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Las especies reactivas de oxigeno y nitrégeno son moléculas
que se generan a partir del metabolismo celular fisiologico;
sin embargo, cuando existe un desequilibrio entre la produc-
cién de radicales libres y los mecanismos antioxidantes se
genera estrés oxidante. El estrés oxidante se ha asociado con
el desarrolloy progresion de enfermedades neurodegenera-
tivas como Alzheimer, Parkinson y Huntington. Dado que el
inicio del estrés oxidante es imperceptible y alin no se cuenta
con estudios de laboratorio que determinen el impacto de
los radicales libres en pacientes con enfermedades neuro-
degenerativas, es importante dilucidar el papel de estos en
los procesos neurodegenerativos con el fin de tener indicios
solidos sobre las posibles dianas de tratamiento y prevenir el
dano progresivo en este tipo de enfermedades.
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The reactive oxygen and nitrogen species are molecules that
are generated from the physiological cellular metabolism.
However, when there is an imbalance between the produc-
tion of free radicals and the antioxidant mechanisms, oxida-
tive stress is generated. Oxidative stress has been associated
with the development and progression of neurodegenera-
tive diseases such as Alzheimer, Parkinson and Huntington,
given that the onset of oxidative stress is imperceptible and
that there are still no laboratory studies that can determine
the impact of free radicals in patients with neurodegener-
ative diseases. It is important to elucidate the role of free
radicals in neurodegenerative processes in order to have
solid indications about the possible treatment targets and
to prevent the progressive damage in this type of diseases.

Neurodegenerative diseases; radicals; oxygen; ni-
trogen.
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INTRODUCCION

El oxigeno (O;) es necesario para la vida de la mayo-
ria de los seres vivos, ya que actda en la respiracion
mitocondrial como aceptor final de 4 electrones,
dando lugar a 2 moléculas de agua y la formacién
de ATP"2. Cuando la reduccién del O, es parcial,
se generan especies reactivas de oxigeno (ERO) y
radicales libres'. De este modo, cuando el O, capta
un electrén, se produce el radical anién superéxido
(O5), que puede dar lugar a peréxido de hidrégeno
(H,O,) y al radical hidroxilo (OH:)*“. Otro radical
es el oxido nitrico (NO), que al reaccionar con el
O, forma especies reactivas de nitrégeno y oxigeno
(ERNO) como el anhidrido nitroso (N,O3) y el
peroxinitrito (ONOO")°.

A bajas concentraciones, el NO acttia como
un regulador esencial de la presién sanguinea,
como protector cardiovascular, como inhibidor de
la agregacién plaquetaria y también en la adhesién
leucocitaria; sin embargo, resulta perjudicial a ni-
veles elevados, ya que afecta el funcionamiento ce-
lular mediante la oxidacién de proteinas®’, activa
al factor nuclear kappa-B (NF-kB)® y actda como
mediador de inflamacién induciendo a la ciclooxi-

genasa (COX)’, ademds de estar involucrado en la
apoptosis neuronal, entre otras efectos'.

Es necesario aclarar la diferencia entre una ERO,
un radical y un radical libre. Las ERO son compues-
tos derivados del oxigeno, algunos de los cuales son
radicales libres y otros dan origen a alguno ellos''.
Un radical es una molécula que tiene un electrén
desapareado en el dltimo orbital y se define como
radical libre cuando se encuentra de manera inde-
pendiente a otras moléculas. Por ejemplo, el radical
hidroxilo (OH) es una molécula que se deriva del
O,, que no estd asociado a proteinas y que es capaz
de oxidar a los fosfolipidos de las membranas, ini-
ciando reacciones en cadena de lipoperoxidacién®.

La produccién de ERO se da a nivel subcelular
en las mitocondrias, lisosomas, peroxisomas, mem-
brana nuclear y en el citoplasma de diversas célu-
las', en las cuales existen fuentes como las NADPH
oxidasas (NOX), una familia de enzimas que utiliza
NADPH para reducir al O,, generando O,y la
6xido nitrico sintasa (NOS) que produce el NO™'®.
De entre todas estas, la fuente de mayor produccién
de ERO ocurre en la mitocondria, esto debido prin-
cipalmente, a que cuenta con 11 sitios que pueden
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El estrés oxidante es el desequilibrio entre la
generacién de ERO y ERNO y los mecanismos
antioxidantes en un sistema biolégico, donde
los primeros sobrepasan la capacidad de las
defensas antioxidantes de dicho sistema. Las
ERO y las ERNO eventualmente interactian
con estructuras moleculares, tales como
acido desoxirribonucleico (DNA), proteinas,
lipidos y carbohidratos, lo que conduce

a alteraciones de la actividad de las vias
metabdlicas y membranas que, sumado

a una inadecuada respuesta antioxidante,
causa la acumulacién de agregados
intracelulares, disfuncién mitocondrial,
excitotoxicidad y apoptosis. El estrés
oxidante se asocia con dafio molecular, que
eventualmente resulta en algunas patologias.

