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Abstract

Since the excretion of potentially toxic cholephilic or-
ganic anions (COAs) produced by the fetus, such as bile
acids and biliary pigments, cannot be performed by the
fetal liver alone, the placenta and the maternal liver
must play a key role collaborating in this function.
COAs are transported across the plasma membranes of
fetal and maternal hepatocytes and trophoblastic cells
via similar carrier proteins. OATPs (organic anion-
transporting polypeptides), mainly OATP1B1 and
OATP1B3 are involved in COA uptake across the basal
membrane of adult hepatocytes and trophoblastic cells.
Certain OATPs may also play a role in COA efflux
from fetal hepatocytes toward the fetal blood and from
the trophoblast to the maternal blood. Either unmodi-
fied or biotransformed during their transit across the
placenta, COAs are transferred to the maternal blood
by MRPs (multidrug resistance-associated proteins),

such as MRP1, MRP2 and MRP3. BCRP (breast cancer
resistance protein) may also be involved in this step.
Under physiological circumstances, fetal COAs are tak-
en up by the maternal liver, which eliminates them
across the canalicular membrane via MRP2 and BSEP
(bile salt export pump). However, when normal biliary
excretion is not possible, the accumulation of COAs, in
particular in the fetal liver, placenta and maternal liver
trio, induces oxidative stress and apoptosis, which has
noxious repercussions on normal fetal development and
even challenges pregnancy outcome. Treatment of
pregnant rats with ursodeoxycholic acid, even though
maternal hypercholanemia is not corrected, prevents
oxidative damage and the subsequent deleterious effects
on the placenta and fetal liver.

Key words: Bilirubin, cholephilic Organic Anions,
Cholestasis, Oxidative Stress, Pregnancy, Ursodeoxy-
cholic Acid.

A large variety of structurally unrelated compounds can
be secreted into bile by the adult liver. For some of them, the
hepatobiliary pathway is by far the major one for their elimi-
nation from the body. These are commonly termed as chole-
philic compounds, which include several endogenous an-
ions, such as bile acids (BAs) and biliary pigments, mainly
biliverdin and bilirubin. The present review focus on the
molecular bases of the mechanisms responsible for the elim-
ination of these cholephilic organic anions (COAs) during
the fetal life through the excretory pathway constituted by
the fetal liver, placenta, and maternal liver trio (Figure 1).

Some COAs are taken up by the liver and excreted into
bile without undergoing major biotransformation. Detoxifi-
cation is therefore carried out only by transport mechanisms:
i.e., phase 0 (uptake) and phase III (secretion). In contrast,
other COAs undergo chemical modifications during their
transcellular residence due to detoxification mechanisms in-
volving oxidation/reduction reactions (phase I) and/or con-
jugation with polyatomic groups (phase II).1

Although some COAs, such as unconjugated biliru-
bin, are able to enter cells by simple diffusion,2 most
COAs are taken up mainly via plasma membrane carrier
proteins (for a review, see 3). Thus, in adult hepatocytes,
this process is performed in part by members of the fam-
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ily of organic anion-transporting polypeptides (OATPs),
including OATP-A or OATP1A2, according to the new
nomenclature recently adopted by the HUGO Gene No-
menclature Committee4 (gene symbol SLCO1A2), OATP-
C or OATP1B1 (SLCO1B1) and OATP-8 or OATP1B3
(SLCO1B3). Although all three isoforms have been
shown to be able to transport BAs (for a review, see 5)
and, some of them, also unconjugated bilirubin (UCB).6,7

owing to the low expression of OATP1A2 in normal
adult liver cells its role in COAs uptake is probably lower
than that of OATP1B1 and OATP1B3.

Another transport system involved in COAs uptake by
the liver that is not present in lower vertebrates, and
hence is probably phylogenetically more modern than
OATPs, is the Na+-taurocholate-cotransporting polypep-
tide (NTCP, gene symbol SLC10A1).8,9 This carrier be-
longs to a family of sodium-dependent co-transporters
that also includes the intestinal bile acid transporter
(IBAT, gene symbol SLC10A2), which plays a major role
in active bile acid uptake by the intestine and is also ex-
pressed in cholangiocytes and renal proximal tubular
cells.10 A negligible expression of NTCP has been found
in rat11 and human12 placenta, which is consistent with
functional evidence that suggest that the carrier-mediated
uptake of BAs13 across the basal plasma membrane of the
trophoblast - as happen for UCB14 - is not sensitive to so-
dium gradients.

