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INTRODUCTION

Hepatocellular carcinoma (HCC) ranks the sixth most
common fatal tumor in the human liver and the second
leading cause of cancer-related death in the world, with an
estimated diagnosis of more than 800,000 new patients
each year.1,2 In clinical trials, transcatheter arterial emboli-
zation (TAE) has been widely used for those HCC pa-
tients who could not receive surgery, with the
characteristics of precisely targeted, minimally invasive, as
well as repeatable and well-tolerated.3,4 Nevertheless, the
incomplete embolization or tumor angiogenesis owing to
the TAE was revealed by a great body of studies to lead to
tumor recurrence and metastasis.5-7 In recent years, some
combination therapies of TAE with some anti-angiogenic

methods have presented preferable therapeutic effect. For
example, in the study by Nitta-Seko A, et al., thalidomide
in combination with TAE can effectively promote the
anti-tumor effect in rabbits with VX2 hepatic tumor.8 But
the efficacy in a considerable number of patients with
HCC is still not clear, especially for those HCC patients
with metastasis and recurrence.9 In this regard, it is of
great importance to further identify the optimal therapy to
improve the survival of advanced HCC.

Mammalian Target of Rapamycin (mTOR) is an atypi-
cal highly conserved serine/threonine protein kinase im-
plicated in the regulation of many cellular activities, such
as growth, proliferation, cell cycles and metabolism, as
well as mediating tumor angiogenesis.10 A large number of
studies have discovered the inappropriate mTOR activa-
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Introduction and aim.Introduction and aim.Introduction and aim.Introduction and aim.Introduction and aim. To investigate the effect of mTOR inhibitor Rapamycin combined with transcatheter arterial embolization
(TAE) on the growth, metastasis, and prognosis of hepatocellular carcinoma (HCC) in rat model. Material and method.Material and method.Material and method.Material and method.Material and method. McA-
RH7777 cells were used to construct rat models of HCC, which were randomly divided into Model, Rapamycin, TAE, and Rapamy-
cin + TAE groups. Quantitative reverse transcription-PCR (qRT-PCR) and Western Blot were used to detect the expression of
Epithelial-Mesenchymal Transition (EMT)-related molecules, and immunohistochemical staining to determine the expression of EMT-
related proteins, angiogenic factors as well as microvessel density (MVD)-CD34. Results.Results.Results.Results.Results. The hepatic tumor volume of rats in the
other three groups were all significantly smaller than the Model group on the 7th, 14th, and 21st day after treatment and the combina-
tion treatment was apparently more effective than either treatment alone. Besides, both the number and the size of metastatic nod-
ules of HCC rats after combination treatment were remarkably reduced. In addition, compared with rats in the Rapamycin + TAE
group, N-cadherin, Vimentin, HIF-1α, VEGF, and MVD-CD34 were obviously enhanced, while E-cadherin was lowered in those
TAE group, which were the complete opposite to the Rapamycin group. Besides, the median survival time of rats in the Rapamycin
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the EMT formation and angiogenesis, thereby inhibiting the growth and lung metastasis of HCC rats, which provides a new idea for
countering the recurrence and metastasis of HCC.
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tion in various malignancies, including lung cancer, ovari-
an cancer, and HCC.11,12 Thus, inhibitors of mTOR path-
way have become standard anti-tumor strategies, especially
in HCC. As reported by Zhao Q, et al., Aspirin may exert
inhibitory effects on tumor angiogenesis through block-
ing the expressions of mTOR signaling pathway-related
factors in murine HCC and sarcoma models.13 Besides,
Xue ZG and his group identified Cardamonin as a novel
angiogenesis inhibitor with respect to ovarian cancer treat-
ment, partially linked to the inhibition of the mTOR of
Rapamycin.14 Rapamycin, as one of the best-known inhib-
itor of mTOR, is a new type of highly effective immuno-
suppressive agent, which can inhibit the protein kinase
catalytic activity of mTOR,15 further suppressing angio-
genesis to inhibit the growth and metastasis of many ma-
lignant tumor cells.16,17 Current knowledge suggests that
the activity of mTOR depends on its combination with
other molecules to form two functionally distinct multi-
protein complexes, namely mTORC1 (mTOR complex
1) and mTORC2 (mTOR complex 2).18 In combination
with FKBP12, Rapamycin could selectively inhibit the ac-
tivity of mTORC1 via association with its intracellular re-
ceptor FK-506 binding protein 12 (FKBP12), but not
mTORC2.19 As such, we would only investigate the
mTORC1 and refer to it as mTOR in this study. Of note,
in responding patients, the developing of Rapamycin re-
sistance would restrict the overall clinical benefit, and
combination therapy has become a promising method to
improve the efficacy of rapamycin.20

