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ABSTRACT

Over the past decades, many drugs have been identified, that can potentially induce steatohepatitis in the
predisposed individual. Classically this has been incriminated to amiodarone, perhexiline, and 4,4’-diethyla-
minoethoxyhexestrol (DH), all of which have been found to independently induce the histologic picture of
non-alcoholic steatohepatitis (NASH). Pathogenetic mechanisms of hepatotoxicity although still evolving,
demonstrate that mitochondrial dysfunction, deranged ATP production and fatty acid catabolism likely
play an important role. Drugs like steroid hormones can exacerbate the pathogenetic mechanisms that
lead to NASH, and other drugs like tamoxifen, cisplatin and irenotecan have been shown to precipitate la-
tent fatty liver as well. Further research aiming to elucidate the pathogenesis of drug-induced steatosis
and steatohepatitis is needed in order to better design therapeutic targets.
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is one
of the most common chronic liver diseases of west-
ern world. It is defined as fat deposition of hepato-
cytes exceeding 5% of the hepatocytes histologically
in individuals with little or no alcohol consumption.
It is also the most prevalent cause of chronic eleva-
tion of liver enzymes in the adult population as evi-
dent in National Health and Nutrition Examination
Surveys (NHANES) conducted between 1988 and
2008.! Hepatic steatosis is at the lower end of the
spectrum of NAFLD clinical severity. Predominant-
ly large (macro-) and occasionally small (micro-)
vesicles of fat, mostly triglycerides, accumulate with-
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in hepatocytes without causing appreciable hepatic
inflammation, liver cell death, or scarring. At the
midrange of the severity spectrum is steatohepatitis
(nonalcoholic steatohepatitis, or NASH), which is
an intermediate form of liver damage superimposed
upon a background of hepatic steatosis. Steatohepa-
titis is characterized by the appearance of focal he-
patic inflammation and hepatocyte apoptosis and
death. At the highest end of the severity spectrum is
cirrhosis. By the time this degree of architectural
distortion develops, hepatic steatosis has often dis-
appeared. Because all of these histologic features
also occur in alcohol- or drug-induced fatty liver dis-
eases, liver biopsy cannot reliably distinguish
among the various causes of this entity.

NAFLD was traditionally categorized as primary
or secondary depending on the underlying etiology.
Primary NAFLD is closely associated with insulin-
resistance and metabolic syndrome. Currently the
term secondary NAFLD is discouraged and the pre-
ferred nomenclature includes the known causative
factor and the resultant pathology, e.g. total
parenteral nutrition-induced, drug-induced steato-
sis/steatohepatitis.? Several studies have reported
that liver steatosis is a common histological fea-
ture of chronic hepatitis C infection. In 2014,
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Abenavoli, et al. examined the relationship between
hepatitis C virus and insulin resistance, looking
into the role of genotype 3 in the development of
hepatic steatosis.

The diagnosis of NASH is established by the pres-
ence of a characteristic pattern of steatosis, inflam-
mation and hepatocellular ballooning on liver
biopsies in the absence of significant alcohol con-
sumption. The most commonly used tool for histo-
logic evaluation is the NAFLD Activity Score
(NAS).# The NAS, defined as the un-weighted sum
of the scores for steatosis (0-3), lobular inflamma-
tion (0-3), and ballooning (0-2), thus ranging from 0
to 8. The score was developed as a tool to measure
changes in NAFLD during trials. Some studies have
used threshold values of the NAS to define the se-
verity, specifically NAS > 5 as surrogate for the his-
tologic diagnosis of NASH, however biopsies with
lower scores (< 3) were generally not considered to
be diagnostic of steatohepatitis.?

The focus of this review is to educate readers
about different classic drugs known to cause steato-
sis/steatohepatitis in absence of alcohol intake, and
review the pathogenesis and management of drug-in-
duced fatty liver disease.

DEFINITION

Drug-induced fatty liver disease is a relatively
rare entity identified when steatohepatitis appears
to result from a direct toxic effect of a drug on the

liver. Most commonly it is associated with pro-
longed intake of the offending medication. Approxi-
mately 2% of fatty liver disease cases are estimated
to be drug-induced, confirming that a fatty liver is a
rare manifestation of drug toxicity.5

Drug-induced fatty liver is strongly associated
with duration and dose of medication. Some drugs
induce an acute energy crisis by interrupting adeno-
sine triphosphate (ATP) synthesis by mitochondria,
resulting in microvesicular steatosis.” Drugs can
cause both micro- and macro-vesicular steatosis but
usually begins acutely with microvesicular lesions
(Table 1).

Microvesicular steatosis

In microvesicular steatosis, hepatocytes are filled
up with numerous small lipid vesicles, which leave
the nucleus in the center of the cell. Microvesicular
steatosis is related to severe impairment of the mito-
chondrial beta-oxidation of fatty acids.® Because
non-esterified fatty acids are poorly oxidized by mi-
tochondria, they undergo increased esterification
into triglycerides, the main lipid form that accumu-
lates in these conditions. Significant necrosis,
cholestasis, and fibrosis are usually absent in acute
microvesicular steatosis, as the lesion progresses
rapidly to either death or resolution.” Drugs linked
to microvesicular steatosis include valproic acid,
tetracycline, aspirin, ibuprofen, zidovudine and
vitamin A.

