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ABSTRACT
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Alcoholic liver disease (ALD) is a definition encompassing a spectrum of disorders ranging from simple steatosis to cirrhosis and
hepatocellular carcinoma. Excessive alcohol consumption triggers a series of metabolic reactions that affect the liver by inducing
lipogenesis, increasing oxidative stress, and causing abnormal inflammatory responses. The metabolic pathways regulating lipids, re-
active oxygen species (ROS), and immune system are closely related and in some cases cross-regulate each other. Therefore, it
must be taken into account that major genetic and epigenetic abnormalities affecting enzymes involved in one of such pathways can
play a pivotal role in ALD pathogenesis. However, recent studies have pointed out how a significant predisposition can also be deter-
mined by minor variants, such as relatively common polymorphisms, epigenetic modifications, and microRNA abnormalities. Genetic
and epigenetic factors can also affect the progression of liver diseases, promoting fibrogenesis, cirrhosis, and ultimately hepatocellu-
lar carcinoma. It is noteworthy that some of these factors, such as some of the cytokines involved in the abnormal inflammatory re-
sponses, are shared with non-alcoholic liver disease, while other factors are unique to ALD. The study of the genetic and epigenetic
components involved in the liver damages caused by alcohol is crucial to identify individuals with high risk of developing ALD, design

personalized protocols for prevention and/or treatment, and select the best molecular targets for new therapies.
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INTRODUCTION

Alcohol consumption is responsible for 3.8% of global
mortality and 4.6% of disability-adjusted life-years (DA-
LYs) lost due to premature death.! Although the definition
of a clear risk threshold for alcohol consumption is still
debated, a meta-analysis found increased risks of mortality
from liver cirrhosis among men and women drinking 12-
24 g of ethanol per day.? The excessive consumption of al-
coholic beverages exposes the liver cells to elevated levels
of ethanol, causing a series of damages ultimately leading
to a class of clinical conditions identified as alcoholic liver
disease (ALD).?

ALD represents a wide spectrum of disorders compris-
ing simple steatosis, alcoholic steatohepatitis (ASH), pro-
gressive fibrosis, cirrhosis and the development of
hepatocellular carcinoma (HCC).? The pathogenesis of the
liver damage follows a progressive course embracing all

these disorders, but exceptions are possible, with patients
eventually skipping one of the clinical stages. Up to 90%
of heavy drinkers develop steatosis, but only a minority of
those with steatosis progress to ASH and 10-20% eventually
develop cirrhosis.®* There is a dose-response relationship
between the volume of alcohol consumed with the risk of
ALD, and a population study has proved how subjects who
consumed more than 120 g/day had the highest risk of cir-
rhosis, with a prevalence of 13.5%,” although it must be con-
sidered that the risk of cirrhosis is related to the length of
time over which an individual has drunk regularly and not
simply to the usual amount consumed.® However, it should
be noted that no study has ever been able to distinguish be-
tween the effects of daily consumption from the effects of
“binge”™" (or compulsive) drinking.

In 2010, the burden of ALD resulted in 493,300 deaths
and 14,544,000 DALYs, accounting for 0.9% of all
deaths and 0.6% of all DALYs in that year.!”” These num-
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bers highlight how ALD is the most prevalent cause of ad-
vanced liver disease and the leading cause of death among
adults with excessive alcohol consumption.!?® The study of
ALD incidence in different populations revealed several
biases. In European cohorts, the deaths attributable to al-
cohol account for 11.0% and 1.8% of men and women, re-
spectively.!® The young account for a disproportionate
amount of this disease burden, with an alcohol-associated
mortality over 10% and 25% of female and male youth, re-
spectively.® Another important difference was reported by
a study on American populations, that showed how indi-
viduals of Hispanic origin have a greater risk of develop-
ing chronic liver disease than their European and African
American counterparts.’

