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Abstract

Cellular senescence is a natural biological process characterized by a permanent and irreversible 
state of cellular arrest, mitochondrial alteration, and secretion of senescence-associated phenotype 
(SASP) components. Several factors can induce senescence, including but not limited to DNA damage, 
oxidative stress, and neuroinflammation, these factors have also been linked to several disorders 
such as Alzheimer’s, Parkinson’s, cancer, among others. The increased presence of senescent cells 
among different diseases suggests the importance of senescence in the pathophysiology of a great 
number of disorders, thus the need for different models that could help deepen our understanding of 
the molecular mechanisms of senescence, identify possible targets for therapeutic interventions, and 
arising challenges. In addition to in vitro models, most senescent research has come from classical 
model species, i.e., mouse (Mus musculus) and rat (Rattus norvegicus). However, senescence is highly 
conserved; different studies have shown that senescent cells seem to accumulate in all vertebrate 
organisms and that several associated genes show similar expression patterns, opening the door to 
new vertebrate models. The zebrafish has become a strong emerging model for different diseases, 
such as cancer, inflammation, neurodegeneration, among others; it shares multiple advantages with 
classical models, such as well-established genome editing tools and a fully sequenced genome. 
Additionally, zebrafish exhibit multiple advantages, including high fecundity for robust statistical 
analysis, external fertilization, and optical transparency that enables powerful imaging capabilities 
and makes it a versatile model for experimental manipulation and structural visualization. Here we 
present the zebrafish as a model that can contribute significantly to our understanding of the processes 
involved in senescence and age-related diseases.

Resumen

La senescencia celular es un proceso biológico natural caracterizado por un estado permanente e 
irreversible de arresto celular, alteraciones mitocondriales y secreción de componentes del fenotipo 
asociado a la senescencia (SASP). Varios factores pueden inducir la senescencia, incluidos el daño 
al ADN, estrés oxidante y neuroinflamación; estos factores también se han relacionado con varios 
trastornos como el Alzheimer, el Parkinson, el cáncer, entre otros. La mayor presencia de células se-
nescentes entre diferentes enfermedades sugiere la importancia de la senescencia en la fisiopatología 
de un gran número de trastornos, por lo tanto, la necesidad de diferentes modelos que podrían ayudar 
a profundizar nuestra comprensión de los mecanismos moleculares de la senescencia, identificar po-
sibles objetivos para intervenciones terapéuticas y los desafíos que surgen. Además de los modelos in 
vitro, la mayoría de las investigaciones senescentes provienen de especies modelo clásicas, es decir, 
ratón (Mus musculus) y rata (Rattus norvegicus). Sin embargo, la senescencia está muy conservada; 

doi: 10.35366/107513

Invest Discapacidad. 2022; 8 (3): 124-131

Review aRticle

@https://dx.doi.org/00.00000/00000 @

Zebrafish: modeling 
senescence in the context of 
disease and regeneration
Pez cebra: modelado de senescencia en el 
contexto de la enfermedad y la regeneración

Samantha Carrillo-Rosas,* Alfonso D Ríos-Pérez,* Cecilia Zampedri*

How to cite: Carrillo-Rosas S, Ríos-Pérez AD, Zampedri C. Zebrafish: modeling senescence in the context 
of disease and regeneration. Invest Discapacidad. 2022; 8 (3): 124-131. https://dx.doi.org/10.35366/107513 

Vol. 8, No. 3
September-December 2022

pp 124-131

http://www.medigraphic.org.mx
www.medigraphic.org.mx


125Carrillo-Rosas S et al. Zebrafish

Invest Discapacidad. 2022; 8 (3): 124-131 www.medigraphic.com/rid

www.medigraphic.org.mx

INTRODUCTION

The process of senescence was first described by 
Hayflick L, et al. (1961), when they reported that 
human fibroblasts cultured in vitro reached a state 
after a determined number of passages where the 
cells remained viable but lacked the capacity to 
divide any further.