Table 1. Drugs causing microvesicular steatosis, macrovesicular steatosis, phospholipidosis, steatohepatitis and obesity/insulin

resistance.
Drug Macrovesicular Microvesicular Phospholipidosis Steatohepatitis Obesity,
steatosis steatos insulin resistance
Amiodarone * * * *
Aspirin *
Ibuprofen *
AZ'I' *
NRTI (ddI, d4T) * * *
Protease inhibitors *
Valproic acid * * *
Carbamazepine *
Perhexiline maleate * * *
DH * *
Tamoxifen * *
Methotrexate * *
5-FU * *
Irinotecan * *
* * *

Glucocorticoids

NRTIs: nucleoside reverse transcriptase inhibitors. ddl: didanosine. d4T: stavudine. 5-FU: 5-fluorouracil. DH: diethylaminoethoxyhexestrol.
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Macrovesicular steatosis

In contrast, macrovesicular steatosis has a single,
large vacuole of fat (mainly triglycerides), which
fills up the hepatocyte and displaces the nucleus
to the periphery of the cell. It usually follows a
more indolent course. Macrovesicular steatosis
can be seen in association with nitrofurantoin,
gold, methotrexate, glucocorticoids, estrogens,
acetaminophen, non-steroidal anti-inflammatory
drugs (NSAIDs) such as ibuprofen, indomethacin
and sulindac, antihypertensives such as metopro-
lol, chlorinated hydrocarbons such as carbon
tetrachloride and chloroform, chemotherapeutic
agents such as 5-fluorouracil and cisplatin, and
tamoxifen.?

Phospholipidosis

The term drug-induced phospholipidosis as-
cribes to a benign condition that has been defined
by the appearance of intracellular accumulation of
phospholipids and lamellar bodies. The appearance
of microscopic subcellular structures induced by a
variety of drugs led to recognition of a disorder
that was subsequently termed drug-induced phos-
pholipidosis (DIPL).1? Ultra structural investiga-
tions revealed that these cytosolic inclusions
consist of concentric myelin-like structures, the
so-called lamellar bodies, the presence of which
became the morphological hallmark of phospholip-
idosis. !0

So far, more than 50 novel chemical entities have
been identified to induce phospholipidosis.!! These
include antibiotics, antidepressants, antipsychotics,
and antimalarial and antiarrhythmic drugs. Clini-
cally relevant phospholipidosis has been observed
under administration of amiodarone, fluoxetine,
gentamicin, perhexiline and 4.4'-dieethylaminoethox-
yhexestrol (DH).12

PATHOGENESIS

In order to better understand the factors contrib-
uting to drug-induced fatty liver, a brief review of li-
pid metabolism will be useful. Mitochondria
dysfunction is the main element associated with
drug-induced fatty liver, via the direct or indirect ef-
fects of oxidative stress such as impairment of elec-
tron flow along the respiratory chain, and leakage of
reactive oxygen species (ROS) produced primarily by
the mitochondria (Figure 1).13

Hepatic lipid metabolism

Under normal fed conditions, dietary triglycer-
ides and surplus carbohydrates are converted into
free fatty acids (FFA). During periods of fasting or
starvation, the triglycerides stored in adipose tissue
are hydrolyzed to FFAs and transported to the liver,
where they are used to form phospholipids and cho-
lesterol esters or converted into ketone bodies to be
used as fuel by extra hepatic tissues.!* Potential ac-
cumulation of fat in the liver could occur when there
is either increased delivery of FFA from peripheral
adipocytes or the diet to the liver, increased endog-
enous hepatic synthesis of FFA, decreased disposal
of FFA as low-density lipoprotein and very low-den-
sity lipoprotein, or a combination thereof. In con-
trast to this simplistic model of fatty liver disease
several studies have reported an increased secretion
of very low-density lipoprotein (VLDL) in subjects of
fatty liver suggesting a more complex underlying
pathogenetic mechanism than could be speculat-
ed.1516 Hepatocytes play a central role in lipid me-
tabolism within the liver. Fatty acids are oxidized by
the mitochondria, peroxisomes, and microsomes.
Oxidation of short-, medium-, and long-chain fatty
acids occurs in mitochondria. Very long chain
fatty acids (VLCFAs) are oxidized by peroxisomes.
Long chain fatty acids (LCFAs) and VLCFAs are
also metabolized as a result of microsomal oxida-
tion, resulting in the production of dicarboxylic ac-
ids that are further degraded by peroxisomes. After
the VLCFAs and LCFAs chains are shortened by the
extra mitochondrial (peroxisomal and microsomal)
oxidation, the mitochondrial oxidation system com-
pletes the oxidation process. Thus, mitochondria
play a dominant role in fatty acid oxidation and are
responsible for the majority of disturbances occur-
ring in lipid metabolism.

Function of mitochondria
in hepatocytes

Normal hepatocyte mitochondria metabolize free
fatty acids through pB-oxidation, a process quantita-
tively much more important in the production of
ATP than the hydrolysis of glucose.l® Short- (4-6
carbon) and medium- (6-14) chain fatty acids cross
the mitochondrial membranes unimpeded, whereas
long-chain fatty acids (14-18 carbons) require trans-
port across the mitochondrial membrane. Transport
of long-chain fatty acids involves esterification to
coenzyme A in the cytosol and transport by mem-
brane translocates into the mitochondrial matrix.
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Figure 1. Schematic representation of drug-induced macrovesicular steatosis and steatohepatitis. Steatogenic drugs can cau-
se macrovesicular steatosis by impairment of mitochondrial fatty acid oxidation (FAO) by alteration of the mitochondrial respira-
tory chain (MRC) activity, reducing secretion of very-low density lipoprotein (VLDL), by directly activating transcription factors
involved in hepatic lipogenesis, such as SREBP-1c, PPARy, and PXR, and by favoring the occurrence of insulin resistance, hyperinsu-
linemia, and hyperglycemia. Progression from steatosis into steatohepatitis in genetically predisposed individuals involves the
production of reactive oxygen species (ROS), which is responsible for oxidative stress and lipid peroxidation leading to induction
of cytokines such as TNFa and TGFS, and lipid peroxidation products such as malodiealdehyde (MDA), and 4 hydroxynonenal (HNE)
leading to necroinflammation and fibrosis. Production of ROS although occurs mostly through alteration of the MRC, other sour-
ces such as peroxisomal FAO and microsomal cytochromes P450 (CYPs) also contributes.

