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Acute treatment of constant darkness increases
the efficiency of ATP synthase in rat liver mitochondria
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ABSTRACT

The circadian oscillations of many physiological processes provide an endogenous temporal program for the
adaptive synchronization of mammals to the fluctuating external world. The lack of exposure to light
causes the circadian system to undergo a process of dark adaptation similar to dark adaptation in the
visual system. The aim of the present work was investigate the effect of acute treatment of constant dar-
kness on mitochondrial ATP synthase activities and membrane fluidity in liver from male rat. We found that
ATP synthase activity was not changed by the treatment. However ATPase activity and membrane fluidity
were significantly diminished and pH gradient driven by ATP hydrolysis was incremented, in comparison
from samples from rats kept on normal light/dark cycles. Additionally, the treatment of constant darkness
diminishes the passive proton permeability of the inner mitochondrial membrane. In conclusion constant
darkness induces a more efficient coupling between proton transport and catalysis, and increment the
efficiency of the enzyme because the ratio of ATP synthase/ATPase activity was higher. These results ex-
hibited the physiological adaptation of liver mitochondria to acute treatment of constant darkness in or-

der to satisfy the cellular energy demand.
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INTRODUCTION

The most reliable and strongest environmental 24
h-synchronizer of self-sustaining oscillations or cir-
cadian biological rhythms in mammals is the light-
dark cycle, provided by the sun and stational
natural season of the planet. Circadian rhythms pro-
vide an endogenous temporal program for the adap-
tive synchronization of physiology and behavior to
the fluctuating external world. In mammals, photic
information from the retina is transmitted to the su-
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prachiasmatic nuclei (SCN) of the hypothalamus via
direct and indirect neural pathways.! The SCN
clock then synchronizes overt rhythms in physiolo-
gy and behavior, probably through both synaptic
connections and humoral signals. For instance the
SCN controls the rhythmic synthesis of melatonin
in the pineal organ,? which is involved in the trans-
duction of photoperiodic information, and appears
to modulate a multiplicity of neural and endocrine
functions. It is known that periods of constant dark-
ness cause stimulation of melatonin secretion from
the pineal gland.? Other tissues that have synchro-
nization-like effects, like the brain, liver, but the
SCN appears to have the master circadian pace-
maker.*5

Neuroendocrine responses to environmental sti-
muli, such as light or its absence, can influence me-
tabolic and immune responses through the pineal
gland. For instance, it has been reported that cons-
tant darkness decreases the blood glucose level in
rats® and causes hypertrophy and increased cellula-
rity of the thymus.”
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On the other hand, metabolism and components
of the internal clock that drives circadian rhythms
are intimately related. For example, up to % 1 of the
transcriptome is under circadian regulation,>810 and
mitochondrial respiratory efficiency undergoes daily
rhythmic oscillations.!! Particularly, in the liver the
onset of the expression of genes involved in energy
metabolism precedes the activity onset to prepare for
energy storage. Similarly, the expression of glucose
transporters and rate-limiting enzymes in hexose ca-
tabolism starts to rise before, and peaks precisely
at, the time when most feeding occurs.?

Mitochondria provides cellular energy via oxi-
dative phosphorylation, using the multisubunit
complexes of the respiratory chain to create a trans-
membrane potential, which drives ATP synthesis by
the F,F-ATP synthase. That enzyme is also capable
of working as an ATPase, hydrolyzing ATP to pump
protons from the mitochondrial matrix to the inter-
membrane space.

Considering that constant darkness treatment in-
fluences metabolism the aim of the present work
was investigate the changes in enzymatic activities
of ATP synthase and mitochondrial membrane pro-
perties in liver from rats kept under constant dark-
ness for a period of 72 hours.

METHODS

Experiments in animals were approved by the
laboratory animal care committee of our institution,
and were conducted according to the criteria outli-
ned in the “Guide for the Care and Use of Labora-
tory Animals” prepared by the National Academy of
Sciences and published by the National Institutes
of Health (NIH publication 86-23 revised 1985).