Senescence has been described as a permanent 
cell-cycle arrest in response to oncogene induced 
DNA damage. In consequence, a senescent cell 
loss its proliferative potential and provokes a 
permanent arrest.1-3

Additionally, multiple age-related conditions 
such as atherosclerosis, glaucoma, cataracts and 
type 2 diabetes present an increased number of 
senescent cells.4,5

This process is highly conserved among vertebrates; 
different studies have shown that senescent cells seem 
to accumulate in all vertebrate organisms and that 
several associated genes show similar expression 
patterns in different tissues, including zebrafish.6

Zebrafish is a popular model for vertebrate 
development and genetic studies.7 Since the 
introduction of the zebrafish as a model in 1974 by 
George Streisinger,8 zebrafish has become the second 
most used vertebrate in research and an invaluable 
model for translational research.9 The reason for this 
popularity is the many advantages that this model 
has. The zebrafish genome is well curated by multiple 
databases, allowing the identification of zebrafish 
orthologs for most human genes. Approximately 72% 
of human genes have at least one ortholog in the 
zebrafish genome, with 84% of known human disease-
causing genes having a zebrafish counterpart.10 
Combined with numerous techniques that have been 
successfully adapted to this model has enable relatively 
straightforward reverse genetic manipulation of genes 
of interest generating a great number of models for 

diferentes estudios han demostrado que las células senescentes parecen acumularse en todos los 
organismos vertebrados y que varios genes asociados muestran patrones de expresión similares, 
abriendo la puerta a nuevos modelos vertebrados. El pez cebra se ha convertido en un fuerte mo-
delo emergente para distintas enfermedades, como el cáncer, la inflamación, la neurodegeneración, 
entre otras; comparte múltiples ventajas con los modelos clásicos, como herramientas de edición de 
genomas bien establecidas y un genoma completamente secuenciado. Además, el pez cebra exhibe 
múltiples ventajas, incluida una alta fecundidad para un análisis estadístico sólido, fertilización exter-
na y transparencia óptica que permite potentes capacidades de imagen y lo convierte en un modelo 
versátil para la manipulación neuroexperimental y la visualización estructural. Aquí presentamos el 
pez cebra como un modelo que puede contribuir significativamente a nuestra comprensión de los 
procesos involucrados en la senescencia y las enfermedades relacionadas con la edad.
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diseases of interest.11,12 Additionally, the zebrafish has 
high fecundity, rapid and external development, a small 
size and an optical clearance of the embryo. Altogether 
makes the zebrafish an excellent complementary 
model to the mouse.

SENESCENCE AND  
CANCER MICROENVIRONMENT

Different reports have demonstrated that accumulated 
senescent cells in our body are related to the 
progression of many types of cancer.13-16 We know 
that cellular senescence is necessary to prevent 
cell proliferation in an uncontrolled manner leading 
to cancer development through irreversible cell 
cycle arrest. However, accumulated senescent cells 
secrete a variety of proteins, such as inflammatory 
cytokines, chemokines, growth factors, and matrix 
metalloproteinases. This phenomenon is called the 
senescence-associated secretory phenotype (SASP). 
Several SASP factors can reinforce the senescence 
program in an autocrine manner, influence the tissue 
microenvironment in a paracrine manner,17,18 and 
provoke immune surveillance of senescent cells, 
leading to the elimination of senescent cells by 
NK cells or macrophages recruited through SASP 
induction.19 Conversely, senescent cells in the tumor 
microenvironment (TME) showing the SASP help to 
promote tumor proliferation and metastasis in various 
types of cancer.20

