

Slow age-related phase II on-transient VO₂ and heart rate kinetics during ramp exercise in adult men

Javier Padilla Pérez*,**

ABSTRACT

We assessed for differences of the phase II cardiopulmonary (ϕ_{\parallel} CRP) on-transient kinetics in terms of mean response time (MRT, s) for the expired ventilation (MRT \forall 0), pulmonary oxygen uptake (MRT \forall 0), carbon dioxide output (MRT \forall 0) and heart rate (MRT HR) and also did the ϕ_{\parallel} \forall 00 on-transient kinetics degree of entropy (ϕ_{\parallel} \forall 00 MRT S, kcal•°C¹•s¹), between young (YG = 8, 25 ± 2.9; mean ± SD) and old adult men (OG = 9, 70.9 ± 4.7) men during legs cycling exercise computerized ramp test (YG: 25W•min¹), in the search for determinant mechanisms or factors possibly involved in the \forall 00 kinetics of adult men. The provided breath-by-breath pulmonary data and the beat-by-beat data were modelled by non linear regression. We observed ramp slow (MRT difference=OG - YG, s) ϕ_{\parallel} on-transient age-related for both \forall 0 (23 s) and HR kinetics (30 s), and also increased age-related ϕ_{\parallel} \forall 00 MRT S (3.1 kcal•°C¹•s¹) for ramp exercise. The ramp test on-transient phase two of both the slow \forall 02 kinetics and slow HR kinetics were age- related, and they were accompanied by an increased \forall 02 kinetics entropy for ramp exercise, meaning that old adults could thermodynamically resists less the energy-transitions and thus increase their entropy in terms of kcal•°C¹•s¹¹. The amount of heat energy un-available for conversion into useful work (S) in the human body increases with ageing, and the human body does it with ageing by slowing down both the pulmonary O2 uptake and the heart rate ontransient kinetics during ergometric exercise.

Key words: Ramp, ageing; oxygen, heart rate, kinetics, entropy.

RESUMEN

En la búsqueda de mecanismos o posibles factores involucrados en la cinética (tiempo de respuesta media exponencial, TRM en s) de captación pulmonar de oxígeno (VO_2) en el hombre adulto, evaluamos diferencias en la cinética transitoria de la phase II cardiopulmonar (ϕ_{II} TRM CRP) en términos de la ventilación espirada (TRMVe), TRM VO_2 , eliminación de bióxido de carbono (TRM VCO_2) y frecuencia cardiaca (TRM FC), así como del grado de "entropía" (S) de la cinética transitoria de cinética de la ϕ_{II} VO_2 (ϕ_{II} VO_2 TRM S, kcal•°C-1•s-1), entre hombres adultos jóvenes (GJ = 8, 25 ± 2.9; media ± DE) y mayores (GM = 9, 70.9 ± 4.7) que hicieron una prueba computada de ejercicio tipo rampa en cicloergómetro usando sus dos piernas. Los datos pulmonares de respiración-por-respiración y de latido-por-latido de la FC fueron modelados mediante regresión no lineal. Observamos una cinética lenta de la ϕ_{II} de rampa transitoria relacionada con la edad (TRM $_{diferencia}$ = GM - GJ, s) de 23 s en VO_2 , de 30 s FC, y un aumento de 3.1 kcal•°C-1•s-1 en la ϕ_{II} VO_2 TRM S relacionada con la edad durante el ejercicio tipo rampa. La cinética lenta de la fase dos transitoria de VO_2 y FC estuvieron relacionadas con la edad, lo mismo que una entropía cinética aumentada de la VO_2 del ejercicio de rampa, lo que se interpreta como una menor resistencia termodinámica en los adultos mayores para las transiciones energéticas y así se incrementa su entropía en términos de kcal•°C-1•s-1. La cantidad de energía calórica no disponible para su conversión en trabajo útil (S) del cuerpo humano aumenta con el envejecimiento y lo hace con una cinética de la captación pulmonar de VO_2 y de la FC transitorias del ejercicio ergométrico que disminuyen con la edad.

Palabras clave: Rampa, envejecimiento, oxígeno, frecuencia cardiaca, cinética, entropía.

INTRODUCTION

The work we performed during our daily life depends largely on the dynamics of the pulmonary ventilation (ve),

oxygen uptake ($\forall O_2$), carbon dioxide output ($\forall CO_2$) and a heart rate (HR) (CRP, cardiopulmonary) responses to muscular exercise, and these responses are crucial determinants of exercise tolerance. Of the many work rate-

^{*} Escuela Superior de Medicina del Instituto Politécnico Nacional.

^{**} Canadian Centre for Activity and Ageing, School of Kinesiology, The University of Western Ontario (6501811FTGA), London, Ontario, Canada N6A 3K7.

Padilla PJ. Slow age-related on-transient ramp VO2 and heart rate kinetics in adult men

forcing protocols that have been used in an attempt to educe control features of the CRP dynamics, after the square wave test, the ramp is the most commonly used because it provides four key parameters ($\forall O_{2max}$; $T_{VE'}$ estimated ventilatory threshold; MRT, mean response time; and work efficiency) that make up a subjects aerobic profile1 in both clinical and research settings. A linear system has the property that the kinetics of response does not depend on the stimulus amplitude. Thus, it is expected that the responses of VO₂, VCO₂, and Ve in the transition between loadless pedaling and higher work rates (WRs) should be linear in this respect, however, both \forall e and \forall O₂ kinetics are markedly slower at work rates associated with sustained blood lactate elevations, and this tendency is also detected for ∨O₂ (but not ve) kinetics to be slower as WR increases for exercise intensities not associated with lactic acidosis. $\forall O_a$ kinetics at high WRs are well characterized by the addition of a slower exponential component to the faster component, which is seen at lower WRs. In contrast, VCO₂ kinetics does not slow at the higher exercise intensities; this may be the result of the coincident influence diminished several sources of VCO₂ related to lactic acidosis.²

