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Resumen

El ácido valproico es un fármaco antiepiléptico con más de 50 años de uso clínico. En la década pasada se descubrieron sus 
efectos anticancerígenos. El análisis de grupos de pacientes que utilizaron este fármaco durante años ha mostrado que dis-
minuye la frecuencia de cáncer de cabeza y cuello. Estudios recientes evidencian el efecto anticáncer al combinar el ácido 
valproico con la quimioterapia, terapia biológica e inhibidores de sistemas antioxidantes, con resultados excepcionales. En 
esta revisión se analiza el metabolismo del ácido valproico y su aplicación contra el cáncer.

PALABRAS CLAVE: Acido valproico. Terapia del cáncer humano. Terapia epigenética. Inhibidores de desacetilasas  
de histonas.

Abstract

Valproic acid is an antiepileptic drug with more than 50 years of clinical use. In the past decade, its anticancer effects were 
discovered. Analyses in groups of patients who used this drug for years have shown that it decreases the frequency of head 
and neck cancer. Recent studies show the anticancer effect of combining valproic acid with chemotherapy, biological therapy 
and antioxidant systems inhibitors, with exceptional results. In this review, we analyze the metabolism of valproic acid and its 
application against cancer.
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Introducción

El ácido valproico (AVP) se utiliza en enfermedades 
neurológicas como epilepsia, migraña, trastorno bipo-
lar y déficit de atención.1,2 El AVP funciona como sen-
sibilizador a los tratamientos anticáncer al modificar 
epigenéticamente la expresión de genes.

Epigenética y cáncer

Las neoplasias malignas pierden la capacidad para 
controlar su proliferación, invadiendo otros tejidos 
(metástasis).3 Esta alteración se debe a mutaciones 
en los protooncogenes y genes supresores de tumo-
res. Lo anterior es generado por cambios genéticos 
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y epigéneticos.3,4 Los cambios epigenéticos pueden 
ser reversibles y consisten en mecanismos como la 
metilación de las regiones ricas en citocinas (CpG) 
del ADN o “islas CpG” que al ser metiladas inhiben 
la expresión de genes, el bloqueo del ARN mensajero 
por moléculas de micro-ARN (miARN) y la desaceti-
lación de histonas.3,4

Desacetilasas y acetiltransferasas de 
histonas en el control epigenético de los 
genes

El ADN se enrolla en los octámeros de histonas 
(H2A, H2B, H3 y H4) que forman el nucleosoma, que 
cuando se condensan integran la cromatina.5 Cada 
histona tiene una “cola” en el amino terminal rica en 
aminoácidos básicos como la lisina, blanco de modifi-
caciones postraduccionales, de tal forma que la acce-
sibilidad al ADN es en parte controlada por cambios en 
esta estructura.6 Los mecanismos de regulación de 
histonas incluyen la modificación por metilación, aceti-
lación, fosforilación y ubiquitinación, entre otros.7 La 
acetilación y desacetilación de histonas y proteínas 
citoplásmicas son reversibles y se controlan mediante 
dos enzimas: las acetiltransferasas de histonas y las 
desacetilasas de histonas (HDAC).8 Las acetiltransfera-
sas de histonas transfieren acetilos a las lisinas de las 
colas de histonas, lo que elimina la carga positiva de 
las lisinas, disminuyendo la unión con el ADN. Con lo 
anterior, acceden factores de transcripción y la ARN 
polimerasa.7,8 Por el contrario, las HDAC remueven gru-
pos acetilo, aumentando la atracción del ADN hacia las 
cargas positivas de las histonas; este ADN compactado 
no permite la entrada de factores de transcripción ni de 
la ARN polimerasa. En el cáncer se desacetilan prefe-
rentemente los genes supresores.7,8 La acetilación tam-
bién controla las proteínas citoplásmicas, regulando la 
expresión de genes, ciclo celular, corte y empalme 
(splicing), transporte y nucleación de actina.9

La familia de las HDAC

En el humano se conocen 11 HDAC, divididas en 
las clases I, II, III y IV, cuya clasificación se basa en 
su homología con las HDAC de levadura:6

–	 HDAC clase I, proteínas que usan Zn+ como co-
factor y se expresan de manera ubicua e inclu-
yen a HDAC1, HDAC2, HDAC3 y HDAC8.

–	 HDAC clase IIa incluyen a HDAC4, HDAC5, 
HDAC7 y HDAC9; se encuentran tanto en el nú-
cleo como en el citoplasma,

–	 HDAC clase IIb están presentes en el citoplasma 
e incluyen a HDAC6 y HDAC10.

–	 HDAC clase III, sirtuinas, se localizan en el cito-
plasma y mitocondria; ocupan el dinucleótido de 
nicotinamida y adenina como cofactor.

–	 HDAC clase IV incluyen a HDAC11 y se ubican 
en el citoplasma10,11 (Tabla 1).