40 Adult male Wistar rats weighting 200-220 g
were maintained in rooms with automatic tempera-
ture (22 = 1 °C) and received standard laboratory
chow (Purina) and water ad Iibitum. They were ran-
domly separated into two groups of 20 animals each:
control and experimental. The control group was
housed under a 12 h light and 12 h dark cycle. The
darkness period started at 20:00 h. Experimental
group was maintained in continuous darkness for
72 h. Also we monitored the quantity of food intake.

After treatment, animal were sacrificed by decapi-
tation at 8:00 h and liver was immediately dissected
for mitochondria isolation. Liver was homogenized
with a teflon-on-glass homogenizer Potter-Elvehjem
in 35 ml cold SHE buffer (250 mM sucrose, 10 mM
Tris (pH 7.4), 1 mM ethylene glycol bis(B-ami-
noethyl ether)-N,N,N’N’-tetraacetic acid (EGTA))

and kept on ice. The homogenate was centrifuged at
600 xg for 5 min at 4°C. The pellet was discarded,
and the supernatant was centrifuged at 8,000 xg for
10 min at 4°C. The foamy layer at the top of the su-
pernatant was removed. The mitochondrial pellet
was washed with SHE buffer containing 0.1% fatty
acid-free serum albumin and finally resuspended in
SHE to contain about 40 mg/mL protein. Outer
membrane mitochondria were removed according to
Greenawalt!? and tightly coupled rat liver submito-
chondrial particles were obtained as previously des-
cribed.!?

ATP synthesis determination

ATP synthesis was assayed with a coupled enzy-
matic reaction at 37 °C. The reaction mixture (0.5
mL) contained 125 mM KCI, 25 mM sucrose, 40 mM
Hepes (pH 7.5), 5 mM MgCl,, 4 mM ADP, 5 mM in-
organic phosphate, 0.1 mM EGTA, 1 mM NADH, 20
mM glucose, 46 units of hexokinase.!* This mixture
was preincubated at 37 °C for 2 min in Erlenmeyer
flasks under constant shaking, followed by the addi-
tion of submitochondrial particles (1 mg of protein).
The reaction was arrested with 50 pL of stop mix
(25 mM EDTA, 2 uM carbonyl cyanide 3-chloro-
phenylhydrazone (CCCP)), and 25 pg oligomycin).
Afterwards, the reaction mixture was boiled for 10
min and centrifuged at 5;000 xg for 5 min. 0.5 mM
NADP and 30 units of glucose-6-phosphate dehydro-
genase were added to the supernatant and incubated
for 10 min at 30 °C. The absorbance of the samples
was recorded at 340 nm.

ATPase activity determination

ATP hydrolysis was assayed by the release of in-
organic phosphate. The standard reaction medium
(1 mL) contained 125 mM KCl, 40 mM Hepes/KOH
(pH 8.0), 0.1 mM EGTA, 3 mM ATP, 5 mM MgCL,.
The reaction was initiated by the addition of submi-
tochondrial particles (0.25 mg of protein).!® It was
quenched with 200 mL of cold 30% (w/v) trichloro-
acetic acid and inorganic phosphate was measured
by the colorimetric method described by Sumner.16

pH gradient

The pH gradient driven by ATP hydrolysis were
determined by the fluorescence quenching of 1 pM
ACMA (9-amino-6-chloro-2-methoxyacridin). Briefly,
submitochondrial particles (2 mg of protein) were in-
cubated at 37 °C in a medium (2 mL) containing 125
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mM KCI, 20 mM 3-(N-morpholino)propanesulfonic
acid (MOPS) (pH 7.5), 5 mM MgCL,, 0.1 mM EGTA,
1 uM ACMA, 3 mM ADP and 5 mM inorganic phos-
phate. After stabilization of the signal, membrane
was energized with 3 mM ATP or succinate. ACMA
fluorescent quenching is directly related to pH gra-
dient, i.e., the higher values of fluorescent quen-
ching, the higher values of pH gradient.!”