Understanding the integrative strategy that the cardiorrespiratory system and its kinetics adopt to meet the metabolic demands during ramp exercise eliciting maximum CRP values ($W_{max'}$ $\forall e_{max'}$ $\forall O_{2max'}$ $\forall CO_{2max'}$ HR_{max}) would significantly contribute to our understanding of muscle energetics and limitations to exercise tolerance in this exercise domain. In fact, it is well known the impact of regular sport activity on CRP fitness; even at 2240 m over sea level, regular sport activity positively affected aerobic power and counteract age-related decreases in $HR_{max'}$ $VO_{2max'}$ maximum power max, maximum power index and fast transitory CRP kinetics during increasing ergometric exercise.³ The measurement of VO₂ kinetics is a good non-invasive estimation both in describing the response of the whole organism and in gaining insight into the skeletal muscle mass $\forall O_2$ ($\forall O_{2M}$) kinetics. Evermore, the exponential MRT of these CRP (MRT Ve, MRT VO, MRT VCO, MRT HR) increases during their transient increments with respect to work rate ($\Delta \forall e/\Delta WR$, $\Delta \forall O_2/\Delta WR$, $\Delta \forall CO_2/\Delta WR$, $\Delta HR/$ ΔWR ; $\Delta HR/\Delta VO_{21}$ and $\Delta Ve/\Delta VCO_{2}$) is determinant of the oxygen deficit and, hence, of the potential requirement for anaerobiosis to supplement the ongoing aerobic component⁴ of the energy transfer for muscle contraction.⁵ For example, the dynamic relationship $\Delta \forall O_2/\Delta WR$, indicates if the metabolic response is adequate for a given power output; $\Delta HR/\Delta VO_{2}$, could indicate if for a given metabolic demand either the stroke volume or the peripheral $\forall O_3$ extraction or both are matched; and $\Delta \forall e/\Delta \forall CO_{3}$, indicates if the there is excessive ventilation to the metabolic

stress.⁴ Consequently, it appears that indices of aerobic³ and anaerobic exercise performance differentially influence the fundamental and slow components of the $\forall O_2$ kinetics ⁶

The ageing process is related with the participation or absence of many time constants. Ageing is associated with a slowing of VO₂ kinetics during the on-transition to a step increase in WR of submaximal exercise8 and the negativeentropy (-S) of a human being decays when his $\forall O_2$ kinetics entropy (S) increases, in units of kcal • °C-1, with ageing also during submaximal exercise. 9 Entropy (from a Greek word meaning "transformation") is a property that an object has in addition to its temperature, and entropy is connected with the amount of heat energy un-available for conversion into useful work. ¹⁰ The Φ two $\forall O_2$ kinetics S is another fundamental parameter to study the transient response of gas exchange kinetics. However, it is unclear whether this slowing of VO₂ kinetics is a consequence of blood flow limitations and/or $\forall O_3$ delivery or of a slowest activation of the biochemical reactions in skeletal muscle, factors that have been implicated as limiting skeletal muscle VO₂ consumption in old adults. 11 Nevertheless, it has been observed fast-age on transient contraction in artery stimulated with phenylephrine¹² that could have cause-effect relationships with the slow-age VO₂ on-transient kinetics and its S (increased-age related VO, kinetics S).9

We have already described three CRP on-transient phases $(\Phi_{\parallel}, \text{ cardiodymamic }; \Phi_{\parallel}, \text{ linear primary component; } \Phi_{\parallel},$ maximum) and the Φ_{\shortparallel} CRP kinetics in Mexican athletes during a ramp test at 2240 m above sea level.³ During $\Phi_{\mu\nu}$ specially the VO2 closely match the skeletal muscle active mass VO₂ because the VO₂ slope is not discernibly different from that of the response. In addition, it is well known that the kinetic features in the $\forall O_2$ response from above TVE square-wave test have important implications for the response to ramp test. We have already empirically applied the entropy approach the study the O₂ mass rate of chance per unit of time (S Φ_2 $\forall O_2$ τ , S phase two $\forall O_2$ kinetics) in adult men⁹; specially important is the Φ_2 $\forall O_2$, because during this phase both $\forall O_{2M}$ and $\forall O_{2}$ rise in a near-exponential fashion towards the VO₂ demand, 13 but it has not been explored for Φ_{\shortparallel} CRP ramp exercise test nor to study the entropy of the $\Phi_{\parallel} \lor O_2$ kinetics (S $\Phi_{\parallel} \lor O_2 \tau$) in young *versus* old men comparisons, during ramp exercise test.

The purpose of the present work was to assess for differences of the $\Phi_{\rm II}$ CRP on-transient kinetics (MRT $\forall e$, MRT $\forall O_2$, MRT $\forall CO_2$, MRT HR) and the $\Phi_{\rm II}$ $\forall O_2$ on-transient kinetics degree of entropy (S $\Phi_{\rm II}$ $\forall O_2$ MRT), between young and old adult men during a ramp exercise test, in the search for determinant mechanisms or factors possibly involved in the $\forall O_2$ kinetics of adult men.

Hypothesis

If the exponential $\Phi_{\rm II}$ \forall O_2 and HR on-transient response to the ramp forcing function of maximal exercise are slowage related in terms of MRT duration, thus the $\Phi_{\rm II}$ \forall O_2 MRT, the S $\Phi_{\rm II}$ \forall O_2 MRT and the $\Phi_{\rm II}$ HR MRT estimated values, should be significantly high in old compared to young men.

MATERIALS AND METHODS

Subjects

Our eight young (YG, aged 23 to 30 years) and nine old (OG, aged 64 to 78 years) male subjects that participated in this study were also studied for comparison with previous publication. Standard calibrated scales and stadiometers were used to determine height (cm), weight (kg), and body mass index (weight/height2, kg•m-2). All subjects were healthy with no diagnosed CRP disease and were active having above average fitness. None of the subjects were on medication known to affect CRP function during exercise. Informed consent was obtained after the experimental protocol and possible risks were explained to each participant. The research was approved by the University's Review Board for Health Sciences Research Involving Human Subjects.

General protocol

Each subject was studied on one occasion and was tested at the same time of day on his visit to the laboratory. The subjects reported to the laboratory at least two hours after consuming a light meal and at least four hours after consuming caffeinated beverages. The subjects were asked to abstain from performing heavy intensity exercise prior to visiting the laboratory on the day of testing.

On his visit to the laboratory each subject performed an incremental exercise test with power output increased as a ramp function at 15-25 W.min-1 to volitional fatigue for the determination of the ventilatory threshold (T_{vE}), peak O_2 uptake (VO_{2peak}) and maximal values for HR, CO_2 and Ve. Subjects exercised in the upright position on an electrically-braked cycle ergometer (Lode, Model H-300-R); the resistance on the cycle ergometer was computer-controlled to produce a ramp signal that corresponded to a linear increase in power output. For the older subjects this test was performed under medical supervision and served as part of the medical pre-screening which also included a general medical examination. 14,15

The $\forall O_2$ averaged over the final 15 s of the incremental test prior to fatigue was taken as $\forall O_{2peak}$. The T_{vE} was defined as the $\forall O_2$ at which there was a systematic increase in the ventilatory equivalent for $\forall O_2$ ($\forall_E/\forall O_2$) and end-tidal PO_2 ($P_{ET}O_2$), with no concomitant increase in the ventilatory equivalent for $\forall CO_2$ ($\forall_E/\forall CO_2$), or decrease in end-tidal PCO_2 ($P_{ET}CO_2$).

