
Artículo original

MIDAS: Aplicación informática para la identificación de microsatélites exactos

e inexactos en secuencias genómicas.

MIDAS: Computer application for the identification of exact and inaccurate

microsatellites in genomic sequences.

Carlos M. Martínez Ortiz1*

1Departamento de Bioquímica, Universidad de Ciencias Médicas, ICPB “Victoria de Girón”, La

Habana, Cuba

*Correspondencia: cmmo@infomed.sld.cu

RESUMEN

Los microsatélites son secuencias cortas repetidas en tándem, frecuentes y diversas en los

genomas de todas las especies, constituyendo importantes marcadores en múltiples áreas de

investigación basadas en la genómica. Se han encontrado asociaciones de estos marcadores a

un número importante de enfermedades en humanos. En el desarrollo de vacunas se ha

demostrado cómo los patógenos pueden evadir la respuesta inmune simplemente alterando

la composición de las secuencias repetidas en sus genes. Existen numerosas aplicaciones

informáticas destinadas a la detección de estas secuencias, no obstante éstas no cubren todas

las expectativas debido a la divergencia de criterios y enfoques aplicados a la solución del

problema de su detección. MIDAS implementa una solución no heurística basada en dos

algoritmos combinatorios en serie: el primero detecta microsatélites exactos, y el segundo, de

permitirlo los parámetros del modelo, extiende las secuencias a su versión inexacta óptima. La

aplicación tiene como entrada la secuencia genómica en formato GBFF o FASTA y su salida

brinda las posiciones de los microsatélites en la secuencia genómica, así como tamaños,

alineamientos, flancos, posiciones, etc. El algoritmo tiene una elevada eficiencia y es

exhaustivo, detectando todas las posibles secuencias repetidas independientemente de su

composición nucleotídica.

Palabras clave: SSR; marcador molecular; microsatélite; minería de datos; algoritmo

ABSTRACT

Microsatellites are tandem repeat, frequent and diverse short sequences in the genomes of all

species, constituting important markers in multiple areas of genomics-based research.

Associations of these markers have been found in a significant number of human diseases.

Vaccine development has shown how pathogens can evade the immune response by simply

altering the composition of repeat sequences in their genes. There are numerous computer

applications for the detection of these sequences, but they do not meet all expectations due

to the divergence of criteria and approaches applied to solving the problem of their detection.

MIDAS implements a non-heuristic solution based on two combinatorial algorithms in series:

the first one detects exact microsatellites, and the second one, if the model parameters allow

it, extends the sequences to their optimal inaccurate version. The application has as input the

genomic sequence in GBFF or FASTA format and its output provides the microsatellite

positions in the genomic sequence, as well as sizes, alignments, flanks and other statistics. The

algorithm is highly efficient and comprehensive, detecting all possible repeat sequences

regardless of their nucleotide composition.

Keywords: SSR; microsatellite; molecular marker; data mining; algorithms

Introducción

Los microsatélites son secuencias cortas repetidas en tándem (conocidas por sus acrónimos

STR de short tandem repeats o SSR de simple sequence repeat, por sus siglas en inglés) con

unidades de repetición entre 1 y 6 pb (algunos autores extienden su definición hasta 8 pb),

que pueden constituir tractos de repeticiones que van desde algunas copias hasta cientos de

éstas. Estas secuencias son abundantes en los genomas de eucariotas, asociadas

fundamentalmente a regiones no codónicas, aunque no privativas de éstas. También se

encuentran presentes en genomas procariotas constituyendo importantes marcadores para la

genotipificación, clasificación y control epidemiológico de especies de interés (1). Entre las

principales motivaciones para el estudio de estas secuencias se encuentran su participación

en procesos tales como la recombinación y la regulación de la transcripción (2), y cuando se

encuentran en regiones codificantes son causa de afecciones neurodegenerativas como

síndrome de frágil X, enfermedad de Huntington (HD), atrofia espinobulbar-muscular (SBMA),

el síndrome de Haw River (DRPLA), las ataxias espinocerebelosas (SCA1, SCA2, SCA3, SCA6,

SCA7 y SCA17), así como algunos tipos de cáncer (3,4). En el desarrollo de vacunas se ha

demostrado cómo gérmenes patógenos pueden evadir la respuesta inmune simplemente

alterando la composición de las secuencias repetidas en sus genes (5). Se ha demostrado cómo

la expansión y contracción de microsatélites en bacterias puede regular la expresión de genes

específicos o alterar su secuencia codificante dando como resultado variaciones antigénicas o

de fase. Esto es particularmente favorable en bacterias patógenas cuando ocurre en loci de

contingencia como forma de evadir las estrategias de defensa del hospedero (6,7). Como

marcadores genéticos han sido ampliamente usados en estudios genéticos poblacionales

debido a su elevado polimorfismo consecuencia de sus altas tasas de mutación, diversidad

alélica, presentar codominancia y ser selectivamente neutros. Es también muy conocida su

utilización en medicina forense para la identificación de personas y grado de parentesco.

