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Abstract

Human-Machine-Interfaces (HMIs) can use surface electromyography (sEMG) signals to control 
equipment that assists disabled people in their activities of daily living (ADLs). The use of sEMG 
signals in HMIs is currently the subject of extensive research. However, some drawbacks of previous 
research are that weight loads that directly impact sEMG signals, movement velocities, electrode 
positioning, and a criterion for selecting sEMG features are not considered for the best performance 
in HMI. Therefore, the article’s main contribution is the presentation of a methodology that allows 
identifying the muscles and features that have the most significant contribution in sEMG-based gesture 
recognition, considering electrode positioning and avoiding compensatory movements. The article 
highlights how load weights affect sEMG signals and how principal component analysis determines 
the best sEMG features for gesture classification. We compared seventeen machine learning 
classifier models for classifying four upper limb movements based on decision trees, support vector 
machines, k-Nearest Neighbors, and ensembled methods classifier models. The results show that 
the signal square integral and Mean Frequency features of sEMG make it possible for classifiers to 
get an accuracy of above 90%.

Resumen

Las interfaces hombre-máquina (HMI) pueden utilizar señales de electromiografía de superficie 
(sEMG) para controlar equipos que ayudan a personas con discapacidad en sus actividades de la 
vida diaria. El uso de señales sEMG en HMI es actualmente objeto de numerosas investigaciones, 
sin embargo, uno de los inconvenientes de dichas investigaciones es que no se tienen en cuenta que 
las cargas de peso afectan directamente a las señales sEMG, ni las velocidades de movimiento, ni 
el posicionamiento de los electrodos y ni un criterio para seleccionar las características sEMG, con 
el objeto de obtener la clasificación de los movimientos, y con ello el mejor rendimiento en una HMI. 
Por ello, la principal contribución del artículo es la presentación de una metodología que permita 
identificar los músculos y las características que tienen mayor contribución en el reconocimiento de 
gestos basado en sEMG, considerando el posicionamiento de los electrodos y evitando movimien-
tos compensatorios. Algunas contribuciones adicionales de este artículo destacan cómo las cargas 
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INTRODUCTION

Surface electromyography (sEMG) has been used as 
input for human machine interfaces (HMIs) to recognize 
the user’s body movements and translate them into 
machine commands. Some applications of sEMG-based 
HMI in upper limb rehabilitation include bionic hands,1,2 
rehabilitation devices,3 and assistive devices.4 For an 
sEMG signal to be used on an HMI, a classification 
process, better known as pattern recognition, must 
be done. The pattern recognition process has three 
fundamental stages: signal pre-processing, feature 
extraction, and classifier model training.5 Signal pre-
processing includes hardware and software denoising, 
full-wave rectification, and smoothing to get the sEMG 
signal envelope.6 Feature extraction plays an essential 
role in classification accuracy and feasibility. Several 
time-domain, frequency-domain, and time-frequency-
domain features have been used to analyze sEMG 
signals.7 Due to the vast number of available features, 
methods such as principal component analysis 
(PCA) have been used to reduce feature space 
dimensionality.8,9 On occasions, computationally simpler 
classification methods are preferred over more accurate 
but more complex ones due to their low processing 
time, making them more feasible to be applied in 
real-time.10,11 For instance, time-domain features are 
the most straightforward feature extraction technique 
since no transformation is required and are preferred 
over frequency-domain and time-frequency-domain 
features.12,13 In the classifier model training stage of 
the sEMG signals pattern recognition process, we can 
find several classifier models in the literature, such as 
Gaussian mixture models,14 support vector machines 
(SVM),15 k-Nearest Neighbours (KNN),11 decision trees 
(DTs),16 or ensemble methods.17

Most previous works on pattern recognition systems 
using sEMG signals focus on motion classification. For 
example, McDonald et al.18 classified the direction 
of eight single degrees of freedom (DoF) and multi-
DoF movements of the elbow and wrist using nine 
time-domain features recorded from eight forearm 
muscles. McDonald et al.18 concluded that using linear 

discriminant analysis (LDA), only the RMS and MAV 
are enough for detecting movement direction with 
100% accuracy in nine able-bodied subjects.