Ventilation and gas exchange (VO2, VCO2) were calculated breath-by-breath by a computer based programme. Inspired and expired airflow and ventilatory volumes were measured by a low-resistance, low deadspace (90 ml), bi-directional turbine and volume transducer (VMM-110, Alpha Technologies); the volume signal was calibrated daily using a syringe of known volume (3.01 I or 0.99 I). Inspired and expired air was sampled continuously (1 ml·s-1) at the mouth, and analysed for fractional concentrations of VO₂, CO₂, and N2 using a respiratory mass spectrometer (Perkin Elmer MGA-1100 or Airspec MGA2000); the mass spectrometer was calibrated daily using precision analysed gas mixtures (9% O₂, 7% CO₂, 5% air, 79% N2). Analog signals from the mass spectrometer and turbine transducer were sampled and digitized every 20 ms and stored on computer for later analysis. Gas concentration signals were aligned with the inspired and expired gas volumes after correcting for the time delay of the analysis system. Ventilation, $\forall O_2$ and $\forall CO_3$ were calculated with corrections made for breath-by-breath fluctuations in lung gas stores. 16,17 Temperature and water vapour corrections were based on conditions measured near the mouth. Heart rate was monitored continuously via ECG electrodes using a modified V_s configuration; the heart rate signal was stored on computer for processing.

The dynamic relationships to characterize the metabolic $(\Delta VO_2/\Delta WR, ml \cdot min^{-1} \cdot W^{-1})$, cardiovascular $(\Delta HR/\Delta VO_2, beats \cdot min^{-1} \cdot l \cdot min^{-1})$, and ventilatory pattern $(\Delta Ve/\Delta CO_2, l \cdot min^{-1} \cdot l \cdot min^{-1})$ responses were determined during the CRP ramp test4 in YG vs. OG comparisons.

Data analysis

The $\Phi_{\rm II}$ CRP (HR, \forall e, \forall O $_{\rm 2}$, \forall CO $_{\rm 2}$) response was determined by simple linear regression and visual inspection of the entire CRP ramp response. ¹⁸ The ramp-component model used to describe the $\Phi_{\rm II}$ CRP kinetic response was described previously ¹⁸ and provides an estimate of the baseline ($a_{\rm 0}$), amplitudes ($\alpha_{\rm x}$), time delays (TD $_{\rm x}$), and time constants ($\tau_{\rm x}$), where x refers to a specific component in the multi-component model. The kinetic CRP parameters for the on- transition in the ramp output were determined as a function of time [f(t)] using the computerized nonlinear regression techniques to fit a single exponential expressions to each response time course. ¹⁸ Thus, we obtained

Padilla PJ. Slow age-related on-transient ramp VO2 and heart rate kinetics in adult men

the on-transient mass rate of change per unit of time for each CRP variable (dve•dt¹, I•min⁻¹; dvO₂•dt¹, mI•min⁻¹, dvCO₂•dt¹, mI•min⁻¹, HR•dt¹, beats•min⁻¹). Model parameters were determined by least-squares nonlinear regression in which the best fit was defined by minimization of the residual sum of squares (RSS).

The overall time course of the Φ_{II} CRP response was determined from the MRT. The MRT was the only kinetic parameter used for comparisons, which was calculated from a weighted sum of TD and τ for each component. The MRT is equivalent to the time required to achieve approximately 63% of the difference between a^{0} and the new steady-state value.

Phase Two VO2 Kinetics Entropy

The entropy of the $\Phi_{\rm II}$ VCO $_2$ MRT (S $\Phi_{\rm II}$ VCO $_2$ MRT) was calculated in terms of the Boltzmann's constant (k = 3.2983•10⁻⁴, cal•°C⁻¹) by empirically substituting the quantitative measure of the atomistic disorder of a living system (D) in the formula of entropy (S = k • logD) by MRT; in other words, S $\Phi_{\rm II}$ VO $_2$ MRT = k • log($\Phi_{\rm II}$ VO $_2$ MRT).⁸

Statistical analysis

General statistics, and the Pearson correlation coefficients to assess the degree of relationships between variables were applied to those of interest. The CRP kinetic parameter estimates were analysed using a one-way measures analysis of variance (ANOVA) for on-transitions as the main effects. A significant F-ratio was further analysed using Student-Neuman-Keuls post hoc analysis. Student test was applied for YG *versus* OG comparisons. ¹⁹ Statistical significance was accepted at p < 0.05. All values are reported as the mean ± SD.

RESULTS

The anthropometric data from YG vs. OG comparisons showed no differences in height (179.63 \pm 5.71 = 174.11 \pm 5.53) body mass (79.13 \pm 9.3 = 79.78 \pm 9.87) and body mass index (24.49 \pm 2.32 = 26.32 \pm 3.05), but, as expected, in age (25.01 \pm 3.95 < 70.87 \pm 4.73, $t_{\alpha 0.05} = 23.6$, P < 0.001) the difference was -45.85 yrs. The maximal ramp test CRP data, and the transient increments in terms of $\Delta VCO_2/\Delta VWR$, $\Delta HR/\Delta VCO_2$, and $\Delta Ve/\Delta VCO_2$ caused by a ramp test input in the YG and OG are shown in table 1. The summary data for ramp Φ_{\parallel} kinetic CRP data exercise are presented in table 2. An example of the CRP (VO2, VCO2, Ve, HR; ramp-component exponential fitting models describing both the VCO₂ and the HR) ramp ontransient response in one young subject is shown in figure 1. The Φ_{\parallel} MRT kinetic parameter from the CRP variables (VCO₂, VCO₂, Ve, HR) quantifying their dynamic responses in YG vs OG adult men, during the on-transient of ramp test are shown in Figure 2. The Φ_{\parallel} MRT kinetic parameter entropy (Φ_{\parallel} $\forall O_{2}$ MRT S) quantifying the dynamic response of VO, in YG vs. OG adult men, during the ontransient of ramp test is shown in figure 3.