generar O,”y H,O,. Seis de estos sitios operan con
el potencial del par NADH/NAD* (complejo I) y
los 5 restantes operan con el par ubiquinol/ubiqui-
nona (complejo III)"”*® (figura 1).

EL ESTRES OXIDANTE
El estrés oxidante es el desequilibrio entre la gene-
racién de ERO y ERNO vy los mecanismos antioxi-
dantes en un sistema biolégico, donde los primeros
sobrepasan la capacidad de las defensas antioxi-
dantes de dicho sistema®. Las ERO y las ERNO
eventualmente interactdan con estructuras molecu-
lares, tales como dcido desoxirribonucleico (DNA),
proteinas, lipidos y carbohidratos, lo que conduce
a alteraciones de la actividad de las vias metabdli-
cas y membranas que, sumado a una inadecuada
respuesta antioxidante, causa la acumulacién de
agregados intracelulares, disfuncién mitocondrial,
excitotoxicidad y apoptosis. El estrés oxidante se
asocia con dafio molecular, que eventualmente re-
sulta en algunas patologias como: cdncer, enfer-
medades neurodegenerativas y diabetes®®*, entre
otras (figura 2).

Adicionalmente, el incremento en la produccién
de radicales libres promueve la entrada masiva de
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Ca** a la mitocondria, lo que hace que se forme el
poro de transicién en la membrana mitocondrial
interna (PTM), llevando a un colapso en el gra-
diente de potencial electroquimico de protones, lo
que provoca una disminucién en los niveles de ATP
y un aumento en las ERO. La disminucién en la
produccién de ATP resulta en la despolarizacién
de la membrana plasmdtica y la entrada de Ca™” a
través de varios canales i6nicos, lo que produce a
la pérdida de la funcién neuronal y la muerte de la
célula®>?.

El estrés oxidante en el sistema nervioso

En el caso del sistema nervioso (SN), las ERO y las
ERNO juegan un papel fundamental en el man-
tenimiento del estado fisiolégico, ya que regulan
vias de senalizacion en procesos de supervivencia,
desarrollo, plasticidad, muerte e inflamacién?*.
Sin embargo, el SN es particularmente vulnerable
al estrés oxidante debido al elevado consumo de
oxigeno que se requiere para mantener su alta tasa
metabdlica, con la consecuente produccién de gran-
des cantidades de ERO*”**y una menor capacidad
de los mecanismos antioxidantes en comparacién
con otros tejidos**.

De esta manera, el estrés oxidante es un factor
fundamental en diversos procesos de muerte neu-
ronal, tales como la necrosis y la apoptosis. En la
necrosis, la muerte es el resultado de la pérdida de la
integridad de las membranas, debido a la lipopero-
xidacién, el dafio oxidante al DNA y a las proteinas
estructurales®’. Por otro lado, la apoptosis no sélo se
caracteriza por la pérdida del potencial de la mem-
brana mitocondrial y la liberacién de citocromo
C, sino también por la peroxidacién proteica que
resulta en la disfuncién de la ATP sintasa, disfun-
cién de los complejos de la cadena transportadora
de electrones y la disminucién de la concentracién
de mecanismos antioxidantes como el glutatién®?*.
Las ERO provenientes de las NOX regulan positi-
vamente a la fosfolipasa C y al diacilglicerol, lo que
conlleva a un aumento de la concentracién intra-
celular de Ca* y a la activacién de caspasas efec-
toras, fenémeno que sin lugar a dudas contribuye
significativamente a la muerte celular'® (figura 3).