Other transporters of the SLC22A family are able to
transport organic anions (OATs) or organic cations
(OCTs), and they hence participate in the uptake by the
liver of a large variety of compounds,15 including some
COAs and their derivatives.16 In this respect, it should be
noted that OCT3 (gene symbol SLC22A3) is particularly
abundant in human placenta.17

In adult hepatocytes, phase III processes are performed
by efflux pumps, most of them belonging to the superfami-
ly of ATP-binding cassette (ABC) proteins. These ATPas-
es use the energy of ATP hydrolysis to actively transport a
large number of different substrates out of cells. The fol-
lowing ABC proteins are located in the canalicular plasma
membrane: the P-glycoprotein, also termed multidrug re-
sistance protein (MDR1; gene symbol ABCB1), which is
probably involved in the secretion of organic and inorgan-
ic cations;18 the sister of the P-glycoprotein or bile salt ex-
port pump (BSEP; gene symbol ABCB11), which is the
major mechanism of bile acid secretion into bile;19 the iso-
form 2 of the multidrug resistance-associated protein
(MRP2; gene symbol ABCC2), which exports conjugated
bilirubin, dianionic sulfated or glucuronated metabolites,
including BAs, and drugs, such as cisplatin,20,21 and the
breast cancer resistance protein (BCRP; gene symbol
ABCG2), which can transport steroids, including BAs, with
higher efficiency for sulfated derivatives.22,23

The level of expression of MRP1 (ABCC1) and MRP3
(ABCC3) in the basolateral plasma membrane of adult
hepatocytes is very low, but this can be markedly in-

creased in response to cholestasis24-26 and endotoxemia.27

Up-regulation of these pumps in pathological conditions
might favor the elimination from liver cells of potentially
toxic COAs, which would subsequently be excreted by
the kidney when they cannot be secreted into bile.28

Handling of cholephilic organic anions by the
fetal liver

In healthy adult humans, the major BAs are primary
BAs - those synthesized directly by the liver from choles-
terol -, and secondary BAs - those resulting of modifica-
tion of primary BAs by intestinal bacteria -.29 Surprising-
ly, although fetal intestinal function is very poor, and
hence BAs seem unnecessary, at least for digestive pur-
poses, as from very early on in gestation the fetal liver is
able to carry out bile acid synthesis,30 and indeed serum
BA concentrations are higher in fetuses than in their
mothers in both rats31 and humans.32-34

However, the fetal hepatobiliary excretory pathway is
not yet fully functional.30 Therefore, the fetal liver must
transfer these COAs to the placenta, which would elimi-
nate them toward the mother. A minor contribution by the
fetal kidney, which can secrete them into the amniotic
fluid, also exists.35

Although not only of hepatic origin, bilirubin is also
produced by the fetus, and contributes to enhanced con-
centrations of this COA in fetal serum.34,36 It is not known
how the COAs produced by the fetal liver exit from hepa-
tocytes. However, at least some OATPs are believed to
behave as bi-directional transporters37 and their expres-
sion has been detected in fetal liver. Using real-time
quantitative RT-PCR the mRNA levels of several trans-
porters have been measured recently at different time-
points during rat gestation.11 Except for Oatp4a1, the
abundance of mRNA in fetal liver is lower than in adult
liver. Thus, although an efficient bile acid transporter,
Oatp1b2 (previously named Oatp4), is up-regulated dur-
ing the last third of gestation its mRNA levels increase
from only 1% to 10% of values found in adult liver.
Among the substrates transported by Oatp4a138 and its
human ortholog, OATP4A1 (previously named OATP-
E),39 are some BAs.

Regarding the possibility that active export of COAs
across the basolateral plasma membrane of fetal hepato-
cytes might be mediated by MRPs, it is noteworthy that
mRNA levels for Mrp1 in fetal liver are three-fold higher
than in adult liver.11

Placental transfer of bile acids

Based on the lipid nature of BAs and the existence of
concentration gradients across the placenta, it has long
been accepted that simple diffusion is the major route for
their transplacental transfer. However, at physiological
pH both in blood and within the cells most BA molecules
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are in anionic form, which are poorly diffusible across
cell membranes.40 Moreover, simple diffusion would per-
mit BA transfer in both directions, which would reduce
efficiency of the overall process and would not prevent
the risk of the increased fluxes of these compounds from
the maternal blood that may occur under pathological cir-
cumstances accompanied by hypercholanemia.