Maximal CRP Differences

As expected, all of the maximal ergo-CRP responses to the ramp test resulted significantly high in YG compared OG (Table I) in terms of differences as followed: WR (121.43 W), $\forall O_2$, (1.55 $I \cdot min^{-1}$, 19.24 $mI \cdot kg^{-1} I \cdot min^{-1}$), HR (beats $\cdot min^{-1}$: experimental = 32.42, predicted = 45.78), $\forall CO_2$, (1.93 $I \cdot min^{-1}$), and e (44.5 $I \cdot min^{-1}$). However, only the dynamic cardiovascular relationship ($\Delta HR/\Delta \forall CO_2$) resulted significantly high in OG compared YG (difference = 15.03 beats $\cdot min^{-1} \cdot I \cdot min^{-1}$) (Table 1). The OG $\Delta HR/\Delta v$

Table I	. Maximal	ramp te	st carc	lioresp	iratory	data	in eight	young a	and r	iine ol	d adu	It men.
---------	-----------	---------	---------	---------	---------	------	----------	---------	-------	---------	-------	---------

Group	Work rate (W)	۷O2 peak (I · min¹) (mL · kg¹ · min¹)	Heart rate experimental (beats · min ⁻¹)	predicted (beats · min ⁻¹)	∨CO ₂ (I • min ⁻¹)	^V _E (I∙min⁻¹)	$\forall O_2/\Delta WR$ (mL·min ⁻¹ ·W ⁻¹)	Δ HR/ 1 O $_{2}$ (beatsl · 1 · min $^{-1}$)	$\Delta Ve/\Delta VCO_{2}$ (I · I · 1)
Young									
249.88ª	3.75⁵	47.38°	190.75d	195.00°	4.40 ^f	140.50 ⁹	11.08	38.12h	25.79
± 45.72	± 0.62	± 6.39	± 14.11	± 3.07	± 0.84	± 36.24	± 1.05	± 7.23	± 2.79
Old									
128.44 ^a	2.20b	28.13°	158.33 ^d	149.22e	2.47 ^f	96.00 ^g	10.99	53.16h	30.06
± 20.84	± 0.41	± 7.18	± 14.90	± 4.74	± 0.36	± 29.78	± 1.90	± 14.58	± 6.82

Numeric values are mean \pm SD. $\forall O_2$: Pulmonary oxygen uptake. Predicted heart rate = 220 years -age in years. $\forall CO_2$: Carbon dioxide output. \forall_E : Expired ventilation. WR: Work rate. $\Delta \forall O_2/\Delta WR$, $\Delta HR/\Delta \forall O_2$, and $\Delta \forall e/\forall CO_2$, metabolic, cardiovascular, and ventilatory dynamic relationships, respectively. Student-t α , 0.05 test (Pa to f \leq 0.001; Pg to h \leq 0.02): a t = 7.2, b t = 6.2, c t = 5.8, d t = 4.6, e t = 23.3, f t = 6.3; g t = 2.8; ht = 2.6.

Table 2. Ramp phase two cardiopulmonary kinetic data in eight young and nine old men.

Parameter	Young	Old	t _{value}	P _{value}
		$\forall O_{\scriptscriptstyle{2}}$		
$\label{eq:baseline} \begin{array}{l} {^{"}B_{ase}L_{ine}"}, \ mL \\ A_{mplitude}t_{otal'} \ mL \\ T_{ime}D_{elayed'} \ s \\ T_{ime}C_{onstant'} \ s \\ M_{ean}S_{quare}E_{rror} \\ R_{esidual}S_{um}S_{quares'} \ x \ 10^{5} \end{array}$	1080.38 ± 254.35 290.05 ± 28.14 0.53 ± 0.56 18.37 ± 5.71 18404.2 ± 6727.3 27.04 ± 18.05	943.68 ± 143.40 171.03 ± 32.48 0.29 ± 0.29 41.61 ± 5.95 14012.9 ± 11499.7 12.83 ± 11.82	1.39 8.02 1.17 8.20	> 0.05 ≤ 0.001 > 0.05 ≤ 0.001
		Heart Rate		
$\begin{array}{l} {^{\prime\prime}B_{ase}L_{ine}}^{\prime\prime\prime}, \ beats \\ A_{mplitude}t_{otal}, \ beats \\ T_{ime}D_{elayed'}^{\prime\prime}, \\ T_{ime}C_{onstart'}^{\prime\prime}, \\ M_{ean}S_{quare}E_{rror}^{\prime\prime}, \\ R_{esidual}S_{um}S_{quares'}^{\prime\prime}, \ x \ 10^5 \end{array}$	101.4 ± 10.2 12.4 ± 2.1 1.4 ± 3.9 32.0 ± 2.9 166.6 ± 395 0.25 ± 0.59	97.4 ± 21.0 12.0 ± 2.6 9.6 ± 6.0 54.0 ± 7.4 386.9 ± 539.2 0.30 ± 0.47	0.49 0.32 3.20 7.80	> 0.05 > 0.05 ≤ 0.007 ≤ 0.001
		VCO_2		
"B _{ase} L _{ine} ", mL A _{mplitude} t _{otal'} mL T _{ime} D _{elayed'} s T _{ime} C _{onstant'} s M _{ean} S _{quare} E _{rror} R _{esidual} S _{um} S _{quares'} x 10 ⁵	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	887.2 ± 146.4 264.5 ± 70.2 9.5 ± 10.4 43.9 ± 10.2 0.26 ± 0.48 13.13 ± 10.47	0.6 5.0 0.2 1.9	> 0.05 ≤ 0.001 > 0.05 > 0.05
		∜e		
"B _{ase} L _{ine"} ", I A _{mplitude} t _{otal} ', I T _{ime} D _{elayed} ', S T _{ime} C _{onstant} ', S M _{ean} S _{quare} E _{rror} R _{esidual} S _{um} S _{quares} ', x 10 ⁵	24.6 ± 5.7 10.5 ± 1.6 9.4 ± 8.1 52.9 ± 8.0 60.2 ± 48.9 0.10 ± 0.11	28.9 ± 6.3 9.1 ± 2.3 7.5 ± 8.9 61.6 ± 8.8 28.5 ± 19.9 0.03 ± 0.02	1.5 1.5 0.5 2.1 	> 0.05 > 0.05 > 0.05 > 0.05

Numeric values are mean \pm sd. \leq : Significantly different. --: No assessed. "": Virtual base line. $\forall O_2$: Pulmonary oxygen uptake. $\forall CO_2$: Carbon dioxide output. \forall_ϵ : Expired ventilation.