The pathogenic mechanisms underlying ALD involve
multiple pathways and seem to converge into determining
an inflammatory status in the liver (Figure 1). An increased
susceptibility in women as compared to men has been no-
ticed, particularly considering that it requires a lower
amount of ethanol in female drinkers to determine liver
damage, and suggests that other metabolic and molecular
factors, yet to be identified, might play a role in the onset
of ALD.!® The information collected by epidemiologic
studies indicates how individuals of different ethnicities,
exposed to similar environmental contexts, show different
ALD incidence, suggesting a potential role for genetic fac-
tors. Such role has been confirmed by twin studies, which
have revealed a threefold higher disease concordance be-
tween monozygotic and dizygotic twins.!-1?

GENETIC AND EPIGENETIC
MECHANISMS IN ALD

Relevant genetic factors are usually copy number vari-
ants (CNVs) or single nucleotide polymorphisms
(SNPs), that affect the function of one or more genes in a
way that affects the probability of an individual to develop
a certain trait, either increasing or decreasing it. Recently,
it has been proven how epigenetic factors, can also affect
the expression and function of several genes, including
several ones involved in liver metabolism and cellular re-
sponse to alcohol.!® Identification of genetic and epigenet-
ic factors can be important not only for the screening of
individuals at risk, but also for the study of the pathogenic
mechanisms underlying ALD.

The first evidence supporting the influence of genetic
factors on ethanol effects on liver involved the alcohol
metabolizing enzymes, alcohol dehydrogenase (ADH) and
acetaldehyde dehydrogenase (ALDH). Sequence poly-
morphisms in the genes encoding these preoteins have
been associated with changes in enzyme kinetics. For ex-
ample, the SNP rs1229984 in the ADH1B gene is found in
19-91% of East Asians, but in 0-10% of other populations.!*
Similarly, the SNP rs671 in ALDH2 is found in 30-50% of
East Asians and is basically absent in other populations.'>
These variants affect production and removal of the toxic
metabolite acetaldehyde, resulting in the development of
unpleasant symptoms, such as flushing, nausea, vomiting,
tachycardia, hypotension, dyspnea and headache, that
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ultimately discourage the assumption of alcohol resulting
in a protective effect.!® Although to date there is still a lack
of large-scale genome-wide association studies (GWAS)
for ALD, some other candidate genes have emerged by
several studies, such as GABRB1, DRD4, and TH, PECR,
ADHI1C, LOC100507053, METAP, and PDLIM5.17-20
However, multiple studies suggest that one genetic variant
in particular seems to play a pivotal role in the pathogene-
sis and progression of this spectrum of disorders: the
rs738409 SNP in the patatin-like phospholipase domain
containing 3 (PNPLA3) gene?'->* (Figure 2). Interestingly,
the same variant has also been associated with increased
risk of nonalcoholic fatty liver disease and plasma liver en-
zyme levels by two independent GWAS studies.?>%¢

The PNPLA3 gene and the metabolism of lipids

The PNPLA3 gene (OMIM *609567) maps on chro-
mosome 22q13.31, also know as adiponutrin, encodes a 481
amino acid protein with a molecular mass of approximate-
ly 53 kDa that in humans is mainly expressed in intracellu-
lar membrane fractions in hepatocytes, and is induced in
the liver after feeding and during insulin resistance by the
master regulator of lipogenesis sterol regulatory element
binding protein-1c (SREBP1C).?”28 The rs738409 SNP
leads to a nucleotide transversion from a cytosine to a
guanine at position 444 of the coding region (c.444C>G),
in the third of the 9 exons of the gene. This change causes
the substitution of the amino acid isoleucine at the