In fact, BA transfer in the mother-to-fetus direction also
exists, because secondary BAs are present in the fetal BA
pool, even though the bacteria accounting for their produc-
tion are absent in the fetus. The transplacental gradient for
secondary BAs is inverse to that of primary species: i.e.,
secondary BAs are more abundant in maternal than in fetal
serum.34 However, this transfer is very low, as demonstrat-
ed by the fact that maternal cholestasis, induced in rats by
complete obstruction of common bile duct, which is ac-
companied by marked hypercholanemia, results in only a
moderate increase in BA concentrations in fetal serum.41

The existence in the trophoblast, as the major mechanism
of BA transfer across the placenta, of transport proteins,
some of which have unidirectional transport characteris-
tics, accounts for the vectorial properties of the overall pro-
cess (for a review, see figure 1).42

The first evidence for the existence of carrier proteins
involved in BA transport across the human placenta
came from functional experiments using plasma mem-
brane preparations obtained from the basal, or fetal-fac-
ing,13,43 and apical, or maternal-facing,44-46 poles of the
human trophoblast.

The placental phase 0 for fetal COAs involves the up-
take of these substances across the basal plasma mem-
brane. For fetal BAs, this step is carried out by sodium-
independent anion exchange.13 Since there is a bicarbon-
ate-gradient from maternal-to-fetal blood and since
bicarbonate has been shown to activate BA transport
across this membrane, it is likely that BA:bicarbonate ex-
change would mediate this process,47 which is not similar-
ly effective, and hence partly selective for the different
molecular species of BAs.48 This is probably involved in
establishing the differences in the composition of fetal
BA pool as compared to that of the mother.34 This trans-
port system is able to transport COAs other than BAs,49

suggesting that it could play a role in the detoxification of
other compounds from the fetal compartment.

Functional characteristics suggest that members of the
OATP family could be involved in this transport process.
The mRNA for some of these proteins in rat11,50 and hu-
man7 placenta has been detected. In human placenta, the
expression levels of OATP1B3 were found to be higher
than those of OATP1B1 and OATP1A1 - all of them able
to transport BAs make it smaller.7 Although OATP4A1
(previously OATP-E) is believed to be a thyroid hormone
transporter, it also transports certain BAs and is highly
expressed in human placenta.39 The ortholog Oatp4a1
(previously Oatp12) is also abundantly expressed in rat
placenta.11 However, the overall role of OATP4A1 in fe-

tal BA uptake is not clear, since this carrier has been pre-
dominantly detected at the apical surface of the human
syncytiotrophoblast.39 The expression levels of the BA
carriers Oatp1a1, Oatp1a4 and Oatp1b2 in rat placenta
are very low under physiological conditions,11 but they
are up-regulated during maternal cholestasis and, even
more so when pregnant rats are treated with ursodeoxy-
cholic acid.50 Moreover a role in this function of other
transporters cannot be ruled out. Thus, interesting candi-
dates are OATP2B1 (previously OATP-B), which has
been localized at the basal membrane of human tropho-
blast,51 and Oatp2b1 (previously Oatp9), whose mRNA is
also detected (although at less than 10% of that found in
adult rat liver) in rat placenta.11 However, there is some
controversy regarding substrate-specificity for both
orthologs. While rat Oatp2b1 seems to be able to trans-
port taurocholate,52 no ability to transport BAs is ob-
served when OATP2B1 (previously OATP-B) is ex-
pressed in Xenopus laevis oocytes.51

As shown in functional studies,46,53 phase III or the ex-
port of BAs from the trophoblast toward the maternal
blood, is probably mainly carried out by ATP-dependent
transport systems. However, a role for ATP-independent
mechanisms has been also suggested.44,45 The latter could
involve OATPs, such as OATP4A1.

Regarding ATP-dependent pumping mechanisms,
several ABC proteins expressed in placenta may be in-
volved (for a review, see 54). Among these transporters,
several multidrug-resistance associated proteins (MRPs)
with a known ability to transport BAs whose expression
in placenta has been detected include MRP1, MRP2 and
MRP3 in human placenta55 and Mrp1, Mrp2 and Mrp3
in rat placenta.50 At least in rats, these three transporters
are markedly up-regulated during maternal cholestasis,50

which could enhance the defensive barrier against the
inverted gradient of BAs which may favor the entry of
these compounds into the trophoblast and which these
transporters may return to the maternal blood. Indeed,
whereas rat common bile duct ligation resulted in an in-
crease in serum BA concentrations of 220 µM in the
mother, these were only approximately 30 µM in their
fetuses.50 Another candidate to be involved in this func-
tion is MRP4, which is expressed in basolateral mem-
brane of human hepatocytes, and is able to mediate ef-
flux of glutathione by cotransport with anionic BAs.56

Moreover, at least in rats, Mrp4 mRNA levels have been
found to be about 20-fold higher in placenta than in nor-
mal liver, although lower - approximately 30% - than
those in kidney.57

Although BSEP mRNA has been detected in hu-
man12,58 and rat placenta,11 its abundance is so low that a
major physiological role for this protein in BA transport
across the placenta is unlikely.