 ΔVO_2 was negatively related with VCO_2p_{eak} (r = -0.72, P < 0.043).

Φ ,CRP Kinetic Parameter Differences

The $\Phi_{\rm II}$ total amplitude in both the ${\rm VO}_2$ and the ${\rm VCO}_2$ resulted, 119 mL and 131.8 mL, respectively, high in YG compared OG (Table 2). The $\Phi_{\rm II}$ HR TD resulted 8.1 s slow in the OG compared YG (Table 2). The $\Phi_{\rm II}$ τ in both the ${\rm VO}_2$ and the HR resulted, 23.25 s and 21.9 s, respectively, slow (P \leq 0.001) in OG compared YG (Table 2). The $\Phi_{\rm II}$ MRT in both the ${\rm VCO}_2$ and the HR resulted, 23 s

(t = 8.3) and 30 s (t = 6.2), respectively, slow in OG compared YG (Figure 2). The Φ_{\parallel} \forall O₂ MRT S resulted 3.1 kcal•°C-1•S-1 high (t = 7.1, P ≤ 0.001) in OG compared YG (Figure 3).

DISCUSSION

The three CRP phases $(\Phi_{l'}, \Phi_{ll'}, \Phi_{ll})$ observed in this study agreed with the fact that from sea level²⁰ to moderate altitude,¹⁷ CRP kinetics are characterized during a ramp exercise by three progressively steeper slopes mainly based on Ve; the first from the beginning of exercise to anaerobic

Padilla PJ. Slow age-related on-transient ramp VO2 and heart rate kinetics in adult men

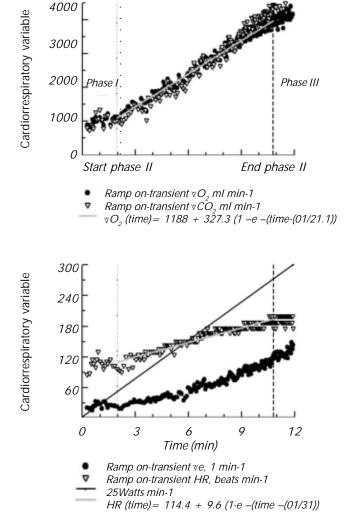
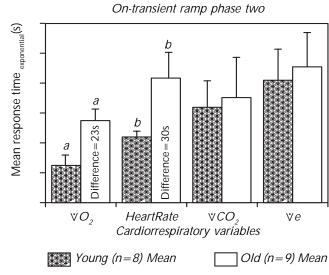
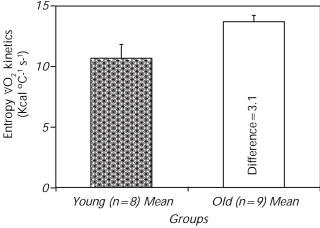



Figure 1. An example of the three phases of the cardiopulmonary ramp (25 W•min-¹) on-transient response in one young subject the pulmonary oxygen uptake ($\forall O_2$), carbon dioxide output ($\forall CO_2$), expired ventilation ($\forall e$), and heart rate (HR) responses; and also the ramp-component exponential fitting models describing the phase two of both the $\forall O_2$ and the HR.


threshold; the second from anaerobic threshold to respiratory compensation point, where the body ${\rm CO_2}$ stores are used to buffer acidosis owing to lactate production and this extra ${\rm CO_2}$ production drives the ventilation increase, at high altitude, ventilation increases owing to hypoxia and is characterized by two, instead of three phases, 20 and the third from respiratory compensation point to peak exercise. In the first detailed data on the time course of the CRP responses to exercise in humans 21 it was shown that cardiac output (HR • ${\rm S_{troke}V_{olume'}}$ I • min-1) increases more rapidly following an increase in exercise workload than does

arteriovenous O_2 difference, proving that most of the early increase in VO_2 is due to increased cardiac output, but as exercise continues, increased arteriovenous O_2 difference contributed gradually more to increased VO_2 . Consequently, we used the phase II HR kinetics because it may reflect O_2 delivery to the working muscle in terms of phase II VO_2

Figure 2. The phase two mean response time kinetic parameter (Φ_{\parallel} MRT) for the pulmonary oxygen uptake ($\forall O_2$), carbon dioxide output ($\forall CO_2$), expired ventilation (\forall e), and heart rate (HR) responses quantifying their dynamic responses in young vs. old adult men, during the on-transient ramp test.

Figure 3. The phase two mean response time kinetic parameter antropy for the pulmonary oxygen uptake ($\Phi_{\parallel} \lor O_2$ MRT S) quantifying the dynamic response of $\lor O2$ in young vs. old adult men, during the on-transient ramp test.

kinetics at least before the increased arteriovenous O_2 difference contributed gradually more to increased VO_2 .

Maximal CRP Differences

It was not a surprise that all of the maximal ergo-CRP responses to the ramp test resulted significantly high in YG compared OG.²² These differences in YG > OG for WR, VO2, HR, VCO2, and Ve are, in general, the result of a decline with age in VO_{2max}, 10% per decade in sedentary people after the age of 25 yr and between the ages of 50 and 75 yr the decline is ,15% per decade (I•min-1); and other parameters of importance for physical fitness is an effect of reduced HR_{max} (8.2 %) that diminished maximal cardiac output accompanied by motoneuropennia and thereby of motor unitpennia and sarcopennia (skeletal muscle system is the most common affected); evermore, the decline in maximal aerobic power is due not only to ageing but also to lifestyle variables such as exercise and body composition. ^{22,23} Consequently, in this study the high Δ HR/ Δ VO₂ in OG compared YG is explained because the age significantly influenced this relationship, and it agreed with a negative correlation between ΔHR/ΔVO₂ and VO_{2neak}.⁴

Φ_" CRP Kinetic Parameter Differences

The slow age related $\Phi_{\rm II}$ HR TD contributed to the slow age related $\Phi_{\rm II}$ T in both the $\rm VO_2$ and the HR contributed to their $\Phi_{\rm II}$ MRT in both the $\rm VO_2$ and the HR as well because their MRTs were calculated by the sum of their $\tau_{\rm II}$ + TD $_{\rm II}$; however, since the τ II (the inverse of the rate constant derived through non-linear regression) does not apply as a significant kinetics parameter for ramp test²⁴ because it is no interchangeable with MRT (solved algebraically), thus, it follows that we will just make a discussion on the $\Phi_{\rm II}$ $\rm VO_2$ MRT, and $\Phi_{\rm II}$ HR MRT only.²⁵