Sun et al.19 compared four machine learning classifier 
models (K-Nearest Neighbor (KNN), anfis neural network 
(ANN), ensembled methods, random forest, and support 
vector machine (SVM)) to identify four wrist movements, 
using only four sEMG signals from four wrist muscles. 
Sun et al. demonstrated that muscle selection impacts 
classifier model accuracy since they found that extensor 
carpi radialis (ECR) and flexor carpi ulnaris (FCU) 
muscles can obtain the best classification results (over 
95%) on random forest classification models.

Said et al.8 found that the best classifier model for 
identifying four hand gestures (hand close, hand open, 
wave-in, and wave-out) using eight sEMG signals from 
the forearm using the MAV and standard deviation (SD) 
features is an SVM model with an 89.93% accuracy.

Few works on pattern recognition systems using 
sEMG consider motion and sEMG signals generated by 
different load weights. For example, in the paper by Azis 
S,20 the pattern recognition of elbow flexion/extension 
using the sEMG signal of the Biceps Brachii with load 
classification of three loads, 1, 3 and 7 kg, is presented. 
Azis S.20 determined that the best classification model 
is a cubic SVM with a 99% accuracy.

Current trends in sEMG-based gesture recognition 
focus on deep learning (DL) techniques,21 and their final 
prediction results are affected by the quality and quantity 
of sEMG signals. Even though DL techniques have 
proven to be an effective method to solve sEMG-based 
gesture recognition problems, they need many electrodes 
and, therefore, additional hardware and computing 
power to process signals, which might be inconvenient 
for developing some prosthetic or rehabilitation devices.

It is important to note that assistive devices such as 
robotic prostheses, among others, should be designed 
to be used in activities of daily living since daily living 
activities involve performing movements under external 
loads’ influence, causing adjustments to be made in 
motor control.22 Motor control adjustments are reflected 
by altering spatiotemporal features of sEMG signals. 
As mentioned above, body movement classification 

afectan a las señales sEMG y cómo se utiliza el análisis de componentes principales para determi-
nar las mejores características sEMG para la clasificación de gestos. Se compararon 17 modelos 
de clasificación de aprendizaje automático para clasificar cuatro movimientos de las extremidades 
superiores basados en árboles de decisión, máquinas de vectores de apoyo, k-Nearest Neighbors 
y modelos de clasificación de métodos ensamblados. Los resultados muestran que la integral cua-
drática de la señal y las características de frecuencia media de sEMG permiten a los clasificadores 
obtener una precisión superior al 90%.
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models based on sEMG signals have been evaluated 
with good results. However, most reviewed studies do 
not consider how to properly place sEMG electrodes, 
avoid compensatory movements when performing 
motion movements that might affect sEMG-based 
gesture recognition, apply load weights on multiple 
forearm movements, or consider movement velocities.

Therefore, the article’s main contribution is the 
presentation of a methodology that identifies the 
muscles and features that have the most significant 
contribution to the gesture recognition of sEMG signals 
generated by different load weights and movement 
velocities. The proposed methodology also considers 
the positioning of the electrodes and tries to avoid 
compensatory movements. In addition, this article 
aims to improve the design and development of future 
HMIs that are adapted to the needs of each individual.

MATERIAL AND METHODS

This methodology describes collecting and processing 
sEMG signals generated by various external load 
conditions to identify single-DoF upper limb movements. 
The methodology section contains three subsections: 1) 

The experimental configuration subsection describes the 
acquisition protocol and mechanical configuration used for 
collecting the sEMG signals. 2) The signal preprocessing 
subsection describes how the sEMG signal was cleaned 
of noise. 3) The gesture recognition subsection describes 
how the sEMG signal’s features were computed. In 
addition, the subsection on gesture recognition describes 
how machine learning classifier models were applied and 
how reduction feature tests were carried out.