In spite of the high expression of BCRP in placenta,59

which accounts for one of the names of this protein, i.e.,
ABC placental protein (ABCP), and its recently described
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ability to transport BAs,23 its relevance in overall BA
transport across this organ has not been evaluated yet.

Placental transfer of biliary pigments

Fetal hemeoxygenase catalyzes the convertion of pro-
toporphyrin IX into biliverdin, mainly biliverdin IXα plus
carbon monoxide (CO).60,61 Hemeoxygenase (HO) con-
sists of two isoenzymes: HO-1 (inducible and mainly ex-
pressed in liver and spleen) and HO-2 (constitutive and
widely distributed throughout the body). In placenta, HO-
2 is expressed in syncytiotropoblast and endothelial cells,
where CO release may play a role in the control of pla-
cental perfusion.62 The activity of biliverdin reductase-al-
pha, which is detectable in several organs63 including the
placenta,64 accounts for the biotransformation of biliver-
din – a non-toxic and water-soluble green pigment – into
bilirubin – a potentially toxic and poorly water-soluble
yellow pigment –, mainly bilirubin IXα. In the adult,
UCB is efficiently taken up by the liver via saturable and
concentrative mechanisms that are mediated by transport
proteins.65 In hepatocytes, UCB is mono- or di-conjugat-
ed with glucuronic acid by the bilirubin uridine diphos-
phate-glucuronosyl transferase-1A166 to generate water-
soluble derivatives that are secreted into bile by MRP2.20

When the excretion of bilirubin into bile is impaired, up-
regulation of MRP3 permits the regurgitation of bilirubin
glucuronides into the plasma across the basolateral plas-
ma membrane of hepatocytes.67

Serum concentrations of UCB are higher in fetal than
in maternal blood.34,36 This can be explained in terms of
the following two additive features: on one hand, the fe-
tus has a high rate of bilirubin production due to active
haemoglobin F turnover during late gestation68 and an el-
evated fragility of blood red cells.69 On the other hand, the
activity of UCB-conjugating enzyme in fetal liver is very
poor, as is the hepatobiliary excretory pathway.70 In fact,
in fetal gallbladder bile only appreciable amounts of biliru-
bin IXβ have been found, probably due to the fact that this
is much more water-soluble than the IXα isomer, and
hence conjugation is not mandatory for its secretion into
bile.71 Therefore, for fetal bilirubin IXα it is transplacental
elimination that constitutes the major excretory pathway.

Owing to the existence of a fetal-to-maternal concen-
tration gradient and in view of the physical-chemical li-
pophilic characteristics of UCB, it has also long been ac-
cepted that one of the advantages of the evolutionary se-
lection of the transformation of biliverdin into bilirubin
was the need for a route for heme catabolites to cross the
placenta, which is easily carried out by UCB via simple
diffusion, but not by biliverdin.64 Moreover, when biliru-
bin was administered in utero to fetal guinea pigs72 and
monkeys73-75 the transfer of UCB from the fetal to the ma-
ternal circulation was rapid, while that of the conjugated
derivative was almost absent, indicating that only UCB is
able to cross the placenta.

Nevertheless, although a diffusional pathway of UCB
across plasma membranes does exist2,14 and may contrib-
ute to transplacental UCB transfer, functional in vitro ev-
idence suggest that the major pathway for UCB transport
across the basal and apical membranes of the human tro-
phoblast is carrier-mediated14 (Figure 1). Studies carried
out using in situ perfused rat placenta have found that
UCB is transported from the fetal to the maternal com-
partment via a process that can be inhibited by several
COAs, which is not consistent with simple diffusional
transfer.76 Moreover, UCB was not biotransformed during
its transit across the rat trophoblast.

When antipyrine, a highly diffusible compound,77 was
intravenously administered to pregnant rats, serum anti-
pyrine concentrations readily became similar in mothers
and fetuses.76 However, transfer from the maternal serum
to the fetal compartment of UCB, when co-administered
with antipyrine, was very poor.76 The following addition-
al observation suggests that UCB transfer has vectorial
properties and hence further supports the concept that this
process is not mainly due to simple diffusion: as happens
with BAs, when complete obstructive cholestasis was in-
duced in pregnant rats, this resulted in a marked increase
in bilirubin concentrations in maternal serum, whereas
those in fetal serum were only moderately affected.50