HDAC1, HDAC2, HDAC3 y HDAC8 participan en la 
proliferación celular. En la apoptosis destacan HDAC1 
y HDAC2. En la resistencia a la quimioterapia predo-
mina HDAC1; en la diferenciación, HDAC3, HDAC4, 
HDAC5 y HDAC8; en la angiogénesis, HDAC4, HDAC6, 
HDAC7 y HDAC10; y en la migración, HDAC6.12,13

Metabolismo del ácido valproico

El AVP en niños se ha asociado con insuficiencia 
hepática.14-16 Su eliminación depende de su biotrans-
formación en productos más solubles en agua, pro-
ceso que se divide en dos fases:14

–	 Fase I, incluye reacciones de oxidación, reduc-
ciones e hidrólisis.

–	 Fase II, participan reacciones de conjugación 
con glucuronato, glutatión, carnitina, coenzima A 
o aminoácidos como glicina o ácido glutámico.

El metabolismo oxidativo del AVP es mitocondrial por 
medio de la betaoxidación. En el hepatocito se inactiva 
por medio de la fase II, que por conjugación genera 
productos polares para su excreción renal. El AVP es un 
sustrato para las isoformas CYP2C6 y CYP2C9.17,18 De 
todos los compuestos del metabolismo que se generan, 
el 4-ene-valproico es más hepatotóxico (Figura 1).16

Mecanismo de acción de los inhibidores 
de HDAC

Los inhibidores de HDAC (iHDAC), como el AVP, 
detienen el ciclo celular, generan diferenciación y 
apoptosis en las líneas celulares cancerígenas en el 
humano, inhiben el crecimiento tumoral en modelos 
animales y tienen actividad antitumoral en ensayos 
clínicos controlados.19-21 Además, activan la autofagia, 
generan especies reactivas de oxígeno e interrumpen 
la vía del agresoma.13 La inhibición de las HDAC pro-
voca sobreacetilación de estas proteínas, lo que 
reactiva la transcripción de genes supresores de tu-
mores y revierte el cáncer.6

En estudios clínicos controlados, los iHDAC mues-
tran resultados aceptables en el tratamiento de neopla-
sias hematológicas, por lo que en 2006 la Food and 
Drug Administration aprobó el ácido hidroxámico 
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suberoilanilida (vorinostat y SAHA) y en 2009 la 
romidepsina para el tratamiento del linfoma cutáneo de 
células T, la displasia de médula ósea y el linfoma 

periférico de células T.22 A inicios de 2015 fue aprobado 
el panobinostat para el manejo del mieloma múltiple.23 
No obstante lo anterior, en tumores sólidos los 

Tabla 1. Clasificación de las desacetilasas de histona

Grupo de HDAC Enzima HDAC Proteínas con las que interacciona

Clase I
(homóloga a Rpd3)

HDAC1, HDAC2, HDAC3, HDAC8 p53, RB, MYOD, NF‑κB, DNMT1, DNMT3a, MBD2, Sp1, BRCA1, MeCP2, 
ATM, Smad7

HDAC2 RB, NF‑κB , BRCA1, DNMT1 

HDAC3 RB, NF‑κB , Smad7, Stat3, SRY

HDAC8 ND

Clase IIa
(homólogo a Hdac)

HDAC4 MEF2

HDAC5 MEF2

HDAC7 MEF2

HDAC9

Clase IIb HDAC6 Smad7, α‑tubulina, Hsp‑90

HDAC10

Clase III
(homóloga a Sir2)

SIRT1 p53, FOXO1, p300, NF‑κB, α‑tubulina

SIRT2 α‑tubulina 

SIRT3

SIRT4

SIRT5

SIRT6 Relacionada con la heterocromatina

SIRT7 Relacionada con el nucleolo

Clase IV
(similar a clases I y II)

HDAC11

Figura 1. Biotransformación del ácido valproico por el sistema de citocromos; se muestra la formación del metabolito hepatotóxico 4-ene-valproico.
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resultados han sido variables.24 Los iHDAC también 
pudieran ser útiles en enfermedades virales y diabetes 
mellitus 2.23-27 Se han observado buenos resultados en 
linfoma folicular y linfoma de zona marginal.28

Originalmente se observó que el AVP inhibe la 
proliferación celular del neuroblastoma murino y del 
glioma; también se ha encontrado que la exposición 
continua a AVP induce diferenciación de líneas celu-
lares y apoptosis.29-32 El AVP se ha clasificado como 
un inhibidor selectivo de las HDAC clase I.24,33

Modelado in silico del AVP sobre la HDAC8

El mecanismo por el cual el AVP inhibe a las HDAC 
no se conoce, sin embargo, un estudio in silico con 
HDAC8 utilizando el AVP como ligando sugiere que 
hay dos sitios de unión: el sitio catalítico y el canal 
hidrofóbico del sitio activo. El grupo carboxilo del AVP 
interactúa con el sitio catalítico. Por otro lado, se pien-
sa en el canal hidrofóbico del sitio activo se libera el 
acetato bloqueando a la enzima.34