GENETIC  FACTORS
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netic and epigenetic mechanisms involved in
ALD. The liver damage mediated by ethanol in-
take, is mediated by three main pathways: lipid
metabolism, oxidative stress, and inflammation.
The PNPLAS p./148M SNP predisposes to in-
creased lipogenesis and facilitates the progres-
sion of liver diseases to chronic stages. The
NFE2L2 gene, encoding for the Nrf2, is activat-
ed by oxidative stress and regulates the activity
of several antioxidant response elements (AREs).
This epigenetic mechanism, based on the activa-
tion by phosphorylation of Nrf2, coordinates the
cellular response to ROS. When exposed to etha-
nol, certain microRNAs show a positive correla-
tion in up-regulation of the LPS signal in Kupffer
cells, which in turns release the pro-inflammatory
cytokines TNF-c, IL-1B, and IL-6. This epige-
netic mechanism links alcohol consumption to the
inflammatory status in the liver that leads to hep-
atitis and steato-hepatitis.

T Lipogenesis

Table 1. Bioinformatic prediction of the effects of the PNPLA3 p.llel48Met variant.

Website URL

Bioinformatic Prediction

Website

CADD deleterious

Condel deleterious

Fathmm tolerated

I-Mutant decreased protein stability
iPTREE-STAB destabilizing

MICO deleterious

MUpro deleterious

MuStab destabilizing

Mutation Assessor
Mutation Taster

medium effect
polymorphism

Panther deleterious

Provean deleterious

PolyPhen-2 probably damaging

SIFT not tolerated - affected protein function
SNPs&GO neutral

http://cadd.gs.washington.edu/
http://bg.upf.edu/fannsdb/help/condel.html
http://fathmm.biocompute.org.uk/
http://folding.biofold.org/i-mutant/i-mutant2.0.html
http://210.60.98.19/IPTREETr/iptree.htm
http://mico.ggc.org/MICO/
http://www.ics.uci.edu/~baldig/mutation.html
http://bioinfo.ggc.org/mustab/
http://mutationassessor.org/
http://www.mutationtaster.org/
http://www.pantherdb.org/
http://provean.jcvi.org/index.php
http://genetics.bwh.harvard.edu/pph2/index.shtml
http://sift.bii.a-star.edu.sg/
http://snps-and-go.biocomp.unibo.it/snps-and-go/
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residue 148 of the protein with a methionine (p.Ile148
Met or p.I1148M). Table 1 lists the predicted effects of the
change on the PNPLA3 protein, according to several bio-
informatic platforms. Such platforms are designed to cre-
ate computational models to calculate the impact of an
amino acid change, considering parameters like evolution-
ary conservation of the protein residue and domain, bio-
chemical interactions of the original and mutant amino
acid, conformational stability of the protein, and frequency
of the mutant allele in the general population. Overall, the
vast majority of the calls (12 out of 15) indicate a potential-
ly deleterious effect, while only 3 websites consider the
p.1148M variant as benign or neutral.

Considering the impact on the protein function, it is
relatively surprising how frequent the G allele is in the
general population, and even more so in certain ethnici-
ties. According to the 1,000 genomes project (http://
www.internationalgenome.org/home), the G allele has a
frequency of 26.2% (1.313 out of 5.008 total alleles tested),
with a peak of 71.8% in the Peruvian population (122 out
of 170 alleles), and in general a relatively high rate among
individuals of Latin American origin (48.4%, 336/694). On
the other hand, the sub-populations with the lowest rates
of the minor G allele are composed by individuals of Afri-
can origin (11.8%, 156/1.322 alleles), particularly the Luhya
ethnicity (8.6%, 17/198). European individuals also show
relatively low rates (22.6%, 227/1.006), with the lowest one
detected in the Finnish population (17.2%, 34/198). The al-
lelic frequency is naturally reflected in the genotype dis-
tribution: out of 2,508 individuals, 1424 carry the C/C
genotype (56.9%), 847 are heterozygous (33.8%), and 233
are homozygous for the G allele (9.3%).