However, it has not been elucidated whether Rapamycin
combined with TAE has a synergistic anti-tumor effect. In
light of the uncertainties, this study constructed the rat
model of HCC by using McA-RH7777 cells to explore the
impact of Rapamycin combined with TAE on the growth,
metastasis, and prognosis of HCC in rat model.

MATERIAL AND METHODS

Ethics statement

The design of the animal experiments was approved by
the Ethics Committee of the First People’s Hospital of
Jingzhou for Laboratory Animals, and all the research be-
haviors conducted in the study were strictly in accordance
with the regulations for the care and use of laboratory ani-
mals by the International Association for the Study Pain
(IASP).21

Animals

The clean grade Buffalo rats selected were 6~8 weeks
old with the weight 160~180 g, half male and half female
(purchased from Shanghai SLAC Laboratory Animal Co.

Ltd., Shanghai, People’s Republic of China), and were
housed in clean grade animal room with unrestricted ac-
cess to food and water in a room temperature maintained
at 22~25 °C, with normal circadian rhythm as well as rou-
tine food and water supply.

Establishment of
HCC tumor-bearing rats models

The McA-RH7777 rat hepatoma cell line (purchased
from the ATCC (American Type Culture Collection,
CRL-1601) in the USA) were cultured with high-glucose
DMEM (Dulbecco’s modified Eagle’s medium) (Hy-
clone, USA) containing 10% fetal bovine serum (FBS)
(Gibco, USA) in a 37 °C incubator with 5% CO2. When
covered culture flasks, cells were digested with trypsin
and centrifuged for 5 min at 1000 rpm. After re-suspended,
the cell density was adjusted to 4 × 106/mL. Rats were in-
jected subcutaneously into the thigh with 0.5 mL cell sus-
pension for tumor-bearing. The subcutaneous tumor mass
was measured regularly with vernier calipers. Two weeks
later, the subcutaneous tumor was obtained for liver tu-
mor transplantation. Rats were anesthetized with 10%
chloral hydrate solution (0.3 mL/100 g of body weight,
Jiangsu Hengrui Medicine Co, Ltd, Jiangsu, China), and
the subcutaneous tumor was cut and collected, which was
preserved in ice-cold normal saline. After removed the tu-
mor capsule and necrotic tissues of the specimens, the re-
maining tumor tissues were cut into cubes with 2 mm3 in
size. After that, the abdominal wall of the rats was opened
to expose the liver, and the left lobe of the liver was gently
put aside for fixing, and the ophthalmic forceps pierced
the hepatic capsular and deliver the HCC tumor block to a
depth of about 0.5 cm. Then, the abdominal wall was
closed before the rats were sent to animal center.

Grouping

All rats were intraperitoneally anesthetized for MRI
scanning to observe the tumor formation 14 days after im-
plantation. Then, forty successfully-established model rats
were selected and randomly divided into four groups:
Model group, Rapamycin group, TAE group, and Rapamy-
cin + TAE group, with 10 rats in each group. The rats
were given general anesthesia before a midline abdominal
incision. Next, under the operating microscope (Zeiss
OPMI 6-S, Aalen, Germany), a silicone catheter (outer di-
ameter 0.8 mm) with a tip in the shape of a hockey-stick
was inserted retrogradely into the left hepatic artery
by way of the gastroduodenal artery. After that, the catheter
was firmly fixed for hepatic arterial infusion, with 0.5 mL/kg
of lipiodol in the TAE and the Rapamycin + TAE groups,
or with the same volume of saline in the Model and the
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Rapamycin groups. Next, the catheter was removed,
the gastroduodenal artery was ligated, and the incision was
closed in two layers. Three days after the operation, rats in
the Rapamycin group and the Rapamycin + TAE group
were intraperitoneally injected with mTOR inhibitor Ra-
pamycin (S1039, Pfizer) once a day and 4 mg/kg each time.
After 5 days of continuous administration, Rapamycin was
changed to 3 times a week before withdrawal 2 weeks after
the operation. At the same time, rats in the Model and the
TAE groups were intraperitoneally injected with equal
dose of normal saline. MRI examination was performed
every 7 days after operation. The groupings and interven-
tions of experimental procedures were shown in figure 1.