Experimental configuration

We proposed three measurement configurations to 
acquire sEMG signals generated by single-DoF upper 
limb movements under varying external loads (Figure 
1). The measurement configurations are based on Von 
Werder’s article.22 In all measurement setups, a pulley 
machine (Lojer, Finland) is used to apply a constant 
external load to the understudy joint throughout 
its entire range of motion. The pulley machine has 
attached a 4-centimeter-diameter deflection pulley, 
which allows it to connect to the same axis an elbow 
flexion/extension, a wrist flexion/extension, or a wrist 
medial/lateral deviation joint pulley.

Figure 1: Single-degrees of freedom upper limb movements proposed measurement setups. A) Pulley machine. B) Pulley machine 
deflection pulley. C) Elbow flexion/extension deflection pulley. D) Arm fixation table for wrist flexion/extension measurement setup.  
E) Wrist flexion/extension deflection pulley. F) Wrist medial/lateral deflection pulley. G) Arm fixation wrist medial/lateral deviation table.
The numbers indicate the movements made. Where 1,2 is the flexion/extension of the elbow. 3,4 is flexion/extension of the wrist. 5,6 
is medial/lateral deviation of the wrist.
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In the measurement configurations for elbow flexion/
extension and wrist flexion/extension, the participant 
was seated on a chair parallel to the pulley machine in 
an upright position. The participant’s joint was parallel 
to the deflection pulley. In the setup for measuring wrist 
medial/lateral deviation, the participant was seated in 
front of the pulley machine. The participant was then 
instructed to align the wrist joint with the medial/lateral 
deflection pulley (Figure 1).

The participant was instructed to rest their arm 
on a table in the setups for measuring wrist flexion/
extension and medial/lateral deviation. The arm was 
then secured to the table with Velcro straps to prevent 
compensatory body movements. The misalignment 
of the joints between the pulley machine and the 
participant was prevented by adjusting the deflection 
pulley machine to the participant’s height.

The sEMG signals were collected at a sampling 
rate of 1000 Hz, using 2 cm diameter bipolar Ag-AgCl 
electrodes with the commercial sEMG system Datalog 
(Biometrics, Newport, UK). Since, in this paper, elbow 
flexion/extension, wrist flexion/extension, and wrist 
medial/lateral deviation movements were under study, 
we evaluated the muscles of brachioradialis (BQR), 
biceps brachii long head (BBLH), triceps brachii long 
head (TBLH), triceps brachii lateral head (TBLAH), 
flexor carpi radialis (FCR), FCU, ECR, extensor carpi 
ulnaris (ECU), due to their relevance for the designated 
movements by their myotome map. The placement of 
the BBLH and TBLH electrodes followed the SENIAM 
guidelines.23 While the TBLAH, FCR, FCU, ECR, ECU, 
and BQR electrodes were placed following the Perotto 
book’s instructions.24

A twelve-camera «Flex13» Optitrack System 
(Natural Point, Corvallis, Oregon, USA) was used to 
acquire the kinematics of the elbow and wrist joints. 
The kinematics of the elbow and wrist movements were 
sampled at 100 Hz. The Optitrack system’s reflective 
markers were positioned per the Baseline Upper Body 
«25» biomechanical marker set.25

The testing procedure was done by a 30-year-
old participant who was considered healthy and 
gave informed consent for testing. The participant 
performed elbow flexion/extension, wrist flexion/
extension, and wrist medial/lateral deviation at the 
following cadences for each movement: 3 cycles 
in 2 seconds, 4 cycles in 1 second, 5 cycles in 0.5 
seconds, and 6 cycles in 0.5 seconds (where a cycle 
corresponds when the participant completes a flexion/
extension or medial/lateral deviation movement of a 
corresponding evaluated joint). The participant was 

instructed to rest for sixty seconds between each 
cycle set to prevent fatigue. This procedure was 
done with the following movements and external 
loads: elbow flexion/extension at 0.5, 2.5, 5 kg, wrist 
flexion/extension at 0.5, 2.5 kg, and wrist medial/
lateral deviation at 0 and 0.5 kg. Loads were chosen 
based on the participant’s capabilities to perform full 
maneuvers without fatigue.22 The angular velocities 
of the movement cycles range from 20 to 280o/s. 
These speeds were determined by comparing a 
slow movement performed by a participant with a 
movement disorder to that of a healthy subject.