Similar frequencies emerge from other genomic data-
bases, for example the Exome Variant Server (http://
evs.gs.washington.edu/EVS/) reports 2540 G alleles out of
13.006 (19.5%), with a discrepancy between European
American (22.1%) and African American individuals
(14.5%). The genotype count lists 4,229 individuals with
C/C (65%), 2.008 with C/G (30.9%), and 266 with G/G
(4.1%). The EXAC Browser Beta database, created by Exome
Aggregation Consortium (http://exac.broadinstitute.org/),
reports 31.954 G alleles out of 121,386 (26.3%), with peaks
of 57.2% in the Latino population (high) and 13.8% in the
African one (low).

The fact that the genotype rates overlap the expected
frequencies according to the Hardy-Weinberg model
(54.5% for C/C, 38.7% for C/G, and 6.9% for G/G, using
the 1,000 genome data) suggests that the p.1148M variant
does not affect the genetic fitness. In other words, the
change does not alter the chances of the carriers to repro-
duce, and therefore pass the mutant allele to the next gen-
eration. This could be explained with the fact that most of
the conditions associated with ALD occur after the sec-

ond-third decade of life and their impact on life quality
does not affect the possibility of an individual to
procreate.

Wild-type (p.148I) PNPLA3 has lipolytic activity to-
wards triglycerides.?’?8 The p.1148M mutation determines
a critical aminoacidic substitution next to the catalytic do-
main, likely reducing the access of substrates and reducing
the PNPLA3 enzymatic activity towards glycerolipids,
thereby leading to the development of macrovescicular st-
eatosis.?”?? However, other reported a gain of lipogenic
function associated with the 148M variant, which would
acquire the ability to synthesize phosphatidic acid from
lysophosphatidic acid.?®*! In addition, results deriving
from murine models gave contradictory results.>?-3* Hu-
man studies have also suggested a possible direct or indi-
rect influence of PNPLA3 genotype on adipose tissue
biology, which however awaits replication.?>2%

Other than in ALD, the lipogenic effect of the p.1148M
variant appears to play a significant role in predisposing to
multiple liver disorders, such as nonalcoholic fatty liver
disease (NAFLD), nonalcoholic steato-hepatitis (NASH),
chronic hepatitis C virus, primary sclerosing cholangi-
tis.>’-*! It has also been shown that this substitution can
promote disease progression from NAFLD to NASH, fi-
brosis progression in ALD, and favors hepatic carcinogen-
esis in several liver diseases.?>#?

Oxidative stress and
antioxidant response elements

Chronic exposure to ethanol increases the production
of reactive oxygen species (ROS), lowers cellular levels of
antioxidants, and enhances oxidative stress in several tis-
sues, particularly the liver.* Ethanol is first metabolized in
the liver by alcohol dehydrogenase, but when this system
reaches saturation, like during chronic alcohol consump-
tion, the cytochrome P450 2E1 (CYP2E1) gets involved,
leading to the production of ROS, free radicals, and, most
importantly, acetaldehyde, a highly toxic intermediate and
carcinogen, which is in turn metabolized by aldehyde de-
hydrogenase to acetate.***> The detoxification process of
acetaldehyde is associated to an array of antioxidant mecha-
nisms, regulated by nuclear erythroid 2-related factor 2
(Nrf2), a member of the cap-n-collar basic leucine family
of transcription factors.*® In its inactive state, Nrf2 inter-
acts in the cytoplasm with the actin binding protein,
Kelch-like ECH-associating protein 1 (Keap1), and is rap-
idly degraded by the ubiquitin-proteasome pathway.
However, upon exposure to oxidative or electrophilic
stress, phosphorylation of Nrf2 leads to its dissociation
from Keap1, allowing its subsequent translocation into the
nucleus.*>*” Once there, Nrf2 binds to antioxidant re-
sponse elements (AREs), which are particular genomic
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sequences, that work as targets for molecular messages re-
leased by the cells in response to oxidative stress (Figure
2). The Nrf2/AREs functions in partnership with other
nuclear proteins, as a strong transcriptional activator of
ARE-responsive genes, encoding antioxidant proteins and
enzymes such the ones (Table 2): heme oxygenase-1
(HO-1) NAD(P)H; quinone oxidoreductase 1 (NQO1);
glutathione-S-transferases (GST); and group C strepto-
coccus (GCS).»