Cancer therapy, either ionizing radiation or 
chemotherapy, induces cellular senescence, the so-
called therapy-induced senescence (TIS). Whether 
TIS is a pro or anti-tumorigenic process is currently 
an open question. TIS can be induced in immortal 
and transformed cancer cells by selected anticancer 
compounds or radiation, and accumulated data 
indicate that TIS may produce reduced toxicity-related 
side effects and increased tumor-specific immune 
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activity. But we also know that the senescent cells are 
metabolically active and secrete a collection of growth 
factors, cytokines, proteases, and matrix-remodeling 
proteins collectively defined as SASP. Through SASP, 
senescent cells modify their microenvironment and 
engage in a dynamic dialog with neighbor cells. 
Senescence of neoplastic cells, at least temporarily, 
reduces tumor expansion, but SASP of senescent 
cancer cells as well as SASP of senescent stromal 
cells in the tumor microenvironment may promote 
the growth of more aggressive cancer subclones.21 
Cellular senescence in stromal cells is one of the 
reasons for therapeutic resistance in advanced cancer; 
therefore, it is an interesting phenomenon to address 
for finding effective cancer treatment strategies.22 
Current research suggests that therapy-induced 
senescence (TIS) represents a novel functional target 
that may improve cancer therapy.

The comprehensive study of cancer using model 
organisms is one of the most interesting strategies 
in the search for better therapies and therapeutic 
targets. The zebrafish has become one of the favorite 
organisms since several of the genetic and molecular 
techniques developed in recent times can be applied 
to model whole diseases or discrete disease-related 
processes using this organism.

Zebrafish xenotransplantation represents a step 
forward in modeling the complexity of cancer tumors, 
and the involvement of a particular gene in each of the 
events that accompany cancer, as cells are implanted 
into a living organism in which many types of dynamic 
interactions can occur. In zebrafish, with all functional 
organs, tumors can engage in both local and systemic 
cell-cell interactions, shaping tumor progression. 
These interactions occur between tumor and host 
and vice versa, with long-distance communication, 
allowing recapitulation of cancer features such as 
cell migration, invasion, metastasis, angiogenesis, 
and immune evasion that are not possible to observe 
in vitro. Zebrafish cell xenotransplantation studies 
have the advantage of maintaining the effects of the 
microenvironment in cell communication and cancer 
progression, even when there are inter species 
differences.23 When cancer cells are implanted, 
many different zebrafish cells are recruited to the 
tumor site following tumor instructions.24,25 Zebrafish 
xenotransplantation of cancer cells enabled the 
discovery of a new mechanism of metastatic niche 
formation, and the roles of macrophages in this 
process were described.24 These latest findings 
suggest that the zebrafish xenotransplantation 

model will facilitate the study of processes occurring 
around several cellular components of the tumor 
microenvironment such as stromal cells, endothelial 
cells, and mesenchymal stem cells that impact cancer 
progression, such as the induction of the secretory 
phenotype associated with cellular senescence 
during cancer.

Finally, drug sensitivity profiling of cancer cells using 
the zebrafish xenotransplantation model allows the 
assessment of pharmacokinetics, pharmacodynamics, 
toxicity and senescence-inducing activity in a whole 
living organism, and in a short time. In vivo testing 
has great advantages over in vitro assays. E.g., to 
produce in vivo phenotypes, compounds must be 
absorbed, reach targets, circumvent elimination, and 
cannot be too toxic, otherwise the animal will not 
survive. The complexity of in vitro models is given by 
the experience of the investigator, whereas in in vivo 
models, the complexity is built according to the dynamic 
instructions and signals of the tumor itself. Zebrafish 
xenotransplantation also allows in vivo evaluation at 
the single cell level of the cell autonomous and non-
cell autonomous effects of a drug on the different 
hallmarks of cancer.26

NERVOUS SYSTEM AND SENESCENCE

Different types of cells present in the Central and 
Peripheral Nervous Systems, exhibit tendencies 
towards senescence. In the central nervous system 
(CNS), neurons,27-29 microglia,30-32 astrocytes,33,34 
ependymal cells,35,36 and oligodendrocytes37,38 can 
become senescent. Additionally, despite its peripheral 
location, the retina i.e., the neural portion of the 
eye, is part of the CNS and its components such 
as photoreceptors, and retinal ganglion cell exhibit 
senescence as well.39,40 Furthermore, in the peripheral 
nervous system (PNS) satellite and Schwann cells can 
also become senescent.41,42