Lung metastatic nodules

Thirty-one days after operation (two weeks after treat-
ment), 5 rats were randomly selected from each group and
killed under the anesthesia with 10% chloral hydrate. Lung
samples were obtained to observe the lung metastasis. The
quantitative analysis of lung metastatic nodules was carried
out according to the method reported in a previous
study.22 The counting of lesions depends on a light micro-

scope and the total area of lung tissues in each rat was
measured by using an image analyzer (VIP-21C, Olympus-
Ikegami Tsushin Co., Tokyo).

qRT-PCR

The extraction of total RNA was operated in line with
the instructions on the Trizol reagent (Invitrogen Life
Technologies, Carlsbad, CA, USA), and the RNA extract
was determined for its purity and concentration by a Nan-
oDrop2000 spectrophotometer (Thermo Scientific,
Willmington, DE, USA). The primer sequences for PCR
were designed by using Primer 5.0 software based on the
gene sequences published in the Genbank and were syn-
thesized by Sangon Biotech (Shanghai) Co. Ltd (Table 1).
The PCR reaction system was prepared according to in-
structions on the ABI PRISM 7500 real-time PCR System
(ABI). And the conditions for real-time PCR were as fol-
lows: pre-denaturation for 10 s at 95 °C and 40 cycles of 5 s
at 94 °C, 5 s at 60 °C, and 10 s at 72 °C. With GAPDH as the
internal reference gene, each gene of each sample had 3
replicates and the dissolution curve was used to evaluate
the reliability of PCR. CT value (the inflection point of
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the amplification curve) was read to calculate the relative
expression level of target genes according to 2-ΔΔCt:

ΔCt = CT(target gene)-CT(internal reference gene),

ΔΔCt = ΔCt(experiment group)-ΔCt(control group).

The experiment was repeated 3 times.

Western blot

The total protein was determined for concentration ac-
cording to the instructions on BCA Kit (Wuhan Boster
Biological Technology, LTD, China). The protein sam-
ples were added with loading buffer, boiled for 10 min at
95 °C, and loaded with 40 ug/well. The protein was isolat-
ed by with 10% SDS-polyacrylamide gel electrophoresis
(Wuhan Boster Biological Technology, LTD, China),
with voltage from 80 V for concentrated gel to 120 V for
separating gel. Proteins after electrophoretic separation
were transferred to polyvinylidene fluoride (PVDF)
membrane for 90~120 min with the constant voltage 100
mV. The 5% skim milk-PBS solution was blocked for 1 h
at room temperature with primary antibodies E-cadherin
(ab1416, 1/100), N-cadherin (ab18203, 1 μg/mL), Vimentin
(ab8978, 1/1000) and β-actin (ab8226, 1 μg/mL), which
were all purchased from Abcam (Cambridge, MA, USA).
The membrane was washed 3 times with Tris Buffered Sa-
line, with Tween (TBST) buffer for 5 min and cultured
for 1 h at room temperature with secondary antibodies.
Then, the membrane was washed with TBST buffer for 5
min for another 3 times and developed by a chemilumi-
nescence (ECL) reagent (Thermo Scientific Pierce,
Rockford, IL, USA). The internal reference gene was β-
actin and the experiment was repeated three times.