It has also been proven in mouse models that the oxi-
dative stress induced by ethanol via CYP2E1 upregulates
Nrf2 activity, which in turn regulates ethanol induction of
the cytochrome P450 2A5 (CYP2A5) and protects against

Table 2. Epigenetic mechanisms involved in ALD.

alcohol-induced steatosis.*® Chronic ethanol administra-
tion in Nrf2-knockout mice significantly increased mor-
tality associated with liver failure.*’ The loss of Nrf2
caused a reduced ability to detoxify acetaldehyde, leading
to its accumulation, marked steatosis and inflammatory re-
sponse mediated by Kupffer cells, with consequent deple-
tion of glutathione, one of the most effective antioxidants
in the mitochondria. The glutathione deficiency deter-
mines an increase in the level of ROS generated by highly
energetic processes occurring in the mitochondria, such as
the B-oxidation of fatty acids, and ultimately leads to struc-
tural and functional changes to mitochondria.*’ In order to
further prove the key role of the Nrf2/AREs pathway in
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cellular response to oxidative stress, Wu, ef al. demonstrated
how activating Nrf2 through Keap1 knockdown and hepa-
tocyte-specific knockout mice blunted the increase in liv-
er levels of serum triglyceride and hepatic-free fatty acid
following the exposure to ethanol.””

Inflammation and micro-RNAs

Alcohol assumption increases gut permeability and
translocation of bacterial products, such as lipopolysac-
charide (LPS), also known as endotoxin, into the intesti-
nal and, subsequently, portal circulation.> Such process
involves several genetic and epigenetic effectors: ethanol
directly induces an increase in the expression of the miR-
212 microRNA, which contributes to the loss of tight
junction proteins in the zonula occludens-1 (ZO-1) of the
endothelial cells of the intestinal lumen.>? The ZO-1 pro-
teins are also targeted by another microRNA whose ex-
pression is influenced by the levels of circulating ethanol,
miR-122, and the tight junctions are also weakened by the
ethanol metabolite, acetaldehyde® (Table 2). Once the
LPS reaches the liver, it binds to the toll-like receptor 4
(TLR4) on the surface of the Kupfter cells via lipopolysac-
charide binding protein (LBP). Such binding activates the
Kupfter cells via a signalling cascade that includes CD14,
MyD88, MD-2, and finally results in the activation of mi-
togen-activated protein kinases (such as ERK1, ERK2,
JNK, and p38), NF-xB, and AP-1.54 The binding of LPS
to TLR4 induces also an increase in the expression of the
microRNAs miR-155 and miR-21, which activate the NF-
KB pathway. This cascade effect promotes the production
in macrophages, in particular in Kupffer cells, of pro-in-
flammatory cytokines, such as tumor necrosis factor
(TNF)-0., interleukin (IL)-1B, and IL-6, while represses
the expression of anti-inflammatory cytokines, such as
IL-10%® (Figure 2). It has been proven that microRNAs
miR-125b, miR-146a, and miR-155 can regulate the inflam-
matory response to the TNF-o induced by LPS in Kupffer
cells, and that miR-155 contributes to alcohol-induced
activation of TNF-o in macrophages from patients with
ALD.>>>¢ Abnormal expression levels of several micro-
RNAs have been reported in different liver diseases, gen-
erating specific expression profiles for chronic hepatitis,
liver fibrosis, and hepatocellular carcinoma.>” If we con-
sider ALD alone, the expression levels of microRNAs,
such as miR-155, miR-21, miR-34a, and miR-486, have been
reported as increased, other microRNAs, like miR-125b,
miR181a, and let-7b, appear to be decreased, while the liv-
er-specific microRNA miR-122 has been reported both as
increased and decreased, probably depending on the stage
of the disease.>® Two of these microRNAs, miR-122 and
miR-34a, produce opposite effects on cell cycle: miR-122
inhibits genes promoting cell proliferation, while miR-34a

®
is a critical regulator of p53-mediated apoptosis.>35859
Exposure to ethanol, in both mice and humans, induces
up-regulation of miR-34a and down-regulation of miR-
122, ultimately promoting the abnormal cell survival and
proliferation of hepatocytes observed in ALD53 (Table 2).