After gaining access to the mitochondrial matrix, all
fatty acids enter the B-oxidation cycle as CoA
thioesters, or they may become esterified (stored) in
triglycerides.

The B-oxidation of fatty acyl CoA esters involves
four steps within mitochondria: two oxidation steps,
a hydration step, and thiolysis, yielding acetyl-CoA
and a fatty acyl CoA shortened by two carbons, the
latter of which repeats identical cycles. Each p-oxi-
dation cycle transfers electrons to one molecule each
of NAD and FAD, yielding NADH and FADH2, re-
spectively. Each acetyl-CoA entering the citric acid
(Krebs) cycle is principally derived from glycolosis,
which yields three additional molecules of NADH
and one molecule of FADH2. Enzymes involved in
the B-oxidation of fatty acids and in the citric acid
cycle are either soluble within the mitochondrial

matrix or are bound to the inner surface of the inner
mitochondrial membrane.!3

Subsequently, mitochondria produce ATP
through the transfer of electrons from NADH and
FADH2 to molecular oxygen, producing water. This
oxidation of NADH and FADH2 results in a step-
wise transfer of electrons through protein complexes
of the respiratory chain, which exist within the in-
ner mitochondrial membrane. During electron
transport in the respiratory chain, protons are ac-
tively pumped into the intramembranous space, cre-
ating a concentration gradient and electrical
potential across the inner membrane. ATP synthesis
requires the entry of protons down this electro-
chemical gradient through the inner mitochondrial
membrane and into the matrix by way of a channel
of ATP synthase. These processes of electron trans-
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port, proton pumping, and generation of ATP are
energetically coupled, and drugs that interfere with
these processes are believed to uncouple respiration
(dissipate the membrane proton gradient without
producing ATP).

Mitochondrial dysfunction, drug-induced
cytolytic hepatitis and microsteatosis

The concept that drugs can disturb mitochondrial
function, leading to clinically recognizable disease
entities is not new. As early as the 1970’s, a Reye-
like syndrome was observed in patients treated with
valproic acid for instance.1”-!® The past few decades
have seen, however, remarkable progress in the un-
derstanding of the different mechanisms leading to
mitochondrial dysfunction, and their role in drug-in-
duced liver disease. While membrane permeabiliza-
tion, drug-induced oxidative phosphorylation
(OXPHOS) impairment, and mitochondrial DNA
(mtDNA) depletion have been directly linked to cyto-
lytic hepatitis - and its full spectrum, from mild ele-
vation in transaminases to fulminant hepatitis,
drug-induced microsteatosis occurs in the setting of
severe mitochondrial fatty acid oxidation (FAO) im-
pairment. Specifically, there are four general mecha-
nisms (Figure 1) which compromise mitochondrial
FAO, eventually leading to microsteastosis.!?

First, drugs can directly inhibit one or several
mitochondrial FAO enzymes. This is seen with amio-

darone, tamoxifen, and valproic acid (VPA). Second,
drugs can indirectly impair mitochondrial FAO by
impairing the generation of its major cofactors:
coenzyme A and L-carnitine esters, such as seen
with VPA.1° Thirdly, drugs can inhibit mitochondri-
al respiratory chain (MRC), impairing the regenera-
tion of FAD and NAD+, thereby also impairing
FAQO; such is the case with amiodarone, perhexiline
and tamoxifen.2028 Lastly, drugs can inhibit mtD-
NA. Profound mtDNA depletion induces MRC im-
pairment, leading to FAO inhibition and resultant
microsteatosis.?24 Antiviral drugs such as azidothy-
midine (AZT), stavudine (d4T) and didanosine (DDI)
all inhibit mtDNA polymerase gamma.2°27 Other
than direct inhibition of mtDNA polymerase, mtD-
NA levels can be indirectly inhibited by drugs,
which leads to TCA cycle inhibition and then lactic
acidosis,?®2% and direct mtDNA damage itself can oc-
cur from ROS, reactive nitrogen species (RNS), or
drug metabolites.3°

Several drugs known to cause steatosis/steatohep-
atitis and their corresponding effects on mitochon-
drial functions has been summarized in table 2.

Drug-induced macrosteatosis

Macrovesicular steatosis (macrosteatosis), gener-
ally known as fatty liver, is commonly observed in
both alcoholic and non-alcoholic liver disease. In the
setting of non-alcoholic fatty liver, it is associated

Table 2. Hepatotoxic drugs known to cause steatosis/steatohepatitis and their corresponding effects on mitochondrial function.

Drug MPTP Direct OXPHOS Direct mtDNA References
opening inhibition of uncoupling inhibition depletion/damage®
mitochondria FAQ2 of the MRC P
Acetaminophen (APAP) * * * 156, 157
Ibuprofen * * 158, 159
Diclofenac * * * 159, 160
Salicylic acid * * * 159, 161, 162
Amiodarone * * * * 8, 21, 163
Stavudine (d4T) * 164
Zidovudine (AZT) * 164
Valproic acid * * 165, 166
Perhexiline maleate * * * 22
DH * * 115
Tamoxifen * * * * 19, 23
Methotrexate * * 167
5-FU * 24, 168
Irinotecan * * * 24, 168