Immunohistochemical staining

HCC tissues (3-mm-thick slices) were fixed in 10%
formalin solution and embedded with paraffin to make 4

μm tissue sections. The sections were baked and soaked in
xylene solution for 10 min, dewaxed with gradient alcohol
for 5 min, washed with water before incubation in 3%
H2O2 for 10 min at 37 °C, blocked with serum for 30 min,
and washed with PBS for 5 min × 3 times before over-
night reaction at 4 °C with primary antibodies: E-cadherin
(ab1416, 1/50), N-cadherin (ab18203, 1 μg/mL), Vimentin
(ab8978, 1 μg/mL), VEGF (ab53465, 1/500), HIF-1α
(ab113642, 1/500) (all purchased from Abcam, Cambridge,
MA, USA). Biotinylated secondary antibodies were then
added to incubate for 30 min at 37 °C. Sections were
washed 3 times with PBS buffer, incubated for 30 min
with immune complexes at 37 °C, developed with diami-
nobenzidine (DAB) for 20 min, and terminated with PBS
buffer. Sections were dehydrated with conventional etha-
nol, transparentized with xylene, and mounted with neu-
tral resin. Four visual fields randomly selected in each
section under an optical microscope (Olympus Optical
Co., Tokyo, Japan) were taken for photos to observe the
expression of positive cells. The experiment was repeated
three times.

MVD Determination

The determination of MVD-CD34 was performed in
line with the method described by Zhang Q, et al.23 The
stained sections were screened at low power field (×40)
to select 5 hot spots, that is, areas with the most the most
intense neovascularization. The counting of micro-vessel
in hot spots was conducted at high power field (×200).
Any brown-stained endothelial cell or cell cluster, which
can be clearly separated from adjacent micro-vessels, tu-
mor cells, and other connective-tissue elements, was
counted as one micro-vessel, regardless of the existence of
a vessel lumen. The mean value of the micro-vessel
number of the five hot spots was taken as the MVD, which
was presented by the absolute number of micro-vessels
per 0.74 mm2 (×200).

Survival observation

The remaining 5 rats in each group were observed for
general conditions and date of death of each rat was re-
corded. The standard date of death should be subjected to
natural death or killed on the verge of death. The survival
period of rats was calculated, including the date of inocu-
lation and the day of death, and the median survival period
was also calculated.

Statistical method

All data were processed by the means of statistical anal-
ysis software SPSS 21.0 (SPSS, Inc, Chicago, IL, USA). The

Table 1. List of primer sequences used in qRT-PCR experi-
ments.

Gene Primer sequences (i5’ – 3’)

E-cadherin F: GCCCTGCCAATCCCGATGAAA
R: GGGGTCAGTATCAGCCGCT

N- cadherin F: GCGTCTGTAGAGGCTTCTGG
R: GCCACTTGCCACTTTTCCTG

Vimentin F: GCTTCAGAGAGAGGAAGCCGAAAA
R: CCGTGAGGTCAGGCTTGGAAA

GAPDH F: GGGGAGCCAAAAGGGTCATCATCT
R: GACGCCTGCTTCACCACCTTCTTG
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measurement data were presented by mean ± standard
deviation, and the comparison among multiple groups
was conducted by One-Way ANOVA, while comparison
between two groups was analyzed by t-test. Survival analy-
sis was performed by Kaplan-Meier method. P < 0.05
means the difference with statistical significance.

RESULTS

Establishment of HCC rat models

The rate of tumor formation was 100% for orthotopic
hepatic transplantation. On the 1st day after operation, the
rats showed a depression-like state with decreased forag-
ing activities, which all disappeared on the 3rd day, and
rats were in good conditions without any other complica-
tions or death. On the 14th day after tumor transplantation,
MRI examination showed visible hepatic tumor in all the
40 rats, which was round or slightly oval in shape and char-
acterized by expansive growth with low signal intensity on
T1WI and high signal intensity on T2W1. Small patchy
necrosis with uneven signal intensity can be seen in the
middle of lesions, and envelope signal was visible on the
edge of tumors, showing clear boundary with surrounding
normal hepatic parenchyma (Figure 2A-2B). Rats in the
Model, Rapamycin, TAE, and Rapamycin + TAE groups
showed no statistical difference in the average volume of
hepatic tumor (Figure 2C).