One of the target genes of miR-34a is the silent mating
type information regulation 2 homolog 1 (SIRT1), encod-
ing the sirtuin protein.?’ Sirtuin in involved in a complex
pathway regulating B-oxidation of fat acids and lipogenesis,
in which the key role is played by lipin-1c.. This protein
functions both as an Mg?*-dependent phosphatidic acid
phosphohydrolase in the triglyceride synthesis pathway
and as transcriptional co-activator to promote fat oxida-
tion and suppress de novo lipogenesis.®!-% Lipin-1 is en-
coded by the LPIN1 gene and has two major isoforms in
hepatocytes, depending on an alternative mRNA splicing:
lipin-1a., lacking exon 6 and located in the nucleus, and li-
pin-1, containing exon 6, located in the cytoplasm, and as-
sociated with increased expression of lipogenic genes and
excessive fat accumulation in the liver of animal mod-
els.01:64-66 Sirtuin appears to regulate LPINT splicing via
SFRS10, a member of the SR-like protein family of splic-
ing factors, whose expression is decreased in livers of both
mice and humans exposed to high-fat diet.®® Reduced lev-
els of sirtuin have been reported in patients with ALD and
the resulting effects have been investigated by Yin, ef al. in
Sirt1-KO mouse models:®! the decreased expression of
SFRS10 causes an increase in the ration between the § and
o isoforms of lipin-1, leading to triglyceride accumula-
tion, activation of stellate cells resulting in collagen depo-
sition, and increased inflammatory response mediated by
the activation of inflammatory genes by the NFATC4 tran-
scription factor (Table 2). The overall result resembles
the histopathological presentation of steatohepatitis in hu-
mans, with fatty liver, mild inflammation, and fibrosis.
The authors also noted that deletion of Sirt1 exacerbates
the effects of chronic-binge ethanol assumption on mouse
liver and the oxidative stress in hepatocytes.®!

Other than on microRNAs, ethanol has been proven to
have several deleterious effects on epigenetic regulation:
increased gene-selective levels of histone H3 acetylation at
lysine 9 (H3K9) in liver, lungs, spleen, and testes, a phe-
nomenon that seems to be associated with chronic but not
acute consumption, increased levels of enzymes mediating
histone acetylation, and a generalized increase in DNA
methylation.®”-”> Once again, these epigenetic-mediated
effects of ethanol consumption seem to point primarily to
an exacerbation of the inflammatory response, especially
considering that a key pro-inflammatory cytokine, such as
TNEF-aq, is silenced by H3K9 methylation and activated by
H3K9 acetylation.” The epigenetic-mediated consequenc-
es of chronic alcohol abuse on the immune system aftect
more than just liver macrophages and Kupffer cells and
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include effects specific to certain tissues and certain
immune cell-types, such as influencing cell recruitment
to infected or inflamed tissue, altering cytokine and chem-
okine production and secretion, skewing differentiation
towards a particular cell fate or preventing cell replica-
tion, impairing antigen presentation, interfering with
phagocytosis and granulopoiesis, or inducing apopto-
sis.”*#”> The ultimate results of ethanol-induced immune
dysregulation are increased susceptibility to infection,
excessive innate immune response, elevated oxidative
stress, and exacerbated or prolonged inflammation due to
a skewed macrophage polarization toward the pro-inflam-
matory M1 phenotype determined by increased produc-
tion of pro-inflaimmatory cytokines such as TNF-o,
IL-1B, IL-6, IFNY, impairment of histone methylation/
acetylation, and promotion of the Th2 lineage speci-
fication of the T-helper population of lymphocytes’*7>
(Table 2).