FAO: fatty acid oxidation. MPTP: mitochondrial permeability transition pores. MRC: mitochondrial respiratory chain. mtDNA: mitochondrial DNA. OXPHOS:
oxidative phosphorylation. DH: diethylaminoethoxyhexestrol. 2 Inhibition of mitochondrial FAO through impairment of FAO enzyme(s) and/or depletion in L-car-
nitine and coenzyme A. P Inhibition of the MRC through impairment of enzyme(s) involved in electron transfer or ADP phosphorylation. ¢ Mitochondrial effects

of APAP via its reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI).
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with cardiometabolic risk factors such as obesity
and diabetes.3! Macrosteatosis can also be drug-
induced, and there are four known mechanisms in-
volved. First, similar to microsteatosis, inhibition of
mitochondrial FAO can also lead to macrosteato-
sis.20:22,24 Secondly, microsomal triglyceride transfer
protein (MTP) can be directly inhibited by drugs
such as amiodarone and perhexiline, leading to mac-
rovesicular steatosis.®32 Increased cellular uptake of
fatty acids is the third mechanism. A well demon-
strated example of such is seen with the drug efa-
virenz, which activates AMP-activated protein
kinase (AMPK) leading to efavirinez-induced mito-
chondrial dysfunction.33:3¢ Finally, drugs can direct-
ly stimulate lipid synthesis in the liver; while the
direct mechanism of such stimulation is unknown,
the activation of lipogenic transcription factors,
such as PXR, PPARy and glucocorticoid receptor
have been implicated.35-39

Drug-induced phospholipidosis

As previously mentioned, clinically relevant phos-
pholipidosis has been associated with drugs such as
amiodarone, fluoxetine, gentamicin, perhexiline and
DH. Many of these are cationic amphiphilic drugs
(CADs) that share particular physical properties re-
sulting from a chemical structure containing a hy-
drophilic ring and hydrophobic regions. Several of
these drugs display severe adverse effects, such as
acute pneumonitis or hepatitis as observed under
amiodarone treatment.* CAD-induced phospholipi-
dosis is characterized by four principal features; ex-
cessive accumulation of phospholipids in cells;
ultrastructural appearance of membranous lamellar
inclusions, predominantly lysosomal in origin; accu-
mulation of the inducing drug in association with
the increased phospholipids; and reversibility of al-
terations after discontinuance of drug treatment.*!

Basically two hypotheses have been put forward
to explain the underlying mechanisms of drug-in-
duced phospholipidosis.#! The first hypothesis as-
sumes that CADs bind directly to phospholipids to
result in indigestible drug-lipid complexes, which ac-
cumulate and are stored in the form of lysosomal la-
mellar bodies.!® The second hypothesis is based on
the observation that production of lamellar bodies
was associated with inhibition of phospholipase ac-
tivity; either due to direct inhibition or interaction
of CAD at the phospholipid bilayer of the lyso-
some.*! The functional consequences of the presence
of this condition on cellular or tissue function are
not well understood. The general consensus is that

the condition is an adaptive response rather than a
toxicological manifestation; however, additional
studies to examine this question are needed. Until
this issue is resolved, concerns about phospholipido-
sis will continue to exist at regulatory agencies.
Procedures for the screening of potential phosphol-
ipogenic candidate compounds based on gene expres-
sion analysis in HepG2 cells have been shown.*?

PROGRESSION FROM STEATOSIS
INTO STEATOHEPATITIS

Overview

While the exact mechanisms by which steatosis
progresses into steatohepatitis are not clearly delineat-
ed, a key role of mitochondrial dysfunction has been
proposed. Drugs that impair mitochondrial OXPHOS
and MRC have been implicated in the pathogenesis of
steatohepatitis.82%43 MRC inhibition not only contrib-
utes to fat deposition in hepatocytes but it also has the
damaging effect of producing ROS. ROS affect the
hepatocytes in different ways. ROS trigger the peroxi-
dation of polyunsaturated fatty acids, which in turn
activate Kupffer leading to inflammation, and stellate
cells, stimulating fibrogenensis.204446 Stress signaling
pathways, nuclear and mitochondrial DNA damage,
MRC inhibition and cell death are the end results of
the modulatory effects of lipid peroxidation.*”4° This
cell environment in turn leads to mitochondrial dys-
function, further augmenting the generation of ROS
production and induction of cell death, including the
activation of inflammatory cytokines such as TNF-a
and TGF-f.2050

The role of adipokines

Adipokines are a host of cytokines derived prima-
rily from the adipose tissue depot. They include lep-
tin, TNF-o, IL-6, adiponectin, resistin, retinol
binding protein-4, visfatin.51-52 Most adipokines in-
cluding tumor necrosis factor-a and resistin, induce
insulin resistance and low-grade inflammation
through activation of stress-related protein kinases,
i.e. c-Jun NH2-terminal kinase-1 (JNK-1), and of
the inhibitor kappa kinase beta (IKKf)/nuclear fac-
tor kappa B (NF-kB) pathway.?3-55

Leptin considered as an anorexigenic hormone,
its levels are elevated in obesity as a result of resist-
ance to its actions.’® Leptin induces dephosphoryla-
tion of insulin-receptor substrate 1, rendering
hepatocytes more insulin-resistant.?® Leptin is also
directly involved in hepatic fibrogenesis through
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hepatic stellate cells activation.?” Beside Leptin;
TNF-o and IL-6 also promote hepatic fibrogenesis.58-60

Adiponectin is a 30 kDa protein abundantly and
selectively expressed in white adipose tissue. Binding
of adiponectin to its receptors stimulates phosphor-
ylation of AMPK, PPAR activity and fatty acid oxida-
tion in liver.! Plasma adiponectin was significantly
lower in NAFLD patients than controls.%? Adiponec-
tin inhibits liver TNF expression®64 and also inhib-
its expression of several cytokines in hepatic stellate
cells (HSC).%% Administrations of recombinant adi-
ponectin markedly improved NASH in ob/ob mice and
the histological improvement observed in NASH with
thiazolidinediones (TZDs) correlate tightly with en-
hanced adiponectin secretion and adipocyte insulin
sensitivity than with visceral fat mass changes, sug-
gesting functional impairment of adipocyte is central
to the pathogenesis of NASH.66:67