El AVP sensibiliza al cáncer y coadyuva 
con la quimioterapia

El AVP en la terapia del cáncer se ha aplicado como 
monoterapia o en combinación con agentes epigené-
ticos desmetilantes, quimioterapia y moduladores del 
sistema inmunitario.35 En una investigación de fase II 
se observó que como monoterapia en carcinoma neu-
roendocrino era capaz de inducir la expresión de 
Notch I (supresor de tumores); el estudio incluyó a 
ocho pacientes, uno respondió parcialmente y cinco 
evolucionaron a enfermedad estable.36 In vitro, en 
neoplasias mieloides ha mostrado inducción de apop-
tosis y diferenciación en las células leucémicas no 
diferenciadas, lo que ha estimulado el uso del AVP 
como monoterapia o en combinación con el ácido 
transretinoico total en leucemia mieloide aguda (AML) 
y el síndrome mielodisplásico (MDS). En un estudio 
de fase II con 75 pacientes tratados con AVP asocia-
do con el ácido transretinoico total se reportó que 18 
pacientes (24%) lograron respuestas adecuadas. En 
otro estudio con AVP y ácido transretinoico total se 
trataron 20 pacientes con MDS: se observó beneficio 
clínico en 30 % de los pacientes con AML y MDS.37,38 
En otro enfoque se utilizó 5-azacitidina más AVP, re-
portando mejor respuesta que la terapia convencional 
en estudios fases I, II y III en adultos mayores con 
AML y MDS.37,39,40 En un estudio de fase II de AVP 
con ácido transretinoico total y 5-azacitidina aplicados 

a pacientes con AML y con MDS de riesgo bajo se 
observó respuestas en 23 % de los pacientes y una 
supervivencia de 12.4 meses.41

Las combinaciones del AVP con quimioterapia in-
cluyen agentes que dañan al ADN. En un estudio en 
el que se combinó con epirubicina (inhibidor de la 
topoisomerasa II) se observó respuestas en 22 % de 
los 44 pacientes incluidos, entre ellos pacientes con 
tumores considerados resistentes a las antraciclinas, 
como los melanomas.42 En un estudio fase I-II se 
combinó AVP con 5-fluorouracilo, epirubicina y ciclo-
fosfamida en una cohorte de 15 pacientes con cáncer 
de mama; en 64 % de los pacientes se observó to-
xicidad aceptable.35 En un estudio clínico fase II de 
16 pacientes con mesotelioma maligno inoperable y 
resistente al cisplatino se detectaron resultados si-
nérgicos con la combinación de AVP y doxorubicina; 
siete pacientes de 45 mostraron respuesta parcial.43 
En otro trabajo clínico de fase I/II de pacientes con 
melanoma metastásico se utilizó AVP en combinación 
con la karenitecina, un inhibidor de la topoisomerasa 
I; el resultado fue estabilización de la enfermedad en 
47 % (siete de 15 pacientes de la cohorte del incre-
mento de la dosis).44 En un análisis aleatorizado de 
fase III que incluyó a 36 pacientes con cáncer cervi-
couterino avanzado, la combinación de hidralazina, 
AVP, cisplatino y topotecán resultó en mejoría signi-
ficativa en la supervivencia libre de progresión.45 Otro 
trabajo in vitro demostró que el AVP aumenta la 
acetilación de la histona H3. Con estos cambios en 
las histonas, este fármaco evita la resistencia por la 
inhibición de mTOR por el compuesto RAD001 (eve-
rolimus) en células de carcinoma renal CaKi-1.46

AVP para prevenir el cáncer de cabeza y 
cuello

En un estudio retrospectivo de una cohorte de 
439 628 adultos mayores tratados con AVP por dife-
rentes diagnósticos (trastorno bipolar, migraña, epi-
lepsia) se observó menor frecuencia de carcinoma de 
cabeza y cuello relacionado con el tabaquismo en 26 
911 individuos que utilizaron el AVP crónicamente.47

Es interesante notar que los estudios in vitro de líneas 
de cáncer en cultivo, in vivo con modelos animales y 
estudios clínicos muestran que el AVP disminuye la 
resistencia a la terapia convencional del cáncer.45,47

Conclusiones

En estudios de grandes poblaciones de pacientes, 
el AVP ha mostrado que previene el cáncer de cabeza 
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y cuello; además, algunos estudios clínicos evidencian 
su utilidad como terapia combinada. Recientemente 
se ha empleado la combinación de AVP, quimioterapia 
y agentes que bloquean los sistemas antioxidantes 
(glutatión) con resultados interesantes en líneas celu-
lares de cáncer.34,48

Los trabajos que utilizan al AVP como molécula 
base para diseñar nuevos compuestos se enfocan en 
moléculas con inhibición de HDAC relacionadas con 
el cáncer con poca hepatotoxicidad. Al respecto, 
nuestro grupo ha trabajado con el diseño y ensayo de 
fármacos derivados del AVP, destacando el N-(2-hi-
droxifenil)-2-propylpentanamide (o-OH-VPA), que ha 
mostrado su efecto antiproliferativo en cultivos celu-
lares de Hela, sarcoma y MCF7.49
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