In an effort to better characterize the role of innate im-
mune signalling in liver disorders, Petrasek et al. were
able to identify differences in ASH versus NASH, as well
as pathogenic features shared by both conditions.”® The
common traits include a central role played by Kupfter
cells, an increase of Gram-negative bacteria in the intesti-
nal lumen, and the beneficial effect of intestinal steriliza-
tion on decreasing LPS levels, liver inflammation and
fibrosis. In patients with ASH the TLR-4 signalling is me-
diated via the TRIF/IRF3-dependent and MyD88-inde-
pendent pathway, while in NASH cases is mediated by the
MyD88-dependent pathway.”® Moreover, while in ASH
IL-1P plays a critical role, the activation of the inflammas-
ome represents an early event and its activation is specific
to bone marrow-derived Kupffer cells, in NASH inactiva-
tion of IL-1P protects from steatosis but not from liver
damage, the inflammasome is activated later than in ASH
and includes hepatocytes in addition to Kupffer cells.”®

OVERVIEW

The study of the pathogenic mechanisms in ALD high-
lights three main pathways in which genetic and/or epige-
netic variants can affect an individual’s response to ethanol
consumption: lipid metabolism, oxidative stress, and
immune system. Even if these pathways seem to be quite
diverse and distinct for functions, tissues, and substrates,
they are connected by an intricate network of tight inter-
actions, as proven in several experimental models.>*7”
Further studies will be necessary to validate in humans
many of the pathogenic mechanisms proved in such ex-
perimental models, and it is highly probable that other
pathways will be linked to ALD pathogenesis in the fu-
ture. However, the evidence collected so far is sufficient
to justify a prominent role for lipid metabolism, oxidative

stress, and immune system in the onset and progression of
ALD. Some effects of alcohol consumption are systemic,
such as the promotion of the inflammatory response,®*
some others are tissue-specific, like the reduced B-oxida-
tion of fatty acids and increased lipogenesis in the liv-
er.212254 Effects occur also in a relatively short time span,
like the increased gut permeability to LPS, some others
require a multiple-step apparatus and have a later onset,
such as the collagen deposition mediated by the activated
stellate cells.’! However, it would be a mistake to evaluate
each effect individually, even if it affects apparently inde-
pendent pathways: ethanol operates at the same time on its
multiple targets and its effects are often amplified by the
cascade effects linking the involved pathways (Figure 2).
Both the abnormal lipid metabolism and the pro-inflam-
matory switch in the immune system increase the pro-
duction of ROS, which overload mitochondrial activity
inducing oxidative stress, leading to tissue damage and ul-
timately promoting the inflammatory status and the chron-
ic progression to liver disorders from steatosis to
steatohepatitis and eventually cirrhosis and fibrosis.?2>*77

Genetic/epigenetic factors can play a role in each of the
pathways involved in ALD pathogenesis either by protect-
ing against ethanol effects or exacerbating them. Examples
of the first option are the Nrf2/AREs system, regulating
the antioxidant response to acetaldehyde, or the SIRT1/
SFRS10/Lipin-1 pathway, controlling the expression of
lipogenic genes and preventing excessive lipid accumula-
tion in the liver. Constitutive genetic variants can affect
proteins involved in these pathways by either decreasing
their expression levels and/or disrupting their function.
Although there has not been any report yet of patients with
ALD carrying loss-of-function mutations in these path-
ways, it cannot be ruled out the gene dosage effect of mul-
tiple variants that are individually considered of unknown
significance. Several studies corroborate this hypothesis
showing how removing these protective systems in mouse
models produce more severe effects after exposure to al-
cohol #4961 On the other hand, the best documented ge-
netic factor to ALD, the PNPLA3 p.Ile148Met change,
represents the typical example of gain-of function variant,
in which a carrier does not lack a protective system, but
rather possesses a congenital predisposition to amplify the
metabolic damage triggered by ethanol.?!-243¢ In both cas-
es, in order to better understand the genotype/phenotype
correlation in ALD, it is mandatory to improve our
knowledge of these pathways and learn how they interact
with other cellular functions.