El dafio al SN en las patologias crénicas como
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Figura 1. Principales sitios de produccion de ERO en la cadena respiratoria
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Tomado y modificado de Brand et al., 2015. Se muestran los sitios de produccion del O,y H,0, durante el flujo de elec-
trones de la cadena respiratoria a partir de diferentes metabolitos. Los sustratos metabolicos se agrupan en 5 bloques
de diferente color, que corresponden al cintillo de la parte inferior de la figura: aminoéacidos, cuerpos cetdnicos, ciclo
de Krebs, lanzadera de glicerol 3 fosfato (GP) y B-oxidacion. En orden descendente se encuentra a las siguientes enzi-

mas: a-cetoadipato deshidrogenasa (OADHC), otras deshidrogenasas (DH), deshidrogenasa de a-cetoacidos de cadena

ramificada (BCOADH), piruvato deshidrogenasa (PDH), a-cetoglutarato deshidrogenasa, flavoproteina transportadora
de electrones-ubiquinona oxidorreductasa (ETF:QOR), complejo Il, glicerol 3 fosfato deshidrogenasa mitocondrial
(mGPDH), dihidroorotato deshidrogenasa (DHODH).
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Figura 2. El papel de las ERO y ERNO en la fisiopatologia de algunas enfermedades
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Se especifican algunos de los mecanismos de dafio celular asociados al estrés oxidante.

Neoplasias

Revista de la Facultad de Medicina de la UNAM |  http://doi.org/1 0.22201/fm.24484865€.2019.62.3.03




D. R. Hernédndez Espinosa, V. Barrera Morin, O. Briz Tena et al.

Figura 3. Participacion de las ERO en el proceso de apoptosis
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Las ERO participan en las cascadas de sefalizacion que culminan en la muerte apoptética, ya sea por la produccion
de dafio a biomoléculas, las cuales se liberan al espacio extracelular y son interpretadas como sefales extrinsecas
de muerte o provocando dafno por estrés oxidante, activando vias intrinsecas.

las enfermedades de Huntington, Parkinson y Alzhe-
imer, se caracteriza por la muerte neuronal debido al
estrés oxidante®, lo que favorece la neuroinflama-
cién que a su vez es responsable de dafio secundario.
La produccién de ERO es un elemento clave en el
inicio y la progresion de las enfermedades neuro-
degenerativas, por lo que resulta susceptible de ser
un blanco terapéutico sobresaliente®.
Actualmente se tiene bien dilucidado el papel
que tienen los radicales libres y las ERO en las en-
fermedades neurodegenerativas, y se ha encontrado
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una especial asociacién con las patologias como, la
enfermedad de Parkinson (EP), la enfermedad de
Alzheimer (EA) y la enfermedad de Huntington
(EH), entre otras'.

Segtin reportes de la Organizacién Mundial de
la Salud (OMS) en el 2006, la enfermedad neuro-
degenerativa con mayor prevalencia en el mundo es
la EA seguida por la EP*, sin embargo, el boletin
epidemioldgico de México en el afio 2015, reporta
2,295 casos de EA, de los cuales, la mayor preva-
lencia se presenta en pacientes de sexo femenino,

Vol. 62, n.° 3, Mayo-Junio 2019
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mientras que para la EP se reportaron 7,127 casos,
con mayor prevalencia en el sexo masculino®®.

ENFERMEDADES Y ESTRES (figura 4)
La enfermedad de Alzheimer
La EA es una enfermedad que se caracteriza por
la pérdida gradual de la memoria, que progresi-
vamente compromete otras funciones cognitivas,
asocidndose a trastornos conductuales que llevan al
paciente a un estado de invalidez social y dependen-
cia®®¥. Las funciones cognitivas que se alteran en
esta enfermedad incluyen la memoria, el lenguaje, la
orientacién temporo-espacial, las habilidades cons-
tructivas, el pensamiento abstracto, la capacidad
para resolver problemas y las habilidades motoras
adquiridas (praxias), todo esto debido a la muerte
de las neuronas piramidales del hipocampo y de la
corteza parietal*®¥. Entre los hallazgos histolégi-
cos propios de la EA se encuentran la acumulacién
de fibrillas intraneuronales y extracelulares, ovillos
neurofibrilares (agregados de proteina tau fosfori-
lada) y placas seniles (agregados filamentosos de
péptido beta-amiloide [Af])*.

La EA estd relacionada con una sobreproduccién
y depésito extracelular de péptido Af3, asi como el au-
mento de la generacién de NO, los cuales conducen a
vias neurotdxicas que cursan con estrés oxidante, ex-

Revista de la Facultad de Medicina de la UNAM |

citotoxicidad e inflamacién, que convergen en apop-
tosis y necrosis por liberacién de citocromo C, factor
inductor de apoptosis y activacién de caspasas>#4.