Near-infrared spectroscopy and computer simulations revealed a nonlinear relationship between microvascular muscle blood flow and muscle $\forall O_2$ during incremental ramp exercise²⁶ and, in healthy subjects, muscle blood flow increased at a faster rate than muscle $\forall O_2$ early in the exercise test and slowed progressively as maximal work rate was approached. In addition, De Cort, et al.²¹ observed in normal healthy subjects, that blood pressure and afterload change immediately following an increase in exercise workload, however the time course of the changes in blood pressure response was very long compared to those from cardiac output and $\forall O_2$ due to the rapid decrease in afterload, implying a close and probably neurogenic link between increased exercise level and dilatation of blood ves-

sels in the exercising muscles, followed by a subsequent slower time course of afterload changes that may reflected an initial neurogenic component in the decrease in peripheral resistance followed by a more slowly developing metabolic component. Consequently, one possible explanation for our slow age-related $\Phi_{\parallel} \lor O_2$ kinetics, and also for the low OG $\Phi_{_{||}}$ total amplitude in both the $\forall O_{_{2}}$ and the VCO₂₁ could be in term of this mechanistic implication of a slowed muscle blood flow progressively as maximal work rate was approached 26 probably due to a fast age related on-transient arterial contraction¹² suggesting and agerelated decline in the regulatory signals to control the intracellular calcium concentration in the vascular reactivity.^{27,28} Evermore, in one study on the heart function with either exercise training or phenylalkylamine calcium channel blocker, verapamil, and the consequent effect on VO_2^{29} it was observed increasing ventricular preload with either exercise training or calcium channel blockade that was coincident with faster VO_2 kinetics (τ) and increased VO_{2max} in sedentary elderly individuals; however, even verapamil is a central or cardiac acting drug that did not changed blood pressure in that subjects 'study29 it is possible to expect some peripheral effect on vascular conductance as exercise should did some how, "counteracting" some age-related decline in the regulatory signals to control the intracellular calcium concentration in the vascular reactivity. Consequently, these calcium channel blockade that was coincident with faster VO2 kinetics and increased VO_{2max} in sedentary elderly individuals²⁹ agreed with the a fast age related on-transient arterial contraction¹² suggesting age-related decline in the regulatory signals to control the intracellular calcium concentration in the vascular reactivity^{27,28} as one of the causal factors of our slow age-related Φ_{\parallel} $\forall O_2$ kinetics observed in this study. Evermore, probably this fast age related on-transient arterial contraction contributes to make a peripheral entropic barrier sensible different in old compared with young subjects, by changing the tissues metabolic entropic potential in terms of protein-protein thermodynamic interactions because of significant entropic solvatation changes in the body fluids.⁷

We explain in part an slow age-related $\Phi_{\rm II}$ HR kinetics because it agrees with the observation that cardiac output is a non-linear function of ${\rm VO}_2$ during ramp-incremental exercise because while the kinetics of cardiac output are faster than those of ${\rm VO}_2$ they progressively symmetry as work rate and ${\rm VO}_2$ increases. 30 Evermore, the slow- age related $\Phi_{\rm II}$ MRT in HR was in agreement with both the high OG Δ HR/ Δ VO $_2$ and the negative relationship between OG Δ HR/ Δ VO $_2$ and Δ VO $_2$ and Δ VO $_2$ because they are significantly influenced by the ageing process. 4 Besides, multi fractal analysis of ageing (and in heart failure pacients) in

Padilla PJ. Slow age-related on-transient ramp VO, and heart rate kinetics in adult men

heartbeat time series studies showed an age-related monofractal spectrum probably due depressed neuro-autonomic control, and an age-related spectral symmetry; explained by a less dynamic complexity in terms of diminished number of responses to physical efforts, this agrees with the slow age-related $\Phi_{\rm II}$ HR kinetics observed in this study, or emotional stress.⁷

Φ_{\shortparallel} \forall O_2 Kinetics Entropy

The Φ two $\forall O_2$ kinetic S parameter is a measure of variability (kcal•° C-1•s-1 on-transient) in the age of mass rate of change in VO₂ per unit of time between two cronobiological states, young and old, during the on-transient response to an ergometric forced function of exercise. Since S is the amount of heat energy un-available for conversion into useful work¹⁰ thus a slow exponential VO₂ ontransient kinetic causes a unidirectional ("irreversible") trend of increase in entropy (increased- age related Φ two $\forall O_3$ kinetic S). This increased- age related Φ two $\forall O_2$ kinetic S, agrees with the general thermodynamic fact that when a system minimizes its internal energy at the same time maximizes its S, and this has been observed during kinetic studies on protein folding explicitly depending on the environment physicoquemical conditions.⁷ The increased-age related Φ_{\parallel} $\forall O_2$ MRT S during ramp test in this study showed more evidence of increased-age related $\Phi_2 \vee O_2 \tau S$ during submaximal exercise in the same old men8 in agreement with comparable VO₂ kinetic results between ramp test and constant work rate tests.31 The significant increases in the OG Φ two \forall O₂ kinetics S in our studies together with the observations of both age-related decline in vasodilatory capacity³² and fast age-related on-transient arterial contraction, 12 suggest blood flow limitations implicated as limiting skeletal muscle energy metabolism in old adults in concerted action with an age- related diminished capacity or function (i.e., endothelium, total body water, motor unitpennia, sarcopennia) in the skeletal muscle affecting energy metabolismo³³ during a sudden increases in energy demand (slow age-related VO₂M kinetics in the human body) may be because of the increased body internal environmental S diminishing at the same time the body internal energy. 7 Exercise is a potent stimulus of the sympathetic system that when accompanied by blood hypo-perfusion metabolites, the chemosensitive afferent nerve fibers (muscle metaboreceptors) are activated causing a positive feedback in sympathetic nerve activity in muscle blood vessels (vasoconstriction) increasing vascular resistance in nonexercising muscles and thereby increasing blood pressure and perfusion pressure, that limits blood

flow in exercising muscles 34 compromising $\rm O_2$ tension and this is also in agreement with our observed increased Φ two $\rm VO_2$ kinetics S in the OG.