Signal pre-processing

The joint angles were calculated by inverse kinematic 
analysis of the Optitrack-obtained marker-set 
trajectories using the OpenSim software26 and a 
previously described biomechanical model.27 The joint 
angle signals were resampled from 100 Hz to a 1 kHz 
frequency, and a second-order Butterworth low-pass 
filter with a f_3db = 5 Hz cutoff frequency was then 
used for smoothing the signal.

The sEMG signals were filtered with a fourth 
order bandpass digital Butterworth filter with a  
f_3db = 40 - 450 Hz cutoff frequencies. All the sEMG 
signals were subsequently full wave rectified and 
normalized to a maximum value of one. To obtain the 
envelope of the signals, all the sEMG signals were 
low-pass filtered with a second-order Butterworth filter 
with a f_3db = 10 Hz cutoff frequency.

By computing the correlation between the 
resampled joint’s angle signal and the sEMG from 
the BBLH processed signal, synchronization was 
achieved. The minimum and maximum joint angle 
signal values were selected to segment and label the 
data. The used data labels were elbow flexion 0.5 kg, 
elbow extension 0.5 kg, elbow flexion 2.5 kg, elbow 
extension 2.5 kg, elbow flexion 5.0 kg, elbow extension 
5.0 kg, wrist flexion 0.5 kg, wrist extension 0.5 kg, wrist 
flexion 2.5 kg, wrist extension 2.5 kg, wrist flexion 5.0 
kg, wrist extension 5.0 kg, wrist medial deviation 0.0 
kg, wrist lateral deviation 0.0 kg depicts the entirety of 
signal preprocessing (Figure 2).

Gesture recognition

Once the data had been segmented and labeled, mobile   
windows of 256 ms were applied, and features from the 
time domain and frequency domain were calculated over 
the sEMG signals. The features were selected for their 
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frequent use in gesture recognition articles.5,18,19,28 The 
selected features were the Integrated sEMG (IEMG) 
(equation 1),28 the MAV (equation 2),5,19,28,29 the simple 
square integral (SSI) (equation 3),28 the variance (VAR) 
(equation 4),19,28 the RMS (equation 5),5,19,28,29 the 
WL (equation 6),5,19,28,29 the median frequency (MDF) 
(equation 7),19,28 the MNF (equation 8).19,28

 Equation

                     
 (1)    

                    
(2)

                        
(3)

              
(4)

              

(5)

             
(6)

   
(7)

             
 (8)

Where Xn is the sEMG signal in a segment. N is the total 
length of the sEMG signal. Pj is the power spectrum at 
a frequency bin j. Finally, fj  is the spectrum frequency 
bin i at frequency. n and j are n - sample the and j 
- bin, respectively.

Seventeen machine learning classifier models 
were evaluated using DT, KNN, SVM, and ensembled 
classifier models with different Kernel functions. The 
total number of evaluated samples was 320,649 
samples. Due to the large dataset size and to 
compare the models based on the model accuracy 
on the test dataset and select the best model, the 
50% hold-out validation method was used. The 
feature extraction was done in MATLAB (MATLAB. 
(2022). version 9.12.0.1927505 (R2022a). Natick, 
Massachusetts, USA).30 The classification models 
were trained with the classification learner toolbox 
from MATLAB. The classifiers were selected based 
on previous works explained in the introduction 
section. The measure used to compare the different 
classifier models was accuracy (Acc). Acc31 is 
defined in equation 9. Where TP stands for true 
positive, TN stands for true negative, FP stands for 
false positives, and FN stands for false negatives.