La proteina precursora de amiloide es una pép-
tido membrana de tejido neuronal y no neuronal
(por ejemplo, piel e intestino), que al ser escindida
porla Py Y secretasa da como resultado el péptido
8 amiloide. Este proceso de protedlisis favorece la
agregacion del péptido £§ amiloide en oligémeros
solubles que forman fibras que se depositan como
placas seniles en el citoplasma de las células neu-
ronales**4,

El péptido Af es capaz de unirse a diferentes
componentes mitocondriales, uno de ellos es la pro-
teina de unién -amiloide alcohol deshidrogenasa
(ABAD, por sus siglas en inglés), enzima con papel
citoprotector que lleva a cabo la detoxificacién de
aldehidos como el 4-hidroxi-2-nonenal (4-HNE),
un derivado de la peroxidacién de lipidos que se
utiliza como marcador de estrés oxidante?*%. La
interaccién entre el péptido Al y ABAD inhibe a
la enzima, lo que conduce a la disfuncién mitocon-
drial y a la generacién de ERO*.

El receptor de productos de glicacién avanzada
se activa por el efecto peroxidante de la proteina Af3,
con lo cual se favorece la produccién de ERO en la
microglia y en las células endoteliales.
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Figura 4. Participacion del estrés oxidante en las enfermedades neurodegenerativas (Alzheimer, Parkinson y Huntington)
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Tomado y modificado de Mark, P. Mattson. Magnus, T. Nature Reviews Neuroscience. 2006. Diferencias entre
poblaciones neuronales en la produccién y/o eliminacion de proteinas anormales que son responsables de
la vulnerabilidad neuronal relacionada con la EA, EP y EH. Las proteinas responsables de la fisiopatologia en
EA son ARy tau, en EP la a-sinucleina y en EH la huntingtina. Factores genéticos y relacionados con la edad
pueden aumentar las cantidades de proteinas patégenas entre las que se incluyen: AB42 en EA-mutaciones

en APP o presenilinas (y-secretasa), especies de oxigeno reactivo (ERO) y reducciones en enzimas que degra-

dan AP (ABDE) tales como neprilisina y enzima degradadora de insulina. Tau en EA- ERO, fosforilacién y calcio.
a-sinucleina en EP-mutaciones en a-sinucleina, parkin, DJ-1, UCH-L1, PINK1 o LRKK-2, ROS y deterioro del pro-
teasoma. EH-expansiones de poliglutamina en huntingtina (Htt), ROS y dafio y reparacion del ADN. El proceso
de agregacion de proteinas en si mismo se ve reforzada por el aumento de la concentracién de proteinas,
alteraciones postraduccionales tales como modificaciones oxidativas (inducidas por peréxido de hidrégeno,
hierro y cobre, por ejemplo) y fosforilacién, las acciones del calcio y transglutaminasas y/o proteina chaperona
insuficiente. Aunque las proteinas involucradas pueden diferir, existe un considerable sobrelapamiento en los
mecanismos por los que dafan y matan a las neuronas.
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Adicionalmente, el péptido Af§ provoca inhibi-
cién del complejo IV de la cadena de transporte de
electrones y de diversas ATPasas, lo cual contribuye
a la generacién de ERO y ERNO y a un aumento
de la permeabilidad de la membrana mitocondrial in-
terna al Ca® contribuyendo a la apertura del PTMY,
como parte de una de las vias de senalizacién proa-
poptdtica en los astrocitos***’, oligodendrocitos y
células endoteliales corticales e hipocampales, lo
cual se relaciona con el deterioro de la memoria®®'.

La enfermedad de Parkinson

La enfermedad de Parkinson (EP) es una de las
enfermedades neurodegenerativas con mayor pre-
valencia en el adulto”. Se caracteriza por degene-
racién de las neuronas dopaminérgicas ubicadas en
la sustancia nigra pars compacta (SNpc). En cortes
histolégicos post mortem de la corteza cerebral de
pacientes diagnosticados con EP se pueden encon-
trar cuerpos de Lewy (depésitos de ai-sinucleina mal
plegada, precursor de la neuromelanina, de la cual
no se conoce una funcién especifica)®.

La via anatémica que se encuentra danada en
los pacientes con EP es la via nigroestriatal, la cual
en condiciones normales se encarga del control
fino de los ganglios basales®. La disminucién en la
produccién de dopamina en esta via se manifiesta
clinicamente con: temblor en reposo, bradicinesia,
rigidez e inestabilidad postural, asi como sintomas
depresivos y deterioro de la funcién cognitiva™.