Interestingly, many of these senescent cells have 
been observed in the context of neurodegenerative 
disorders.43,44 However, the causes for neuronal 
senescence in physiological or pathological 
conditions remain unclear since different factors 
may contribute to a cell experiencing a particular 
state of senescence for each pathological condition 
and each cell type. Therefore, a deep and detailed 
understanding of the different processes involved 
in neuronal senescence represents a critical step 
to understand our nervous system and to propose 
optimal therapeutic targets.
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Neurodegenerative disorders and senescence. 
Cellular senescence is characterized by multiple 
phenotypes including cell cycle arrest, SASP, 
mitochondrial dysfunction, telomeric and non-
telomeric DNA damage, epigenetic modification, 
and morphological changes. These phenotypes 
present different alterations in the context of disease 
compared to normal aging that led to an earlier onset 
and aggravation of the disease.

For example, in Alzheimer’s disease (AD), there 
is an increased release of proinflammatory cytokines 
and other SASP that enhances the pathology of 
amyloid and tau aggregates.45 In Parkinson’s disease 
(PD), as in other neurodegenerative disorders, neural 
inflammation plays a central role is believed to be result 
of an activated microglia and astrocytes leading to a 
dopaminergic loss. Additionally, analysis of expression 
in post-mortem PD samples have shown an increase 
of SASP markers.46 In multiple sclerosis (MS) mouse 
models as well as patient samples have shown an 
increase of senescent cells with activated SASP.47 
Showing that senescent cells play an important role 
in the pathogenesis of different neurodegenerative 
disorders and thus the need of more research in 
different context.

Zebrafish neurodegenerative models. Different 
anatomical structures, cellular morphology and 
function, organization, and molecular pathways 
present in the human CNS have found a true 
homolog in the zebrafish, making it a powerful 
model for neurological research.48,49 The study of 
embryonic, larval, and adult zebrafish has increased 
our understanding of brain development, function, 
and dysfunction.50-52 Furthermore, zebrafish has 
become a complementary model for evaluating the 
toxicity of different molecules and drug candidates in 
a high-throughput manner, making it a good model 
for screening new drugs to find effective therapies for 
multiple neurodegenerative disorders.53

The zebrafish CNS is divided into the fore-, mid-, 
and hindbrain. The forebrain is the most anterior part of 
the brain and contains the telencephalon, diencephalon 
and hypothalamus, these structures have been 
studied in the context of age-associated disorders 
and senescence.54-56 The midbrain includes different 
regions like the optic tectum and midbrain tegmentum 
key for visual processing and movement coordination, 
respectively.57,58 The hindbrain is the posterior part 
of the brain and houses the cerebellum an important 
region that integrates sensory inputs and has a key 
role in different motor programs.59 Due to the important 

role of the cerebellum, it has been widely studied in 
the context of aging, disease, and senescence.60,61

In addition to the neuroanatomical shared 
structures, the zebrafish CNS harbors many of the 
nervous system cells of interest including neurons, 
astrocytes, ependymal cells, oligodendrocytes, and 
Purkinje cells. Furthermore, zebrafish share important 
neuroanatomical structures such as the blood-brain 
barrier that is functionally similar to humans. Finally, 
the zebrafish has become a good model for the study 
of complex behaviors. All together has made the 
zebrafish a valuable model for brain development, 
function and dysfunction .

SENESCENCE AND REGENERATION

Heart regeneration. According to the World Health 
Organization (WHO), cardiovascular diseases (CVDs) 
are the leading cause of death globally, estimating 17.9 
million people died from CVDs in 2019 (cardiovascular 
diseases [CVDs], n.d.).

Notwithstanding of the treatment advances, the use 
of animal modeling to unveil the biology of the CVDs 
is essential.62

Adult mammals have around 1% of cardiomyocyte 
proliferation during wound repair trough cell migration 
per year.63 Usually, humans as other mammals 
generate fibrotic scar tissue after cardiac damage, as 
the surrounding cardiomyocytes undergo hypertrophy 
in order to increase muscle density. As long as 
zebrafish can regenerate till the 20% of the heart after 
amputation in a period of 60 days, presenting a normal 
histology and heartbeat rate. This regeneration process 
is mediated through cardiomyocytes infiltration to the 
formed clot yet there are some studies that suggest 
little participation of differentiation.64