FUTURE PERSPECTIVES

In the era of personalized medicine, the identification
of genetic factors predisposing to ALD will have a tre-
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mendous impact on the management of this disorder.
The most immediate and direct application would be pro-
viding biomarkers for the early screening of individuals at
risk in the general population to be enrolled in monitor-
ing programs, based on dietary surveillance and/or pro-
phylactic treatment. Genetic screening for the plle148Met
variant in PNPLA3, for example, would be a relative quick
and inexpensive service to provide to individuals with
positive family history for ALD, and would orient signifi-
cantly their future clinical management, since this variant
can affect not only the onset of the disorder but also its
progression.

Another potential application is represented by the
identification of potential therapeutic targets. Currently,
the treatment of ALD is based on alcohol abstinence,
medical treatment (e.g. corticosteroids, prednisolone,
pentoxifylline) in the presence of severe liver damage, and
liver transplantation in presence of advanced liver disease
and/or liver insufficiency.>’® New approaches have been
explored recently and have brought several clinical trials
for targeted treatment of alcoholic hepatitis and alcoholic
cirrhosis.** However, a more detailed evaluation of the ge-
netic background will allow the physicians to design the
best therapeutic approach for each individual with ALD.
For example, targeting the microRNAs involved in the
pro-inflammatory switch in macrophages and Kupffer
cells will be more efficient and than a steroid-based treat-
ment and will bare less side effects. Moreover, it has to be
considered that epigenetic factors can be manipulated by
environmental factors, such as diet and medications, and
therefore represent an ideal target for genetic therapy.

Including the genetic and epigenetic factors in the de-
sign of tailored therapeutic protocols will not only guar-
antee better results in the treatment of ALD, but will also
provide new and more powerful tools for prophylaxis and
prevention, resulting in an improvement of both quality
and quantity of life for many people.

ABBREVIATIONS

* ADH: alcohol dehydrogenase.

* ALD: alcoholic liver disease.

* ALDH: acetaldehyde dehydrogenase.
* ARE:s: antioxidant response elements.
* ASH: alcoholic steatohepatitis.

* CNVs: copy number variants.

¢ CYP2AS5: cytochrome P450 2A5.

* CYP2ET1: cytochrome P450 2E1.

* DALYs: disability-adjusted life-years.
* GCS: group C streptococcus.

* GST: glutathione-S-transferases.

* GWAS: genome-wide association studies.

H3KO9: histone H3 acetylation at lysine 9.

* HCC: epatocellular carcinoma.

* IL:interleukin.

* Keapl: Kelch-like ECH-associating protein 1.

* LBP: lipopolysaccharide binding protein.

* LPS: lipopolysaccharide.

* NAD(P)H: heme oxygenase-1 (HO-1).

* NAFLD: nonalcoholic fatty liver disease.

* NASH: nonalcoholic steato-hepatitis.

* NQO1: quinone oxidoreductase 1.

* Nrf2: nuclear erythroid 2-related factor 2.

* PNPLAS3: patatin-like phospholipase domain contain-
ing 3.

* ROS: reactive oxygen species.

* SIRT1: silent mating type information regulation 2
homolog 1.

* SNPs: single nucleotide polymorphisms.

* SREBPIC: sterol regulatory element binding pro-
tein-1c.

* TLR4: toll-like receptor 4.

* TNF-o: tumor necrosis factor-o.

* ZO-1: zonula occludens 1.
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