La dopamina es una molécula inestable que se
oxida para formar quinonas de dopamina (DAQ,
por sus siglas en inglés) y radicales libres, los cuales se
incrementan en condiciones de estrés oxidante’®".
El metabolismo de la dopamina que se lleva a cabo
por enzimas como la tirosinasa, monoaminoxidasa-
B (MAO) y catecol O-metiltransferasa (COMT) en
la membrana mitocondrial externa produce H,O, y
4cido dihidroxifenilacetaldehido®®®%. Si las barre-
ras antioxidantes glutatién (GSH), glutatién pero-
xidasa y la glutatién peroxidasa no son capaces de
reducir el H,O,, este puede reaccionar con metales
de transicién como el hierro para formar radicales
OH;, desencadenado la peroxidacién lipidica de
la membrana y la subsecuente muerte celular®'.

Las ERO y DAQ pueden modificar grupos sul-
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thidrilo en las proteinas de la cadena transportadora
de electrones y afectar su actividad®>%. Ademds, la
modificacién de grupos sulfhidrilo puede inducir
la apertura del PTM. Esto se ha caracterizado ya
que se puede prevenir la apertura del PTM® y la
muerte neuronal al administrar NAD(P)H quinona
reductasa (NQO1) in vivo a pacientes® .

Por otro lado, las DAQ puede ciclarse, y formar
aminocromos, que son altamente reactivos, por lo
que conducen a la generacién de O, y agotamien-
to del NADPH>%; Finalmente, los aminocromos
puede formar aductos con proteinas tales como la
o-sinucleina, que se relaciona con el estrés oxidante

por un aumento de NO, O,y H,O,%¢¢".

Enfermedad de Huntington

La enfermedad de Huntington (EH) se debe a la
repeticion del triplete: citosina, adenina y guanina
(CAG) en el gen HD, localizado en el brazo corto
del cromosoma 4, que codifica para una proteina
rica en residuos de glutamina, llamada huntingtina
(HTT). Por lo anterior esta se considera una enfer-
medad hereditaria, con patrén autosémico domi-
nante®®®. En condiciones fisiolégicas, el nimero
de repeticiones del triplete CAG oscila entre 9 y

36, mientras que la forma mutada de la proteina
huntingtina (mHTT) tiene mds de 36 repeticio-
nes, lo que favorece su agregacién y toxicidad en
las células del sistema nervioso, principalmente las
neuronas GABAérgicas del nicleo estriado (cauda-
do y putamen)”*72.

La funcién de la proteina HT'T no se ha aclarado
completamente, aunque se propone que participa
en el movimiento de los microttibulos y las vesicu-
las sindpticas que contienen al factor neurotréfico
derivado del cerebro (BDNF)”3.

La enfermedad se caracteriza por deterioro mo-
tor, cognitivo y cambios en la personalidad. Se ma-
nifiesta por movimientos involuntarios (corea), que
son cada vez mds frecuentes, involucrando grupos
musculares de cabeza, cuello y extremidades, lo
que afecta sus actividades cotidianas, llevdndolo
a la pérdida de la autonomia y posteriormente a la
muerte’*.

Las manifestaciones de la enfermedad pueden
comenzar en cualquier momento de la vida; sin
embargo, se presenta con mayor frecuencia entre
los 35 y 50 afos de edad. Los pacientes con EH
cursan con neurodegeneracién progresiva que los
conduce a la muerte entre 15 y 20 afios después de
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su diagnéstico. Actualmente el tratamiento se ve
limitado al control de los sintomas™7®.

El nimero de repeticiones de CAG en el gen
HTT es el principal factor de prediccién de la edad
de inicio de la enfermedad. Los pacientes con pene-
trancia reducida (entre 36 y 39 repeticiones) pueden
o no presentar la enfermedad’”’®. Cuando la pe-
netrancia es completa (mds de 39 repeticiones) los
pacientes presentan los sintomas de la enfermedad
entre los 35 y 50 anos”®, es importante mencionar
que los pacientes con inicio temprano de la enfer-
medad presentan mds de 60 repeticiones®.

Algunos cambios asociados a la EH son el au-
mento de lactato secundario a la disminucién del
catabolismo aerobio de la glucosa, particularmente
en regiones como la corteza cerebral y los ganglios
basales; también se han encontrado cambios morfo-
l6gicos en las mitocondrias de neuronas corticales,
disminuci6n de la fosforilacion oxidativa por reduc-
cién de la actividad de la cadena transportadora de
electrones (complejos IL, I11, y IV) y despolarizacién
de la membrana mitocondrial®".