This increased age-related Φ two $\forall O_2$ kinetics S, suggests a substantial O₂- related on transient slow muscle entropy energy metabolic limitation in terms of 3 kcal \cdot °C $^{-1}\cdot$ s $^{-1}$ (3.1 • 4.184 = 12.55 kJ \cdot °C $^{-1}\cdot$ s $^{-1}$) to 4 kcal•°C-1•s-1 (4 • 4.184 = 16.74 kJ•°C-1•s-1) on-transition lost in useful energy; this does not meant an efficiency problem since efficiency is similar between young and old9,31 because S is a result of an energy rate of change between to states (i.e., young towars old), and efficiency reflects basic energy metabolism yields in terms of VO₂M kinetics related to phosphocreatine (PCrM) kinetics and $\sqrt[3]{O}_3$ (pulmonary) kinetics^{5,35} that occurred in homeothermic conditions¹⁰ in both young and old subjects, and efficiency is something depending only upon upper and lower working temperatures. 10 Consequently, an increased age-related Φ two VO₂ kinetics S, translate into a diminished body energy capacity to keep the energy metabolism of adequate response to on-transitions in energy demands to perform work. Since the increased age-related ΦII VO₂ MRT S was 3.1 kcal • ° C⁻¹ • s⁻¹ for ramp exercise in this study (4 kcal • ° C⁻¹ • s⁻¹ for $\Phi_2 \ \lor O_2 \ \tau$ S submaximal exercise)9 then the OG incresases from 3 to 4 units amount of heating capacity (motion towards entropy) from the energy metabolism per degree Centigrade and per unit of time; in other words, this suggests a slowing age-related in molecular motion to perform work but towards entropy because thermodynamically speaking this heat is just the total energy in the random motion, 10 meaning that three to four units of VO, ontransient kinetics of entropy has been added from young state to the old one cronobiological- ergometric transition. The 3 to 4 amount of heat energy un-available for conversion into useful work in the OG is the "heat energy added in some positive quantity" for a given lost of information implicit in this increased S age-related. This age relatedincreased Φ_{\parallel} $\forall O_{2}$ MRT S agreed with the Boltzmann's formula of entropy that S increases with time. 10 Evermore, because total body water diminishes during the ageing process,³⁶ and the kcal (Calorie) is the amount of heat that causes the temperature of one kg of water (a highest heat capacity molecule) to raise one degree Centigrade or to increase the water entropy by one unit,37 it follows that OG could resists less any change of matter motion towards an increase in entropy in terms of kcal • ° C⁻¹ • s⁻¹. Perhaps this is why also there is a progressively slowing in body motion during the ageing process³⁶ to death. Finally, since both the $\Phi_2 \lor O_2 \Phi$ for submaximal exercise and the ΦII VO, MRT for ramp test, mathematically describe the profile of the transition non-steady-state pe-

riod during which physiological adaptations adjust to meet the increased metabolic demand, reflecting the response of the hemato-cardiovascular system and muscle mass to a step up in external work rate, then the Φ two $\forall \mathsf{O}_2$ kinetics S seem to be another fundamental parameter to specify the age-related energy lost in the study of the transient response of gas exchange kinetics during ergometric forcing functions exercise.

The potential clinical implications from these studies suggest that there is need for caution when exercise training or physical rehabilitation regimens in elderly people are applied for clinical interest; because for that purposes it should be considered both, the peripheral-limb vascular function to whole-body cardiovascular health as an integral medical evaluation and exercise prescription intervention in aged population.

CONCLUSIONS

The ramp test on-transient phase two of both the $\forall O_2$ kinetics ($\Phi_{\rm II} \forall O_2$ MRT) and HR kinetics ($\Phi_{\rm II} HR$ MRT) were age-related, accompanied with 3.1 kcal • °C⁻¹•s⁻¹ $\forall O_2$ kinetics entropy ($\Phi_{\rm II} \forall O_2$ MRT S) for ramp exercise, meaning that old adults could thermodynamically resists less the energy-transitions and thus increase their entropy in terms of kcal • °C⁻¹•s⁻¹. The amount of heat energy un-available for conversion into useful work in the human body increases with ageing, and the human body does it with ageing by slowing down both the pulmonary $\forall O_2$ uptake and the heart rate on-transient kinetics during ergometric exercise.

ACKNOWLEDGEMENTS

Financial support was provided by an operating grant to John M. Kowalchuk, PhD, from the Natural Sciences and Engineering Research Council of Canada. J. Padilla P. was supported by a grant from the Escuela Superior de Medicina, COFAA-EDD-COTEPABE, Instituto Politécnico Nacional, CONACyT (2236), México. The technical support offered by Mr. Brad Hansen was greatly appreciated. This research was carried out at The Centre for Activity and Ageing (affiliated with the School of Kinesiology and Faculty of Medicine at The University of Western Ontario and The Lawson Research Institute at the St. Joseph's Health Centre).

REFERENCES

- Whipp BJ, Ozyener F. The kinetics of exertional oxygen uptake: assumptions and inferences. Med Sport 1998; 51: 139-49.
- Casaburi R, Barstow TJ, Robinson T, Wasserman K. Influence of work rate on ventilatory and gas exchange kinetics. J Appl

