 19 (5): 889-898.
19. Lara EA, Meaney E, Ceballos RGM, Asbun BJ, Ocharán HME, Núñez SM et al. Factores de riesgo cardiovascular en la población femenina urbana de México. El estudio FRIMEX IIa. Med Int Mex. 2006; 22 (6): 484-492.

Correspondence:
Martín Rosas-Peralta
E-mail: martin99.rosas99@gmail.com

[^0]: How to cite: Rosas-Peralta M, Galván-Oseguera H, Velásquez-Vélez T, Borrayo-Sánchez G. Dyslipidemia as an associated risk factor in hypertensive women. Cardiovasc Metab Sci. 2024; 35 (s1): s15-s17. https://dx.doi.org/10.35366/115053

[^1]: 1. Campos-Nonato I, Oviedo-Solís C, Vargas-Meza J, Ramírez-Villalobos D, Medina-García C, Gómez-