Membrane fluidity determinations

Membrane fluidity was estimated from the exci-
mer to monomer fluorescence intensity ratio (Ie/Im)
of the fluorescent probe 1,3 dipyrenylpropane (DPP)
incorporated in submitochondrial particles. Briefly,
0.25 mg of mitochondrial protein and 0.1 nmol DPP
were mixed with 10 mM Tris—HCI buffer (pH 7.8).
The mixtures were incubated in darkness at 4 °C for
5 hours, in order to achieve maximal incorporation
of the fluorescent probe to the membranes. Fluores-
cence was measured at 24 °C on a Perkin Elmer
fluorescence spectrometer, LS50B. The fluorophore
was excited at 329 nm and the monomer and exci-
mer fluorescence intensities were read at 379 and
480 nm, respectively. From these readings, the exci-
mer to monomer fluorescence intensity ratio (Ie/Im)
was calculated. Fluorescence corrections obtained
from readings of membranes without DPP were
applied to all fluorescence values.!®

Passive Proton Permeability determination

For passive proton permeability assays the proce-
dure described by Groen, et al.l® was utilized. Brie-
fly, mitochondrial incubations (1 mg of protein) for
oxygen consumption by means of a Clark-type elec-
trode were performed at 30 °C, under constant sti-
rring. The reaction medium (1 mL) contained 125
mM KCl, 20 mM MOPS (pH 7.5), 2 mM MgCl,, 2
mM inorganic phosphate, 3.5 pg rotenone, 1 pg oli-
gomycin, 40 pM N-ethylmaleimide. The reaction was
initiated by the addition of 3 mM succinate as the
substrate. Respiration rate was stimulated by the
addition of increasing amounts of carbonyil cyanide
4-trifuoromethoxyphenylhydrazone (FCCP) concen-
trations.

Other assays

Citrate synthase activity was assayed in a reac-
tion medium (1 mL) consisting of 100 mM Tris/HCl
(pH 8.1), 40 pg/mL 5,5’-dithio-bis(2-nitrobenzoic
acid), 1 mM oxaloacetate, 0.3 mM acetyl coenzyme A

and 0.4 % of triton X-100. After 3 min of incubation,
the reaction was initiated by adding 1 mg of mito-
chondrial proteins and the change in optical density
at 412 nm was recorded for 3 min.

Mitochondrial membrane protein was measured
by the method of Lowry2? in the presence of 0.066%
sodium deoxycholate using bovine serum albumin as
standard.

Statistical analysis

The results were expressed as mean = S.E.M.
The statistical differences were evaluated by one-
way analysis of variance followed by the least signi-
ficant difference test.

RESULTS

Although much is known about effects of light on
the circadian system, little is known about constant
darkness on metabolism and mitochondrial enzyma-
tic activities. In order to assess the biochemical im-
plications of the acute constant darkness treatment,
we measured rates of coupled ATP synthesis. In mi-
tochondria the ATP catalytic sites are internal and
it is therefore advantageous to prepare inverted vesi-
cles from these membranes for assays of ATP syn-
thase activities.

Figure 1A exhibited that ATP synthase activity
in submitochondrial particles from liver was not al-
tered by acute treatment of constant darkness, with
respect to controls. Since the F,F; ATP synthase is
a reversible ATP synthase/ATPase we also made de-
terminations of ATPase activity and pH gradient
driven by ATPase activity. ATPase activity was sig-
nificantly diminished by constant darkness acute
treatment (Figure 1B).

pH gradient driven by ATP hydrolysis was moni-
tored with the fluorescent dye ACMA, where quen-
ching of fluorescence indicates the generation of a
proton gradient across the membrane.!”

pH gradient driven by ATP hydrolysis has been
extensively used as an indication of the enzyme pro-
ton channel function and of coupling between trans-
port and catalysis.?!?2 Figure 1C showed that acute
treatment of constant darkness induced a higher pH
gradient in mitochondrial membranes, in spite of a
diminution of ATPase activity. Similar results were
obtained with succinate as oxidizable substrate (not
shown).