- Physiol 1989; 67(2): 547-55.
- Padilla JP, Eguia Lis CG, Licea JM, Taylor AW. Capacidad aeróbia máxima y actividad deportiva en mexicanos de 13 a 56 años de edad. Arch Inst Nal Cardiol 1998; 68: 224-31.
- Neder JA, Nery LE, Peres C, Whipp BJ. Reference values for dynamic responses to incremental cycle ergometry in males and females aged 20 to 80. Am J Crit Care Med 2001; 164: 1481-6.
- Rossiter HB, Ward SA, Kowalchuk JM, Howe FA, Griffiths JR, Whipp BJ. Effects of prior exercise on oxygen uptake and phosphocreatine kinetics during high-intensity knee- extension exercise in humans. J Physiol 2001; 537: 291-303.
- 6. Berger NJ, Jones AM. Pulmonary O2 uptake on-kinetics in sprint- and endurance-trained athletes. Appl Physiol Nutr Metab 2007; 32: 383-93.
- García-Colín SH, Dagdug L, Picquart M, Vázquez E. La física biológica en Mexico: Temas selectos 2. Distrito Federal, México: El Colegio de México; 2008, p. 1-390.
- 8. Babcock MA, Paterson DH, Cunningham DA, Dickinson JR. Exercise on-transient gas exchange kinetics are slowed as a function of age. Med Sci Sports Exerc 1994; 26: 440-46.
- Padilla JP, Kowalchuk JM, Taylor AW, Paterson DH. Phase two on-transient O2 kinetics is slow age- related during submaximal exercise in adult men. Rev Hosp Jua Méx 2008; 75(3): 166-82.
- 10. Taylor JC. Hidden unity in nature's laws. Cambridge, UK: Oxford University Press; 2001, p. 1-194.
- 11. Scheuermann BW, Bell C, Paterson DH, Barstow TJ, Kowalchuk JM. Oxygen uptake kinetics for moderate exercise are speeded in older humans by prior heavy exercise. J Appl Physiol 2002; 92: 609-16.
- Padilla J, Castillo M Del C, Guevara G, López J, Castillo C. Fast age-related on-transient contraction kinetics during a1- adrenergic phenylephrine stimulation in rat thoracic aortae artery. Experimental Biology 2009. LB386, FASEB J 2009.
- 13. Jones AM, Poole DC. Oxygen uptake dynamics: from muscle to mouth-an introduction to the symposium. Med Sci Sports Exerc 2005: 37:1542-50.
- 14. Padilla JP, Kowalchuk JM, Taylor AW, Paterson DH. Determinación de la cinética de la fase dos transitoria de la O2 durante ejercicio de carga constante de intensidades moderada e intensa en hombres jóvenes. Rev Hosp Jua Mex 2007; 74(4): 231-44.
- Padilla JP, Kowalchuk JM, Taylor AW, Paterson DH. Paterson. Comparison of model estimates of phase two on-transient O2 uptake kinetics during submaximal exercise in old men. Rev Hosp Jua Méx 2008; 75(3): 151-65.
- 16. Paterson DH, Cunningham DA, Pickering JG, Babcock MA, Boughner DR. Oxygen uptake kinetics in cardiac transplants

Padilla PJ. Slow age-related on-transient ramp VO, and heart rate kinetics in adult men

- recipients. J Appl Physiol 77:1935-1940, 1994.
- Brendon JG, Scheuermann BW, Paterson DH, Kowalchuk JM. Prior heavy-intensity exercise speeds VO₂ kinetics during moderate-intensity exercise in young adults. J Appl Physiol 2005; 98: 1371-78.
- Padilla JP, Martínez EL, Olvera GS, Ojeda PC, Caudillo DP. Dinámica cardiopulmonar durante una prueba de esfuerzo máximo en atletas mexicanos de resistencia. Arch Inst Nal Cardiol 2000; 70: 268-84.
- 19. Zar JH. Biostatistical analysis. New Jersey USA. Englewood Cliffs: Prentice-Hall; 1984, p. 162-473.
- Agostoni P, Valentini M, Magrí D, Revera M, Caldara G, Gregorini F, Bilo G, et al. Disappearance of isocapnic buffering period during increasing work rate exercise at high altitude. Eur J Cardiovasc Prev Rehabil 2008; 15: 354-8.
- 21. De Cort SC, Innes JA, Barstow TJ, Gijz A. Cardiac output, oxygen consumption and arteriovenous oxygen difference following a sudden rise in exercise level in humans. J Physiol 1991; 441: 501-12.
- 22. Åstrand PO, Bergh U, Kilbom Å. A33-yr follow-up of peak oxygen uptake and related variables of former physical education students. J Appl Physiol 1997; 82: 1844-52.
- 23. Jackson AS, Beard EF, Wier LT, Ross RM, Stuteville JE, Blair SN. Changes in aerobic power of men, ages 25-70 yr. Med Sci Sports Exercise 1995; 27: 113-20.
- 24. Barstow TJ, Molé PA. A ramp test is inadequate for determining the time constant of pulmonary VO₂ (Abstract). Med Sci Sports Exerc 1983; 15: 102.
- 25. Arena R, Humphrey R, Peberdy MA, Madigan M. Comparison of oxygen uptake on-kinetics calculations during submaximal exercise. JE Ponline 2003; 6: 1-7.
- 26. Ferreira LF, Koga S, Barstow TJ. Dynamics of noninvasively estimated microvascular VO₂ extraction during ramp exercise. J Appl Physiol 2007; 103: 1999-2004.
- 27. Lakatta EG. Diminished beta-adrenergic modulation of cardiovascular function in advanced age. Cardiol Clin 1986; 4(2): 185-200.
- 28. Lakatta EG. Cardiac muscle change in senescence. Ann Rev Physiol 1987; 49: 519-31.
- 29. Petrella RJ, Cunningham DA, Paterson DH. Left ventricular diastolic filling and cardiovascular functional capacity in older

- men. Exper Physiol 2000; 85: 547-55.
- 30. Stringer WW, Whipp BJ, Wasserman K, Pórszász J, Christenson P, French WJ. Non-linear cardiac output dynamics during ramp-incremental cycle ergometry. Eur J Appl Physiol 2005; 93: 634-9.
- 31. Markovitz GH, Sayre JW, Storer TW, Cooper CB. On issues of confidence in determining the time constant for oxygen uptake kinetics. Br J Sports Med 2004; 38: 553-60.
- 32. WrayDW, Richardson RS. Aging, exercise, and limb vascular heterogeneity in humans. Med Sci Sports Exerc 38: 1804-1810, 2006.
- 33. Seals DR, Taylor JA, Ng AV, Esler MD. Exercise and aging: autonomic control of the circulation. Med Sci Sports Exerc 1994; 26: 568-76.
- 34. Houssiere A, Najem B, Pathan A, Xhaët O, Naeije R, De Borne PV. Chemoreflex and Metaboreflex Responses to Static Hypoxic Exercise in Aging Humans. Med Sci Sports Exerc 2006: 38: 305-12.
- 35. Whipp BJ, Rossiter HB, Ward SA, Avery D, Doyle VL, Howe FA, Griffiths JR. Simultaneous determination of muscle 31P and O2 uptake kinetics during whole body NMR spectroscopy. J Appl Physiol 1999; 86:742-7.
- Toth MJ, Beckett T, Poehlman ET. Physical activity and the progressive change in body composition with aging: current evidence and research issues. Med Sci Sports Exerc 1999; 31(Suppl): S590.
- 37. Demetrius L. Directionality principles in thermodynamics and evolution. Proc Natl Acad Sci USA 1997: 94: 3491-8.

Address correspondence to:

Javier Padilla P. MD, MSc Fisiología del Ejercicio, Escuela Superior de Medicina 3er. Piso Instituto Politécnico Nacional, Casco de Santo Tomás, DMH, México, C.P.11340, D.F.

Tel.: (55)5729-6300 Ext./Fax: 62733 E-mail: japadillap@ipn.mx