The cardiomyocyte migration during gastrulation 
can be modulated by sdf1-expressing cells, guiding 
the CXCR4A-expressing endodermal cells to the dorsal 
side of the embryo.65 Thus, blocking of CXCR4 function 
causes heart regeneration impairment following 
ventricular resection.66

Despite MAPKs/ERK-p38 axis being related to 
cardiogenesis during heart development,67 since the 
differentiation during heart regeneration has been 
minimally observed, other signaling pathways have 
been suggested. The epicardial cells that undergoes 
the initial stages of regeneration re-express wt1b, which 
expression is downregulated at the subsequent migration 
into the myocardium, after heart cryo-wounding,68 wt1b-
null mutant zebrafish presented delayed fin growth upon 
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caudal fin amputation, and reduced cardiomyocyte 
proliferation following cardiac injury.69 Recently it was 
seen a downregulated in expression in wt1a and wt1b 
at the transition from proepicardial to pericardial cells 
that contributes to heart development suggesting 
that the ectopic expression of this genes can lead to 
transdifferentiation into epicardial-like cells.70

It has been reported that WNT (b-catenin dependent) 
pathway is activated after myocardial infarction during 
granulation tissue formation in response.71 Short-term 
WNT inhibition through GNF-6231 administration lead 
to interstitial cells proliferation, cardiomyocyte reduced 
apoptosis, reduced infarct size and a reduction in 
collagenous scar in mice.72

While adult zebrafish hearts response to 
cryoinjury activated the Wnt/β-catenin signaling in 
cardiomyocytes at the wound border, with subsequent 
scar reabsorption, contractarian to some previous 
reports.73 Additionally, several transient cell states with 
fibroblast characteristics were observed following heart 
injury in zebrafish, Wnt/β-catenin signaling inhibition 
led to a significant delay in heart regeneration of the 
endocardial fibroblast response.74 So, the related 
signaling pathways become of great interest in heart 
regeneration in animal models.

Senescence and heart regeneration. Zebrafish 
acquire an aged phenotype after 3.5 years old, including 
the appearance of senescence-associated beta-
galactosidase activity in the skin and the accumulation 

of oxidized proteins in the muscle.75 Croy Wounding old 
zebrafish hearts result in macrophages accumulation, 
cell behavioral changes and a significantly collagen 
enriched wound in old fish at seven days post injury, 
with over expression of ‘inflammation’-like process 
and a regenerative response impairment in the old 
zebrafish heart.76

CONCLUSION

Senescence is a natural and necessary process in all 
organisms. However, the desire to delay and prevent the 
mechanisms of aging has led us to approach the study 
of cellular senescence and its relationship with health-
disease processes and to search for increasingly more 
suitable models. Zebrafish has become an excellent 
model for multiple diseases including cancer, heart 
and neurodegenerative diseases, metabolic disorders, 
inflammation, and infection amongst others. These 
disorders have reported an increase in the number 
of senescent cells, so the use of the zebrafish model 
represents an opportunity for research of senescence 
in the context of different diseases.

Senescence is commonly associated with aging 
and tumor suppression; however, it is present in 
other physiological processes such as development, 
where it has shown to play a major role in the 
development program of different organisms. 
Zebrafish has established itself as an excellent 

Figure 1: 
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some key pathways, 
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human ortholog genes.
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model for developmental studies, making it an 
alternative model for senescence in the context of 
embryonic development.

Over time zebrafish have become a reliable 
model for several diseases (Figure 1). In the context 
of senescence and age-related disorders, zebrafish 
exhibit age-related decline in cognitive functions, 
an increase in senescent cells, and other hallmarks. 
However, it remains to elucidate to what extent the age-
related mechanisms and consequences present in a 
short-lived model such as zebrafish are transferable to 
long-lived species such as humans. But undoubtedly, 
the characteristics and advantages as a model 
organism make the zebrafish a great complement 
to the classic rodent models and will allow a better 
understanding of the highly dynamic and multiple-step 
process of senescence in different contexts.
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