En cultivos celulares el aumento en la agregacion
de mHTT produce cambios mitocondriales, como
la reduccidn de la capacidad de la homeostasis del
Ca’" ligado a la excitotoxicidad mediada por los
receptores tipo NMDA82. Los cambios mitocon-
driales y la subsecuente mitofagia asociada con la
agregaciéon de mHTT son los responsables de la
produccién de ERO¥.

El dafio oxidante se ha documentado en el tejido
cerebral post mortem, linfoblastos y liquido cefa-
lorraquideo. Algunos de los indicadores de dafio
oxidante que se han observado en el cuerpo estriado
y corteza cerebral de estos pacientes son el aumento
en la concentracién de malondialdehido (MDA) y
4-hidroxinonenal (productos de oxidacién lipidi-
ca), incremento en la carbonilacién y la nitracién
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de las proteinas®®, asi como la disminucién en

el glutatién reducido e incremento de la glutatién
peroxidasa, catalasa y superdxido dismutasa®.

EL PAPEL DE LOS ANTIOXIDANTES EN LAS

ENFERMEDADES NEURODEGENERATIVAS

Al tomar en cuenta el papel de EROS y ERNO en
las enfermedades neurodegenerativas la manipu-
lacién de los niveles de los mismos parece ser un
tratamiento prometedor para frenar la neurodegene-
racién?. Se propone que los antioxidantes pueden:

1. Disminuir la concentracién de oxidantes.
Unirse a iones metdlicos para evitar la formacién
de especies reactivas.

3. Transformar los peréxidos en productos menos
reactivos.

4. Detener la propagacién y el aumento de radica-
les libres.

Los antioxidantes se han clasificado en 2 princi-
pales sistemas: el enzimdtico (superéxido dismutasa,
glutatién peroxidasa y catalasa, entre otros) y no en-
zimdtico (vitamina E, vitamina C, glutatién, dcido
lipoico, carotenoides y ubiquinona, entre otros)*’”

(tabla 1).

CONCLUSIONES

El inicio del estrés oxidante es clinicamente im-
perceptible, es decir, no existe un estudio de labo-
ratorio clinico con el que se pueda determinar la
concentracion de radicales libres, ERO o ERNO
en el organismo, por lo cual se dificulta el actuar
especificamente a este nivel en las enfermedades
neurodegenerativas. Aunque se ha propuesto la su-
plementacién con antioxidantes para contrarrestar
la produccién de radicales libres, los resultados de
estos estudios son controversiales. Por lo anterior,
es importante dilucidar el papel de los radicales
libres en los procesos neurodegenerativos con el fin
de tener indicios s6lidos sobre las posibles dianas de
tratamiento con la intencién de retrasar o prevenir
la progresién del dafo en este tipo de enfermedades.
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Antioxidantes no enzimaticos y sus mecanismos propuestos en el tratamiento de EH, EA y EP

Vitamina E Evita lipoperoxidacién Reduce el riesgo de EA 'y EP 85
Eliminacién del anién superdxido En uso conjunto con la vitamina E
Vitamina C meqlantg la formacion de disminuye el depdsito del péptido AR 86,87
semidehidroascorbato, el que es enlaEA, y favorece el retraso en la
reducido por el glutation pérdida neuronal en EA y EP
Glutation Dest(o.)(lﬁcante de r.za\,d!cales libres, Disminuye la pérdida neuronal en la EA | 27,86
peroéxidos y xenobidticos
R Al [Frrev Coenzima mitocondrial con acciones | Retrasa la pérdida neuronal en laEAy
Acido lipoico - 87
antioxidantes y quelante de metales | la EP
En conjunto con la vitamina E previene
Carotenoides | Evitan la lipoperoxidacion I perc'jlda'r,\eu.ro’ne'xl, Eeleould . 85,27
peroxidacion lipidica en mesencéfaloy
cuerpo estriado en la EP
Ubiguinona En uso conjunto con la vitamina Ey la
(Cog ) Inhibicién de la lipoperoxidacién Cretrasa el inicio de la disminucién 21,84, 85
10 cognitiva en EA, EH y EP

EA: enfermedad de Alzheimer; EH: enfermedad de Huntington; EP: enfermedad de Parkinson.
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