(Acc) = (∑TP + ∑TN) / (∑TP + ∑TN + ∑FP + ∑FN)   (9)

To better understand how the sEMG signal 
features of time and frequency contribute to motion 
classification and identify which features contribute 
the most to a better classification, we proposed five 
experimental tests that we will explain next.

Figure 2: Signal pre-processing of kinematics and surface electromyography signals.
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The frequency domain was ignored in the first test 
to understand the contribution of time domain features. 
This evaluation analyzed eight different muscle signals 
by calculating their time domain features. Forty-eight 
features were considered, and fourteen classes 
were considered.

The second experiment used frequency-domain 
features exclusively as the feature set. The analysis 
considered sixteen features and fourteen classes 
were considered.

On the third test, we considered both the time-
domain and frequency-domain features. Sixty-four 
features in total were assessed. Also, in this test, 
fourteen different classes were considered.

Following a PCA for feature reduction, a fourth 
experiment was conducted. The IEMG feature of 
all sEMG signals was used to test the classifier 
models. Eight features and fourteen classes were 
considered in this test.

The fifth test is a baseline test. In this test, only the 
movements without loads are considered. Therefore, 
only six classes were classified. In this test, we only 

checked for time-domain features. A complete overview 
of the proposed methodology is shown in Figure 3.

RESULTS

The classifiers evaluated an average of 22,904 
samples for each obtained sEMG signal. Table 1 
displays the results from the five tests that compared 
the classification of elbow flexion/extension, wrist 
flexion/extension, and medial/lateral wrist deviation 
movements through sEMG signals produced by various 
external loads. We can see from test 1, where only 
time-based features were considered, that SVM, KNN, 
and ensemble-based classifier models produced the 
best classification accuracy, reaching 99.8% accuracy. 
No method could classify data more accurately than 
79% in test two, which only considered frequency 
features. The time-frequency features were applied 
in test 3, but the results did not improve over those 
obtained in test 1. Only the IEMG feature was used for 
classification in test 4. This was done since the PCA 
analysis shown in Figure 4 indicated that this feature 

Figure 3: Overview of the proposed methodology for multiple upper limb surface electromyography-based gesture recognition.

Step 1. The kinematics and sEMG signals are acquired 
with the proposed experimental setup, as explained in 
section 2.1. To obtain the goniometry of the joints, the 
inverse kinematics is performed with Opensim.

Step 6. PCA is applied to identify the 
muscles and sEMG signals that have 
a major contribution to the Gesture 
recognition classification.

Step 2. The processing of the goniometry 
and sEMG signals is performed as 
explained in section 2.2.

Step.5. The features describing the sEMG signals are 
calculated (as explained in section 2.3) and the databases 
to be evaluated in the classifier models are created.

Step. 3. Synchronize the joint angle signals 
and the sEMG signals through cross-
correlation.

Step. 4. The joint goniometry and sEMG signals 
are segmented by identifying the identified motion 
event and the signals are labeled as explained at 
the end of section 2.2.
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contributed the most to the classification models. Also, 
Figure 4 shows that the muscles that contribute more 
than 40% according to the PCA analysis to identify 
the classification of the evaluated muscles are FCU, 
FCR, EQU, ECR, and BQR. The results of test 4 
indicate a classification that is comparable to that of 
test 1. Only the movements were classified in test 
five, and the time features were applied. We observe 

an improvement in the classification models, like DT-
based models, in test five.

Some confusion matrices have been included 
to understand better how the outcomes in Table 1 
performed. For example, the confusion matrix in 
Figure 5 illustrates how classification models with low 
classification rates (below 80%) produce a lot of false 
positives. The confusion maps from test 3 (Figures 6 

Table 1: Classification test accuracy results. Test 1 only uses time-domain features. In test 2, only frequency 
domain features are added. In test 3, Time-frequency-domain features are added. In test 4, only the IEMG feature 

is used. Test 5, only time-domain features are used, and no loads are considered in classification.