TNF-a, TNF-regulated cytokines, and cytokines
that modulate the synthesis and biologic actions of
TNF are produced by many cells within the liver
and other organs. These cytokines are the prime
mediator of liver injury as well as repair. Thus, an-
tagonism of TNF-a and other injury-related cy-
tokines merits evaluation as a treatment for NASH.
In fact, TNF-a inhibition reversed hepatic insulin
resistance and liver injury in ob/ob mice and in hu-
man NASH.59,68,69

Mitochondrial
dysfunction and NASH

Accumulating evidence suggests a major role of
mitochondrial dysfunction in steatosis and steato-
hepatitis (Figures 1 and 2).7° Mitochondrial dys-
function not only impairs fat homeostasis in the
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liver but also leads to overproduction of reactive ox-
ygen species (ROS) that trigger lipid peroxidation,
cytokine.”® ROS directly damage mtDNA, respirato-
ry chain polypeptides and mitochondrial cardiolipin.
ROS also increase the expression of several cy-
tokines, including transforming growth factor-p
(TGF-B), interleukin-8 (IL-8), TNF-a and Fas lig-
and.137! TGF-B, hydroxynonenal (HNE) and IL-8
are chemoattractants for human neutrophils, which
may account, in part, for the neutrophil infiltrate.!3
TGF-B also induce tissue transglutaminase.!® The
induction of tissue transglutaminase by TGF-p
could polymerize cytokeratins to generate dense
eosinophilic material in the liver cell, the Mallory
bodies.” In patients with NASH, ultrastructural ab-
normalities of liver mitochondria have been demon-
strated.” In addition, mtDNA is severely depleted in
patients with NASH3 and resulting in functional
impairment of beta oxidation® resulting in steato-
sis.™

Normally, hepatocytes express Fas (a membrane
receptor), but not Fas ligand, preventing them from
killing their neighbors.” However, several condi-
tions leading to increased ROS formation, such as
drugs or alcohol abuse, cause Fas ligand expression
by hepatocytes, so that Fas ligand on one hepato-
cyte can now interact with Fas on another hepatocyte,
to cause fratricidal apoptosis.”® Indeed, apoptosis
seems to play an important role in NASH.?®

The role of microsomes
and peroxisomes

Members of the microsomal cytochrome P-450
participate in the generation of oxidative changes in
fatty livers via increased production of the free oxy-
gen radical H202. Two enzymes, CYP2E1l and
CYP4A, are involved in the metabolism of long
chain fatty acids (lipo-oxygenation). Over expres-
sion of CYP2EL1 in the liver has been demonstrated
in both animal models of NASH and in patients with
NASH.?”™ Insulin resistance and increased cyto-
chrome P450 2E1 (CYP2E1) expression are both as-
sociated with and mechanistically implicated in the
development of nonalcoholic fatty liver disease.
Schattenberg, et al.8? demonstrated that, increased
hepatocyte CYP2E1 expression and the presence of
steatohepatitis result in the down-regulation of in-
sulin signaling, potentially contributing to the insu-
lin resistance associated with nonalcoholic fatty
liver disease. Also, CYP2E1 has a great affinity for
electrons and easily forms reactive oxygen species
(ROS) that react with the unsaturated bonds of long

chain fatty acids and initiate the process of lipid per-
oxidation.81-82

The enzyme CYP4A is controlled by the tran-
scription factor PPARa, governing genes and is in-
volved in intracellular fatty acid disposal.83.84
Defective states of PPAR or of the peroxisomal b-
oxidation pathway may also play an important role
in the development of steatohepatitis.®® It has been
shown that mice deficient in PPARo-inducible fatty
acid oxidation demonstrate an exaggerated steatotic
response to fasting.8¢ Therefore, in the context of
hepatic steatosis, both CYP2E1 and CYP4A could
generate the second hit of cellular injury, particu-
larly when antioxidant reserves are depleted.

The role of
reduced activity of the MTP

In the endoplasmic reticulum (ER) lumen, MTP
lipidates apolipoprotein B (Apo B), to form triglycer-
ide (T'G)-rich VLDL particles, which follow vesicular
flow to the plasma membrane to be secreted, where-
as incompletely lipidated Apo B particles are partly
degraded. The functional polymorphism -493 G/T in
the MTP gene promoter has been linked to liver dis-
ease in NAFLD: GG homozygosity, or carrying a
lower MTP activity than the other genotypes, pre-
dicted more severe liver histology.8” This polymor-
phism modulates lipid and lipoprotein levels in
healthy and hypercholesterolemic subjects.88:8?

Genetic pre-disposition for
fatty liver disease

Recent genome-wide association studies revealed
that the genetic variation rs738409 (1148M) in the
patatin-like phospholipase 3 gene (PNPLAS3) influ-
ences NAFLD and plasma levels of liver en-
zymes,?%?1 including predisposition for fibrosis
progression.®293 This polymorphism is a strong pre-
dictor of steatosis, inflammation, and fibrosis across
different populations, being independent of body
mass, insulin resistance, or serum lipid levels.?* The
expression of PNPLAS3 is regulated by nutrition:
fasting inhibits, and high carbohydrate diet feeding
increases, PNPLAS3 expression.?* PNPLAS possess-
es triglyceride hydrolase and DG transacylase activ-
ity, and converts lysophosphatidic to phosphatidic
acid form.*? By modulating lipid intermediates, dys-
functional PNPLA3 promotes the accumulation of
lipotoxic substrates, which lead to lipoapoptosis and
inflammation.?® The role of PNPLA3 in the context
of drug-induced fatty liver disease is unclear.
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DIAGNOSIS OF
DRUG-INDUCED FATTY LIVER DISEASE