Comparison of tumor volume of
rats among different groups after the

combination treatment with Rapamycin and TAE

On the 7th and 14th day after treatment, the tumor vol-
ume of rats in the Rapamycin, TAE and Rapamycin + TAE
groups was appreciably smaller than that of the Model
group; and the Rapamycin + TAE group was also appar-
ently smaller than either treatment alone (all P < 0.05).
Further, the difference was more pronounced after 21 days
treatment. However, there was no significant difference
between the Rapamycin group and the TAE group (P >
0.05) (Figure 3).

Effect of the combination treatment with
Rapamycin and TAE on lung metastasis of rats

On the 31st day after operation (2 weeks after treatment),
the lung metastasis rate of rats was 60% (3/5, Model), 40%
(2/5, Rapamycin), 100% (5/5, TAE), and 60% (3/5, Rapamy-
cin + TAE), respectively. Meanwhile, concerning the
number, as well as the size of metastatic nodules, rats in the
TAE group were remarkably higher than the other three
groups, while the Rapamycin group was significan lower

Figure 2. Figure 2. Figure 2. Figure 2. Figure 2. The MRI examination on the 14th day after orthotopic hepatic
transplantation and its tumor volume. A.A.A.A.A. T1WI showed low signal intensity
of tumors. B.B.B.B.B. T2WI showed high signal intensity of tumors. C.C.C.C.C. The average
volume of hepatic tumors of rats in each group.
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than those in the Model group and Rapamycin + TAE
group (all P < 0.05). Additionally, no significant difference
was found between the Model group and the Rapamycin +
TAE group in these two indexes (P > 0.05) (Figure 4).

Effect of Rapamycin combined with
TAE on the EMT and angiogenesis of HCC in rats

According to the qRT-PCR (Figure 5A), the hepatic
tumor of rats in the TAE group were apparently up-regu-
lated in the mRNA levels of mesenchymal markers (N-
cadherin and Vimentin), but was dramatically lowered in
the mRNA expression of the epithelial marker (E-cadher-
in) on the 31st day after operation (2 weeks after treat-
ment), as compared with rats in the Model group (all P <
0.05). However, the situations of rats in the Rapamycin
group were quite opposite to the TAE group, which could
effectively inhibit the EMT process (all P < 0.05). In the
meantime, rats in the Rapamycin + TAE group had no ob-
servable difference with those in the Model group regard-
ing the EMT-related indexes (all P > 0.05). In addition,
we further discovered the protein expressions of EMT-re-
lated molecules by Western blot and immunohistochemi-
cal staining in each group were in accordance with the
trend of mRNA expression (Figure 5B-5D). Moreover,
there was a significantly elevation in the expressions of
HIF-1α and VEGF, as well as MVD-CD34 in the TAE
group as revealed by immunohistochemical staining, when
compared with the Model group, but were strikingly
down-regulated after the combination treatment (all P <
0.05) (Figure 6).

Effects of Rapamycin combined with
TAE on the survival of HCC rats

Kaplan-Meier Survival Curve demonstrated remarka-
ble difference among different groups after treatment (χ2

= 72.847, P < 0.001, Figure 7). The median survival time
of rats was 45.00 ± 1.581 days (Model), 62.00 ± 3.098 days
(Rapamycin), 62.00 ± 0.516 days (TAE), and 70.00 ± 0.629
days (Rapamycin + TAE) respectively. Obviously, rats in
the Rapamycin + TAE group had significantly longer sur-
vival time than the resting groups (all P < 0.05). Besides,
the median survival time of rats in TAE and Rapamycin
groups were apparently prolonged in comparison with
that of the Model group (both P < 0.05).

DISCUSSION

One of the main results of this study demonstrated that
both Rapamycin and TAE could obviously inhibit the
growth of hepatic tumor and prolong the survival in rats
with HCC, and more importantly, the combined use of
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drug, which can greatly attenuate disease progression and
improve the survival in advanced cirrhosis.28 Similarly,
our study also showed apparently smaller tumor volume
and prolonged survival in HCC rats after Rapamycin treat-
ment. Meanwhile, TAE, currently recognized as an im-
portant micro-invasive modalities for the treatment of
unresectable HCC, can selectively block the tumor blood
supply and aggregate hypoxia and necrosis of tumor tis-
sues, thus playing an effective role in the inhibition of tu-
mor growth and the improvement of patients’ survival.29