Type of model Kernel function
Test 1

Accuracy [%]
Test 2

Accuracy [%]
Test 3

Accuracy [%]
Test 4

Accuracy [%]
Test 5

Accuracy [%]

DT Fine tree 73.8 54.4 86.4 64 88.5

DT Medium tree 62.3 45.7 69.2 52 79.1

DT Coarse tree 38.8 30.4 43 30.8 63.3

SVM Linear SVM 84.2 26.7 88.5 67.3 85.8

SVM Quadratic SVM 98.4 19.4 98.3 84.9 97.5

SVM Fine Gaussian 99.8 50.7 99.7 99.5 99.3

SVM Medium Gaussian 95.9 44 96.8 90.5 94.4

SVM Coarse Gaussian 81.2 37 88 75.6 86.4

KNN Fine KNN 99.8 71.3 99.8 99.8 99.8

KNN Medium KNN 99.7 71.3 99.8 99.5 95.7

KNN Coarse KNN 94.4 62.6 95.7 90.2 95.7

KNN Cosine KNN 99.8 37.8 99.8 99.6 99.8

KNN Weighted KNN 99.8 71.9 99.8 99.8 99.8

Ensemble Boosted Trees 66.2 47.6 83.9 56.9 84.7

Ensemble Bagged Trees 99.8 76.9 99.8 99.8 99.8

Ensemble Subspace Discriminator 57.1 23.6 57.1 45.3 73

Ensemble RUsBoosted Trees 63.9 44.3 83.6 57.1 78.7

Number of classes 14 14 14 14 6

DTs = Decision trees. SVM = support vector machines. KNN = k-Nearest Neighbours.
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and 7) were added to compare the behavior of time 
and time-frequency features.

DISCUSSION

According to the results of the five proposed tests, body 
movements can be detected through sEMG signals 
generated by different loads. Additionally, we have 
pinpointed the features that make it easier to categorize 
body movements using sEMG signals, thanks to the 
five proposed tests. The PCA allowed for identifying 
the sEMG signal feature that contributes the most to 
the classification of upper limb movements.

The results from the proposed test five showed that 
KNN and SVM-based classification models produce 
the best outcomes. These results are consistent with 
those of Sun et al.,19 where wrist flexion/extension 
classification scores with over 90% accuracy. These 
results demonstrate that the classifier is operating 
as intended. According to test 1 accuracy results 
compared to the other test (Table 1), time-domain 
features are the main contributor to the classification 
of upper limb movements. The results of tests one, 
two, and three show that frequency-domain features 
don’t have a relevant effect on the classification 

of upper limb movements through sEMG signals 
generated by different loads. These previously 
discussed results are consistent with Sun et al. and 
McDonald et al.18,19 Comparing the accuracy results 
from the other classifier models with varying kernel 
functions showed that kernel functions affect the 
results of the different classifier models. Therefore, 
even though KNN and SVM have the best results, 
the Fine KNN and Fine Gaussian kernel functions 
score up to 99.8% accuracy. Comparing the positive 
and negative confusion matrices from test 1 of the DT 
with a kernel function of a Fine Tree and test 3 SVM 
model with a coarse Gaussian kernel function (Figure 
4 and 6) against test 1, the SVM model with a Fine 
Gaussian kernel function (Figure 6), it can be seen 
that the models were scoring 70%, and 80% have a 
high number of false positives, even in some cases, 
high misclassification rates are achieved, unlike the 
SVM model from test 1, where high true positives are 
achieved. This supports the criteria of McDonald,18 
where a classifier model on gesture recognition should 
have an accuracy of over 90%.