Establishing the diagnosis of drug-induced liver
injury (DILI), involves a careful evaluation of the
temporal profile of drug ingestion and onset of liver
disease, the latter developing after and as a conse-
quence of the former.? In patients with suspected
DILI, diagnostic scales, such as the Councils for
International Organizations of Medical Sciences/
Roussel Uclaf Causality Assessment Method
(CIOMS/RUCAM) scale, may be helpful for the final
diagnosis.?® A systematic review of the patient’s
medication list must be undertaken, since the list
of drugs capable of causing drug-induced fatty liver
disease is long. Primary causes of hepatic steatosis/
steatohepatitis are common and must, of course, be
ruled out by appropriate imaging and laboratory
tests. In particular, drug-induced steatosis and st-
eatohepatitis share many features with alcoholic
liver disease, including the presence of significant
inflammatory-cell infiltration with ballooning de-
generation and the presence of Mallory bodies,?7-%8
and a careful and accurate history of alcohol con-
sumption must be performed. The case for drug-in-
duced fatty liver disease is strengthened if the
reported pattern of injury of the offending drug in
the literature is in accordance with the observed
clinical and histological picture. The traditional
method to evaluate drug-induced phospholipidosis
is visual confirmation of myeloid bodies in tissues
by electron microscopy and is not routinely per-
formed.

Liver biopsy remains the gold standard for
NAFLD diagnosis, however this an invasive tech-
nique. Ultrasonography is therefore the recom-
mended first-line imaging technique in clinical
practice. There has been intense interest in non-in-
vasive methods to identify advanced fibrosis in pa-
tients with NAFLD,% these include the NAFLD
Fibrosis Score,1%0 enhanced liver fibrosis (ELF)
panell® and transient elastography (fibroscan).
The NAFLD fibrosis score is based on six readily
available variables (age, body mass index (BMI),
hyperglycemia, platelet count, albumin, aspartate
aminotransferase (AST)/ alanine aminotransferase
(ALT) ratio) and it is calculated using the pub-
lished formula (http://nafldscore.com). The ELF
panel consists of plasma levels of three matrix
turnover proteins (hyaluronic acid, tissue inhibitor
of metalloproteinases-1 (TIMP-1) and N-terminal
propeptide of Type III procollagen (PIIINP) had a
80% sensitivity and 90% specificity for detecting

advanced fibrosis.!! Transient elastography is a
non-invasive method of assessing liver fibrosis,
which can be performed at the bedside or in an
outpatient clinic. It employs ultrasound-based tech-
nology to measure liver stiffness and has been vali-
dated for use in chronic hepatitis C, Human
immunodeficiency vius/hepatitis C virus co-infec-
tion and cholestatic liver diseases.!%? Fibroscan has
now been validated in NAFLD!% and represents a
useful tool for rapid, non-invasive assessment of
liver fibrosis and determining need for biopsy. In
2007, Hamaguchi, et al. generated a scoring system
with abdominal ultrasound which could provide ac-
curate information regarding the hepatic steatosis,
obesity and the metabolic syndrome in healthy peo-
ple who do not consume alcohol.104

DRUGS THAT CAUSE
STEATOHEPATITIS AND
PHOSPHOLIPIDOSIS INDEPENDENTLY

There are three drugs classically identified in
the literature to produce drug-induced steatohepati-
tis with phospholipidosis independently: amiodar-
one, perhexiline maleate, and DH.” While
phospholipidosis develops after prolonged treat-
ment with these agents in a dose-dependent man-
ner, it does not lead to steatohepatitis. Acute liver
injury with microvesicular steatosis mimicking
Reye syndrome has been described in the litera-
ture.195 Chronic exposure to these agents rarely
can also lead to cirrhosis.!06:107

Amiodarone

Amiodarone, an antiarrhythmic drug highly effec-
tive for the treatment of atrial and ventricular ar-
rhythmias, is known to have significant thyroid and
hepatic side effects. Amiodarone is a hepatic mito-
chondprial toxin, inhibiting both enzyme complexes
in the electron transport chain, as well as adversely
affecting B-oxidation, and uncoupling of oxidative
phosphorylation. Clinically, amiodarone leads to
asymptomatic elevation of serum transaminases in
40-80% of patients being treated with the drug,
which can be associated with mild cholestasis.1%8
Amiodarone toxicity, on the other hand, develops in
a much smaller fraction of patients, 1-3%; however,
when it occurs, it can be severe, histologically char-
acterized by steatohepatitis resembling alcoholic
hepatitis with Mallory bodies, ballooning degenera-
tion, and inflammatory PMN infiltrates (Figure 3),%7
and less frequently microvesicular steatosis.!% The
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Figure 3. A. Microvesicular steatosis secondary to amioda-
rone toxicity. The majority of the lipid droplets are the same
size or smaller than the nuclei of the hepatocytes. Original
magnification 400x. B. Steatohepatitis with ballooning dege-
neration and a Mallory-Denk body (arrow) secondary to amio-
darone toxicity. Original magnification 400x. C. Trichrome
stain demonstrating peri-sinusoidal fibrosis (solid arrows) se-
condary to steatohepatitis. Note the fibrous expansion of por-
tal fields assuming the appearance of stellatefibrosis, as well
as inflammatory infiltrate (white arrow). Trichrome stain.
Original magnification 400x. Photographs provided by Pamela
B. Sylvestre, M.D., affiliated with the University of Tennes-
see/Methodist University Hospital Transplant Institute, Mem-
phis, TN.

liver injury associated with amiodarone toxicity typ-
ically resolves with discontinuation of the drug,6.10°
however, full recovery may be a protracted process
over the course of weeks to months secondary to the
drug’s long half-life.110

Perhexiline maleate

Perhexiline maleate is a cationic amphiphile an-
tianginal drug previously used extensively in Europe.
Its hepatic toxicity is similar to amiodarone, histolog-
ically mimicking alcoholic steatohepatitis, associated
with phospholipidosis.!11:112 Pharmacologically, the
drug impairs hepatic liver metabolism similarly to
amiodarone, concentrating in the mitochondria,
uncouples oxidative phosphorylation and inhibits
B-oxidation of fatty acids. Perhexiline maleate also
decreases the exit of triglycerides from the liver,
resulting in significant microvesicular steatosis,
necrosis, and inflammation.?2 Perhexiline is catabolized
by cytochrome P-450 2D6; 3-7% of Caucasians are
slow metabolizers for perhexiline; such individuals
are at a greater risk for steatohepatitis and neu-
ropathy, another side effect of the drug. Perhexiline
half-life is long, 3 to 12 days, resulting in delayed he-
patic clearance, particularly in slow metabolizers.113
This drug is however is no longer in the United
States market although continue to be used in some
countries like Australia and New Zealand.