Moreover, the normal placental capacity for the trans-
port of bilirubin in the fetus-to-mother direction is limit-
ed. Indeed this is exceeded in situations of enhanced de-
struction of fetal blood red cells, where an elevation in fe-
tal serum bilirubin concentrations often precedes the
development of antenatal anemia, which is associated
with fetal hemolytic disease.78

Functional and molecular biology studies have sug-
gested that the transport systems responsible for the up-
take of UCB from fetal blood are sodium gradient-inde-
pendent and ATP-independent mechanisms,14 probably
including members of the OATP family, and in particular
OATP1B3.7 In contrast, efflux from the trophoblast to-
ward the maternal blood involves transporters activated
by ATP hydrolysis. Owing to the presence of MRPs in
the human55 and rat50 trophoblast, it is tempting to suggest
a role for these proteins in UCB transport. Thus, indirect
evidence obtained in experiments on BeWo human cho-
riocarcinoma cells led the authors to suggest a role for
MRP1 in this process.79 However, the actual role of MRPs
in UCB transport across the placenta mechanism remains
obscure.

Repercussions of maternal cholestasis on the
placenta and fetal liver

The excretory pathway for COAs described above is
of great relevance because when it is impaired the reper-
cussions on the normal development of the fetus or even
on the fate of gestation may be dramatic. Intrahepatic
cholestasis of pregnancy (ICP) is a reversible form of



Annals of Hepatology 4(2) 2005: 70-76
MG

74

edigraphic.com

cholestasis that may develop during late pregnancy and
usually resolves soon after delivery. For the mothers, this
condition is usually benign since it is only associated with
certain discomfort due to pruritus. However, ICP is fre-
quently the cause of premature delivery and increased
risk of fetal mortality during the third trimester of preg-
nancy in patients suffering this disease (for a review, see 80).
Moreover, the severity of fetal complications is propor-
tional to the magnitude of maternal hypercholanemia.81

An inverse relationship between maternal serum concen-
trations of BAs and the functional activity of the ATP-de-
pendent bile transporter located at the apical membrane
of human trophoblast has also been reported.82

To experimentally induce accumulation of COAs in
maternal blood of laboratory animals, complete obstruc-
tive cholestasis during the last third of pregnancy and the
lactation period (OCP) has been imposed on pregnant rats
in a series of studies. Elevated serum BA concentrations
were detected both in utero41 and at birth31 in offspring
born from OCP rats. Congenital alterations in hepatobil-
iary function were detected in young animals, character-

ized by a partial impairment in the ability of the liver to
secrete COAs, whereas the BA-induced biliary secretion
of phospholipids, but not that of cholesterol, was marked-
ly enhanced.31,83 These alterations have been associated in
part with delayed maturation of the mechanisms involved
in hepatocyte transcytosis,84 as well as with the presence
of multilamellar bodies in the bile canaliculi, which might
act as plugs to hinder bile flow.83 In contrast, no alter-
ations in the expression of basolateral transporters in-
volved in COAs uptake85,86 or in the efficiency of ATP-
dependent BA transport across the canalicular mem-
brane87 were found in these animals. However, Mrp1 was
markedly up-regulated and cholesterol transporters
ABCG5/ABCG8 were down-regulated.86

An interesting issue that has recently been addressed is
how the accumulation of COAs can affect fetal and placen-
tal tissues. Since the placenta is exposed to high concentra-
tions of BAs at the maternal side, it is reasonable to assume
that the well-known cytotoxicity associated with the most
hydrophobic BAs may become an insult for the tropho-
blast.88 Indeed, OCP induces impairment of the placental
antioxidant system and oxidative damage. These alter-
ations are accompanied by enhanced activation of the mi-
tochondrial pathway of apoptosis. Treatment of pregnant
rats with ursodeoxycholic acid has a beneficial effect on
the placenta by partly preventing these changes.89

Nevertheless, the placental barrier for COAs is not
completely abolished since, as has been commented
above, despite the existence of marked maternal hyper-
cholanemia, OCP causes only a moderate accumulation
of COAs in the fetal compartment. However, this is suffi-
cient to induce marked oxidative damage and apoptosis in
the fetal liver.90 Treatment of pregnant rats with ursodeox-
ycholic acid has beneficial effects by lowering the expo-
sure of the fetus to toxic BAs, restoring the levels of glu-
tathione in fetal liver, preventing lipid peroxidation and
protein carbonylation, and correcting pro-apoptotic alter-
ations in the Bax-α/Bcl-2 ratio.90

OCP-induced alterations in fetuses and placentas may
be responsible for both reduction in the number of fetuses
per pregnancy and post-natal impairment in hepatobiliary
function. Both changes can be prevented by treatment of
pregnant rats with cholestasis with ursodeoxycholic acid.86
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