Consistent with the results of previous studies, we ob-
served that TAE treatment markedly suppress the tumor
volume in rat with HCC. Notably, the hepatic tumor vol-
ume, as well as the median survival of rats with the combi-
nation therapy was apparently smaller than that with the
Rapamycin alone and TAE alone, suggesting that TAE
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Rapamycin with TAE would have better curative effects.
As mTOR inhibitor, Rapamycin could effectively inhibit
the presence of many diseases, including HCC. It was
worthy to mention that Rapamycin, mediated by the im-
munophilin FKBP12, can form a Rapamycin-FKBP12
complex to lead to a mitotic block at the G1-S phase tran-
sition,24 thereby further suppressing the phosphorylation
of their downstream molecules P70S6K and 4EBP1 to in-
hibit the signal translation process,25 and affecting the ex-
pression of anti-apoptotic protein c-IAP1 and
pro-apoptotic protein BAD to result in the apoptosis of
tumor cells.26 In the study by Cifarelli V, et al., Rapamycin
in combination with metformin can obviously decline
pancreatic tumor growth and mTOR-related signaling via
shared and distinct mechanisms.27 Moreover, Neef M, et
al. also reported Rapamycin as an effective anti-fibrotic
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combined with Rapamycin may become an effective
method for the treatment of HCC.

Another important finding of this study showed the ag-
gravated lung metastasis in HCC rats after TAE treatment,
with the up-regulation of angiogenic factors including
HIF-1 alpha and VEGF, and MVD-CD34. As we know,
hypoxia is a very important post-operation feature of TAE
for HCC.6 Under hypoxic conditions, some HCC cells
would induce the high expression of HIF-1α to regulate
many downstream genes, such as VEGF, which are the po-
tent regulatory factors in tumor angiogenesis, can promote

the formation of new blood vessels to bring oxygen and
nutrients to tumor cells for inducing the tumor invasion
and metastasis.30 As suggested by Rhee TK, et al., the levels
of HIF-1α were greater in rabbit VX2 liver tumors after
TAE.31 Further, Dai F, et al. also discovered the obviously
elevated expression of HIF-1α and VEGF, as well as in-
creased level of MVD in the TAE-treated VX2 rabbit liver
tumors, which was in agreement with our study,6 indicat-
ing that hypoxia-induced tumor angiogenesis, possibly as
the consequence of TAE, might be accepted as a marker of
tumor development and metastasis. On the other hand,
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evidence supported that hypoxia can also promote angio-
genesis via the induction of EMT formation,32 with the
down-regulation of epithelial markers and the upregula-
tion of mesenchymal markers, ultimately playing roles in
tumor invasion and metastasis.33 Therefore, our study de-
tected the EMT-related molecules at the levels of both
mRNA and protein in rats with HCC and demonstrated
an elevation of N-cadherin and Vimentin and a reduction
of E-cadherin after TAE treatment, which was in line with
the results provided by ZT Fang.34 Besides, Rapamycin
can greatly restore the expression of E-cadherin to inhibit
EMT of proximal tubular epithelial cells and exerted a
protective function on EMT process through the inhibi-
tion of the Rho GTPases.35 Coincidentally, in our study,
after the combination treatment with Rapamycin and TAE,
the expression of N-cadherin and Vimentin was notably
reduced in HCC tissues, while the expression of E-cad-
herin was obviously elevated, and the lung metastasis,
EMT formation, and the angiogenesis have been greatly al-
leviated. Additionally, a previous study discovered the ex-
istence of molecular crosstalk between the mTOR
signaling pathway and the VM signaling pathway.36 Not
surprisingly, our study also demonstrated the significant
reduction of VEGF and MVD-CD34 expression in HCC
after Rapamycin combined with TAE, which was further
verified by Huang M, et al. in gliomas.37

To sum up, Rapamycin combined with TAE may effec-
tively enhance the inhibition of tumor growth, lung me-
tastasis, as well as the EMT formation and tumor
angiogenesis of HCC, providing a new approach for the
treatment of HCC recurrence and metastasis. In the future
studies, we will conduct some vitro experiments to verify
our findings and further explore the relative mechanisms.
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