Diethylaminoethoxyhexestrol (DH)

DH is a coronary vasodilator, antianginal cationic
amphiphile drug formerly used extensively in
Japan.” Similar to perhexeline maleate, it induces
phospholipidosis and a histological picture very sim-
ilar to alcoholic steatohepatitis. This drug is
concentrated to high levels in hepatocyte lysosomes,
inhibiting phospholipase A1.1'¢ Similar to amiodar-
one and perhexeline, steatohepatitis is a consenseque
of DH’s accumulation in mitochondria, where it
inhibits mitochondrial respiration, causing depletion
of ATP, inhibition of B-oxidation, and consequently,
lipid peroxidation.!15

DRUGS THAT CAN
PRECIPITATE HEPATIC
STEATOSIS/STEATOHEPATITIS

Tamoxifen, an antiestrogenic drug widely used for
the primary and secondary prevention of breast car-
cinoma is commonly associated with hepatic steato-
sis, 116117 though rarely with steatohepatitis!!®11? or
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cirrhosis.!2%121 The mechanism of tamoxifen-associ-
ated steatohepatitis has not been extensively stud-
ied, but it is postulated that its effect may be
secondary to its estrogen agonist activity and inhi-
bition of mitochondrial B-oxidation of fatty
acids.!?2123 Tamoxifen often increases serum triglyc-
erides, another risk factor for NASH,!24 and it is
particularly has been found to cause steatohepatitis
in patients with pre-existing liver steatosis, especial-
ly patients with high BMIs, hyperglycemia and hy-
perlipidemia. However, an estrogen-receptor (ER)
independent, direct effect of tamoxifen on the mito-
chondrial respiration rate and phosphorylation effi-
ciency has been also described.!?® Histologically,
tamoxifen-induced steatohepatitis mimics alcoholic
steatohepatitis.!18

Raloxifene, a selective estrogen receptor modula-
tor (SERM) used in the treatment and prevention of
osteoporosis in postmenopausal women, has also
rarely been described in the literature as aggravat-
ing steatosis in patients with underlying non-alco-
holic fatty liver disease,'?6 in a rat model, raloxefine
inhibited both mitochondrial and peroxisomal -oxi-
dation.!27

Similar to estrogens, glucocorticoids frequently
cause hepatic steatosis, though rarely cause steato-
hepatitis.!?8 In vitro dexamethasone has been shown
to inhibit mitochondrial B-oxidation, decrease hepat-
ic triglyceride secretion resulting in microvesicular
steatosis in a mouse model.12? While the exact mech-
anism by which steatosis evolves into steatohepati-
tis in certain patients receiving glucocorticoids
remains undetermined, plausibly it may involve the
exacerbation of metabolic mechanisms known to
contribute to NASH, such as insulin insensitivity,
and hypertriglyceridemia.”

VPA and carbamazepene (CBZ), are widely used
antiepileptic drugs. VPA in particular has well-es-
tablished, common metabolic side-effects including
weight gain!3? and increased insulin resistance.!3!
VPA, and to a lesser degree CBZ, have been associ-
ated with increased risk for ultrasonographic signs
of fatty liver disease.132 CBZ-induced steatosis/stea-
tohepatitis may be idiosyncratic; while hepatotoxici-
ty associated with CBZ is well described in the
literature, typically causing hepatitis,!33:13¢ steato-
sis/steatohepatitis is rare.!3

Methotrexate, an antimetabolite drug used as a
chemotherapeutic agent as well as in the treatment
of autoimmune disorders, is known to cause steato-
hepatitis, particularly in patients with underlying
cardiometabolic risk factors such as diabetes, obesi-
ty, and heavy ethanol use, accelerating liver injury

°
caused by NASH in a dose-dependent manner.13%
Chemotherapy-associated steatohepatitis has also
been described in patient undergoing chemotherapy
with agents such as was irinotecan and oxaliplatin,
particularly in patients with underlying obesity.37
Irinotecan has also been shown in a large study to
be associated with steatohepatitis regardless of body
mass index (BMI), though clinically significant out-
come, such as perioperative mortality, appears to be
linked rather to BMI.!3® Some authors advocate for
further studies in this area are to support this asso-
ciation, and to determine if chemotherapy-associated
steatohepatitis could be modified by drug or dose ad-
justment.13?

The nucleoside reverse transcriptase inhibitors
(NRTI) zidovudine and stavudine, commonly used in
the treatment of HIV, have also been linked to mac-
rovacuolar and microvesicular steatosis and severe
lactic acidosis,4%:141 indirectly via the inhibition of
mitochondrial DNA polymerasel4? or through direct
inhibition of fatty acid oxidation,143:144 In addition,
NRTIs are associated with insulin resistance*5 and
may be an independent risk factor for the develop-
ment of hepatic steatosis according to a large cross-
sectional study,'® though this is debated.’
Treatment with protease inhibitors (PIs) such as
ritonavir have been associated with lipodystro-
phy!48149 which is in turn associated with insulin
resistance and hyperlipidemia.15°

MANAGEMENT OF DRUG-INDUCED
FATTY LIVER DISEASE

Despite an increased understanding of the patho-
genesis of fatty liver disease, there are few effective
therapies available. Current treatment strategies for
fatty liver disease in general are primarily directed
towards improvement of metabolic parameters
which contribute to disease pathogenesis, including
weight loss, exercise, lipid and glycemic control.?8 It
is unclear if lifestyle modification strategies, such as
exercise and weight loss, or pharmacotherapy will
have any beneficial role in the management of drug-
induced steatohepatitis considering the cardio meta-
bolic risk factors and insulin resistance are not the
key player in its pathogenesis. Particular to drug-in-
duced fatty liver disease, the identification and re-
moval of the culprit drug is key, and the mainstay
of treatment.