These unexpected and apparently contradictory
results prompt us to study the mitochondrial mem-
brane properties. Thus, we made determinations of
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Figure 1. ATP synthase activity (A), ATPase activity (B), % ACMA fluorescence quenching (C) and excimer/monomer intensity
fluorescence ratio (D) in mitochondria (A) and submitochondrial particles (B, C, D) from rats kept under constant darkness and
normal cycles of light/dark. Enzymatic activities and membrane fluidity determinations were done as described in Methods. The

data shown are mean + S.E. *p < 0.05.

membrane fluidity with the fluorescent probe di-
pyrenylpropane. Figure 1D shows lower excimer to
monomer (Ie/Im) dipyrenylpropane ratio in samples
from constant darkness than in control, indicating a
decrease in membrane fluidity. To explore further
the membrane properties we measured passive pro-
ton permeability through titration of respiration
with FCCP. In these experiments extrapolation to
zero respiration gives an amount that is directly re-
lated to the passive proton permeability of the mem-
branes. Under our experimental conditions, the
relative rate of oxygen consumption (V/Vmax x 100)
is a linear function of the FCCP amount, up to a ra-
tio V/Vmax = 1, for each type of mitochondria tes-
ted. As shown in Figure 2 the passive proton leak
through inner mitochondrial membranes is equiva-
lent to 19 and 35 pmol FCCP for, respectively, dark-
treated and control rats. This data clearly showed

100
T
3 "
© 75 -
§8
a 'g 50 -
¢ E
o>
> S~
Z >
B < 25
K]
(4
0 - - -
0 50 100 150
pmol FCCP

Figure 2. Passive proton permeability of liver mitochondria
from rats kept under constant darkness (A) and normal cycles
of light/dark (). Relative respiration rate was determined
as indicated in methods.
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that the acute treatment induce a low permeability
of the inner mitochondrial membrane.

In contrast, the activity of citrate synthase, a
commonly used matrix mitochondrial marker enzy-
me, was not modified by the darkness treatment (it
was 0.225 = 0.03 nmol min'! mg of protein’! and
0.245 + 0.04 nmol min'! mg of protein™ for dark-
treated and control rats, respectively.

DISCUSSION

The data presented in this paper show that the
changes in the mitochondrial ATP synthase activi-
ties, membrane fluidity and the proton gradient dri-
ven by ATP hydrolysis in livers from rats subjected
to a 72 h period of darkness is related to low passive
proton permeability of the inner mitochondrial mem-
brane. On the other hand, the diminution in mem-
brane fluidity detected in samples of dark-treated
rats does not alter the functioning of ATP synthase
activity. Our results show that constant darkness
acute treatment made more efficient the coupling
between proton transport and catalysis. Additionally
this treatment induces a higher ratio of ATP syn-
thase/ATPase activities (1.6) in comparison with
controls (1.13). Therefore, under an acute treatment
of constant darkness there is a low hydrolytic state
and a high synthetic state of the enzyme. Other fac-
tors, not explored in this work, could contribute to
the efficiency of ATP synthase, such as the ATPase
inhibitor protein. The darkness treatment does not
modify the citrate synthase activity, therefore, it ap-
pears that this treatment specifically affects the ATP
synthase.

The acute treatment of constant darkness slightly
diminished the food consumption in rats, since the
daily ingestion was 22.5 * 0.6 g. and the one of the
rats under a 12/12 light-dark cycle was 24 + 0.7 g.
Similar results have been found in male Wistar albi-
no rats subjected to constant darkness.?3 In mice li-
ver, the decrease in the consumption of food induced
by constant darkness is accompanied by an increase
in the expression of genes related to fat catabolism,
particularly the murine procolipase (mClps) and
pancreatic lipase-related protein 2. Additionally
blood glucose was decreased significantly by cons-
tant darkness.%2* Together these studies demonstra-
te that the induction of mClps expression and
pancreatic lipase-related protein by constant dark-
ness accomplishes both satiety reduction and the ac-
tivation of fat catabolism.

Although it has been established that light is a
dominant synchronizing cue for circadian system,

the system is fully functional without light input
due to circadian clocks running endogenously. In
the rat, the length of the period is longer that 24 h.
Under constant darkness, the circadian clocks free-
run expressing their endogenous periodicity referred
to as the “free-running period”. Therefore the relea-
se of rats into 72 h constant darkness preserves nor-
mal rhythmicity of the circadian system but the
phase of the rhythms is phase-delayed, which help
organisms to optimize their metabolism in a fluctua-
ting environment. Therefore, rats under this situa-
tion could fit better if fat catabolism is induced and
mitochondrial ATP synthase works mainly as ATP
synthase.
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