The worst accuracy results were obtained 
with DT and some Ensemble methods with kernel 
functions of boosted trees, subspace discriminator, 

Figure 4: Principal component analysis feature reduction analysis.
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and RUsBoosted Trees, scoring results less than 
89%. Therefore, it is not recommended for upper 
limb motion classification using sEMG signals. Test 
3 and PCA analysis shown in Figure 4 show that 
the FCR, FCU, ECR, ECU, and BQR sEMG signals 
have the best performance in signal classification. 
This might be because more movements related to 
the wrist are evaluated. Also, from PCA analysis, 
as shown in Figure 2, the best time domain feature 
that contributes the most to upper limb motion 
classification is IEMG from all the measured 
muscles. Comparing accuracy results from test 1, 
48-time domain features of the sEMG signal were 
used to train the models against the accuracy 
results from test 4, where only 8 IEMG sEMG time 
domain features are used, can be seen in Table 1, 
that most classification learner models score higher 
accuracy. Still, in SVM with Fine Gaussian Kernel, 
KNN achieves up to a 99.8% accuracy, indicating that 

feature reduction is possible. The IEMG feature has 
information on the sEMG signal related to movement 
velocity and weight load conditions.

From the obtained results, for mapping unknown 
individuals, a high set of muscles is preferable for 
scoring high accuracy results; however, a reduction 
of muscles is possible. This is important since making 
faster and more comfortable HMIs is possible. Also, 
the results show that it is possible to classify upper limb 
motions by sEMG signals generated by low loads. This 
is important since the development of HMI based on 
sEMG singles for people with low sEMG activity can 
be implemented. Although we have only evaluated 
one healthy participant, we consider that the results 
obtained are relevant since the age and gender of the 
participant involved are within 80% of the statistical 
range of upper limb amputations,32 and furthermore 
that the design of HMI for upper limb amputees is 
usually performed on an individualized basis. This 

Figure 5: Decision trees classifier model using a fine kernel function. Confusion matrix of test 1. Accuracy of 73%.
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Figure 6: Support vector machines classifier model with fine Gaussian kernel function. Confusion matrix of test 1. Accuracy of 
99.8%.
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is because factors such as stump shape, length, or 
etiology influence obtaining sEMG signals. That is 
why one of the main contributions of the article is the 
methodology that allows identifying the muscles that 
have the greatest contribution in the classification of 
movements and the identification of the sEMG feature 
that allows its better classification.

Through testing of the participant-involved subject 
using the PCA, it has been identified that the time features 
have the greatest contribution to the classification of upper 
limb movements, indicating that it is possible to save 
processing time in HCI and thus improve its performance. 
Also, through the tests performed, it has been shown that 
having many sEMG signals for gesture classification is 
unnecessary, which can result in the reduction of signal 
processing time and hardware components, which are 
useful mainly in prosthetic devices. In the tests performed, 
we have demonstrated that it is possible to identify three 

upper limb motor gestures using only the ECR, ECU, 
FCR, FCU, and BQR muscles.

In test 5, where the gestures were classified without 
considering the unloaded labels, we can observe that 
the accuracy values increased compared to the other 
tests. This could indicate that using loads to identify 
gestures increases the accuracy of the classifiers 
compared to not using loads because using loads 
could increase the muscle frequency and amplitude 
of the sEMG signal or the values of some features. 
We currently do not have a direct comparative test, 
however, we will study this hypothesis in the future.  

CONCLUSION

The proposed paper presents a methodology 
that identifies the muscles and features that 
contribute most to sEMG-based gesture recognition, 
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considering electrode positioning and avoiding 
compensatory movements of upper limb movements 
of the elbow and the wrist. Previous research 
methodologies presented in the introduction 
commonly only focus on gesture movements, but 
this might affect the performance of HMI since a 
user might interact with Activities of Daily Living that 
modify load speeds of movements and that affect 
the sEMG signal generation. From the obtained 
results, we can conclude that it is possible to identify 
different body movements considering different load 
weights, which isn’t done by Aziz S et al.20 and Liu 
Y et al.33 This may change how users interact with 
assistive technology since different activities require 
a different response. Also, according to our research, 
using KNN and SVM with the Fine KNN and Fine 
Gaussian kernel functions with the IEMG feature is 
the most accurate machine learning classifier that 

has proved efficient and successful. These results 
can be used directly in the design of real-time EMG 
classifiers for rehabilitation and assistive devices.
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