Vitamin E, has been shown to improve liver his-
tology in non-diabetic adults with biopsy-proven
NASH and therefore according to AASLD guidelines
is recommended as first-line pharmacotherapy in pa-
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tient with primary NASH.!%! Vitamin E (alfa-toco-
pherol) is relatively safe and readily available. The
rationale for using vitamin E in patients with NASH
is derived mostly from its antioxidant properties,
and could potentially be useful in drug-induced stea-
tohepatitis. Considering the rarity of the cases of
drug-induced fatty liver disease, a large scale rand-
omized trial is unlikely to be available soon.

A small open label pilot study has generated some
interest in using bezafribate in preventing progres-
sion NASH induced tamoxifen in breast cancer pa-
tients. The study however used liver/spleen CT ratio
for follow up as a surrogate to liver biopsy, there-
fore needs further evaluation in better designed
study prior to any recommendation for use.12 De-
spite this is a small study, such an approach for pre-
vention of progression related to drug induced
NASH needs to be evaluated with potential promis-
ing drugs.

Possible beneficial effects of other anti-oxidants
such as S-adenosylmethionine (SAMe),!%3 and Sily-
marinl® has been speculated but lacks confirma-
tion. Obeticholic acid (6a-ethyl-chenodeoxycholic
acid) is a semisynthetic derivative of the primary hu-
man bile acid chenodeoxycholic acid, the natural ag-
onist of the farnesoid X receptor, which is a nuclear
hormone receptor that regulates glucose and lipid
metabolism. A recently concluded, multicentre, dou-
ble-blind, placebo-controlled, parallel group, rand-
omized clinical trial obeticholic acid was found to
significantly improve the histological features of
non-alcoholic steatohepatitis, but its long-term bene-
fits and safety need further clarification. These
and many new drugs under development (details
beyond the scope of this review), certainly has gen-
erated enormous interest and hope in the treatment
of NAFLD, and NASH in particular in the last few
years, some of them could potentially be used in
drug-induced steatohepatitis as well.1%®

CONCLUSION

True drug-induced steatohepatitis is rare, and
only unequivocally associated with three drugs: ami-
odarone, perhexiline, and DH, all which share a
common hepatotoxicity mechanism involving mito-
chondrial ATP formation and fatty acid oxidation.
Several other drugs, such as tamoxifen, methotrex-
ate and irinotecan have been implicated in the exac-
erbation of steatohepatits/steatosis in the
background setting of pre-existing cardiometabolic
risk factors, especially obesity. Other drugs, such as
steroids and antiepileptic agents may lead to steato-

hepatitis by indirect induction of metabolic risk fac-
tors for NASH, such as insulin insensitivity, and
hypertriglyceridemia. Optimal treatment of drug-in-
duced steatohepatitis is unclear. Further research is
needed to determine the exact mechanisms by which
drug-induced steatosis progresses into steatohepati-
tis and fibrosis, perhaps leading to tailored modali-
ties for the treatment and prevention of NASH.
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ABBREVIATIONS

e ALT: alanine aminotransferases.

* AMPK: AMP-activated protein kinase.

* Apo B: apolipoprotein B.

e AST: aspartate aminotransferases.

e ATP: adenosine triphosphate.

e AZT: azidothymidine.

* BMI: body mass index.

* CADs: cationic amphiphilic drugs.

e CBZ: carbamazepine.

e CIOMS: Councils for International Organiza-
tions of Medical Sciences.

* DA4T: stavudine.

* DDI: didanosine.

* DH: 4,4’-diethylaminoethoxyhexestrol.

e DILI: drug-induced liver injury.

e DIPL: drug-induced phospholipidosis.

* ELF: enhanced liver fibrosis.

* ER: endoplasmic reticulum.

* FAQO: fatty acid oxidation.

* FFAs: free fatty acids.

* HNE: hydroxynonenal.

e HSC: hepatic stellate cells.

* IKKGB: inhibitor kappa kinase beta.

* TIL-8: interleukin-8.

* LCFAs: long chain fatty acids.

* MRC: mitochondrial respiratory chain.

e mtDNA: mitochondrial DNA.

e MTP: microsomal triglyceride transfer protein.

* NAFLD: non-alcoholic fatty liver disease.

* NAS: NAFLD acitivity score.

* NASH: non-alcoholic steatohepatitis.

* NF-B: nuclear factor kappa B.

e NHANES: National Health and Nutrition Ex-
amination Surveys.

e NRTI: nucleoside reverse transcriptase inhibitors.

* NSAIDs: non-steroidal anti-inflammatory drugs.

* OXPHOS: oxidative phosphorylation.



Drug-induced fatty liver disease. Axais of [lepatology, 2015; 14 (6): 789-806

801

10.

11.

12.

13.

PITINP: N-terminal propeptide of type III pro-
collagen.

PNPLAS3: patatin-like phospholipase 3 gene.
RNS: reactive nitrogen species.

ROS: reactive oxygen species.

RUCAM: Roussel Uclaf Causality Assessment
Method.

SERM: selective estrogen receptor modulator.
TG: triglyceride.

TGF-B: transforming growth factor-p.

TIMP-1: tissue inhibitor of metalloproteinases-1.
TNF-a: transforming growth factor-o.

TZDs: thiazolidinediones.

VLCFAs: very long chain fatty acids.

VLDL: very low-density lipoprotein.

VPA: valproic acid.
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