Los microsatélites han sido identificados experimentalmente a partir de librerías genómicas
de organismos de interés, inspeccionando miles de clones por hibridación con sondas de
microsatélites. Además de su elevado costo, estos métodos contienen el sesgo propio de la
composición de patrones de secuencia preseleccionados. Con la modernización y
abaratamiento de las tecnologías de secuenciación, junto a las colaboraciones para el
intercambio público de secuencias como GenBank, EMBL, DDBJ entre otras, los métodos de la
bioinformática han tomado la supremacía surgiendo numerosas aplicaciones que
implementan algoritmos orientados a este fin. No obstante, la propia dinámica de estas
secuencias, sometidas a diferentes fuerzas evolutivas, sus roles particulares, así como el
interés particular de los investigadores en unas u otras en dependencia de su composición,
rasgos generales y fin biológico, ha hecho que estas aplicaciones bioinformáticas
implementen criterios computacionales diferentes, y por consiguiente, muestren variaciones
en sus resultados (8,9). Por citar algunos ejemplos, encontramos aplicaciones que extienden su
sistema de detección a regiones repetidas con periodicidades mayores (i.e. minisatélites y
satélites); otras detectan sólo repetidos exactos o con mínimas variaciones definidas a priori;
otras que emplean diccionarios preestablecidos de microsatélites o que detectan regiones de
baja complejidad y luego las confirman empleando reglas establecidas. Aplicaciones como
TRF, IMEx, START, SRF o TROLL (10-14) son ejemplos de software ampliamente utilizados para
estos fines, e implementados con diversos criterios algorítmicos. La conclusión es que no
existe una solución única, el espectro de aplicaciones se diversifica atendiendo a los tipos de
SSR de interés y a los métodos computacionales empleados, haciéndose notar las diferencias
en los resultados que retornan.
La aplicación que se presenta, MIDAS (MIcrosatellite Detection Assistant System), cumple con
los siguientes principios generales: 1ro se detectan sólo microsatélites, exactos o inexactos
(i.e. repetidos en tándem con patrones entre 1-8 pb, no compuestos ni complejos); 2do se
detectan microsatélites exactos para luego extenderlos en caso de que sus flancos muestren
alta similitud de secuencia con el patrón de repetición; 3ro la detección exacta es exhaustiva
(i.e. se tienen en cuenta todos los posibles patrones que pudieran conformar un SSR); y 4to la
extensión se hace por alineamiento local brindando una solución óptima de acuerdo a
parámetros prefijados del alineamiento.
En la sección Métodos se describe en detalle la secuencia de pasos que sigue la aplicación, los
fundamentos algorítmicos, la solución particular propuesta a los problemas de la detección
inexacta de SSRs, y ejemplos de detección de SSRs exactos e inexactos.
En la sección Resultados, se expone y analiza la salida correspondiente a la detección de SSRs
para el genoma de Salmonella entérica (subsp. entérica Serovar Cubana str.). También se
describen los parámetros y formatos de entrada y salida de la aplicación.

Métodos

El procedimiento inicia con la detección de una secuencia repetida exacta, es decir, sin

sustituciones, inserciones o supresiones de bases. Para ello, en una primera etapa se

implementa el autómata Aho-Crasick (AAC) que a partir de la construcción de un árbol de

palabras encuentra todas las ocurrencias de éstas en un texto. En la implementación

propuesta, se construye un árbol que contiene todas las palabras, de tamaños entre 1-8

nucleótidos (uno de los parámetros de la aplicación permite fijar el límite superior de este

rango), formadas por combinaciones de las 4 bases nucleotídicas, y con la especificidad de

que ellas mismas no constituyan secuencias repetidas (ej. aaaaa) y excluyendo las

permutaciones cíclicas de ellas. ACC computa la búsqueda de estas ocurrencias

eficientemente en tiempo proporcional al tamaño del texto y sin pre-procesamiento del

mismo. Las ocurrencias de palabras iguales adyacentes son empalmadas y su posición

registrada, estableciéndose los repetidos exactos o “semillas” de posibles repetidos inexactos.

Con este paso, el algoritmo se comporta como cualquier otra aplicación que detecte

repetidos exactos de forma exhaustiva y determinista (Fig. 1 (I)). Las limitaciones de los

programas que detectan sólo estas secuencias son evidentes en cuanto al fin biológico que se

persigue. Pensemos, solo a modo de ejemplo, en un repetido que tenga una simple

modificación en una base, en cuyo caso el programa detectaría dos repetidos de la misma

clase separados por una base, cuando en realidad constituían parte del mismo repetido. Este

problema, que al generalizarse crea infinidad de situaciones menos triviales y complicadas de

ejemplificar, constituye la principal motivación de la solución que se propone. En pocas

palabras, se trata de detectar una “semilla” repetida exacta, con una cantidad de repeticiones

razonable como para no ocurrir por simple azar, a partir de la cual detectar, si existiera, el

repetido inexacto del cual ella forma parte. En caso de no existir dicha extensión aproximada

o inexacta se reportaría el repetido exacto correspondiente, en este caso libre de

ambigüedad.

 La segunda etapa del algoritmo viene a solucionar el problema antes descrito. Se trata de

buscar el posible candidato inexacto a partir de los flancos de la semilla exacta detectada

previamente. En esta etapa se utiliza programación dinámica, es decir, el alineamiento local

de la secuencia problema, incluidos los flancos, contra el patrón de repetición, empleando la

eficiente técnica wraparound (WDP, Wraparound Dinamic Programming, por sus siglas en

inglés) (Fig. 1(II), Fig. 2). Como es típico en los métodos de alineamiento de secuencias, la

solución óptima es dependiente de los parámetros del alineamiento que definen las

ponderaciones por coincidencias, sustituciones o inserciones/supresiones de bases, los cuales

determinarán en última instancia el grado de conservación del microsatélite reportado.

Fig. 1 - Secuencia de pasos del algoritmo implementado en MIDAS en sus dos etapas

fundamentales. (I) Detección de microsatélites exactos (semillas), usando árbol de palabras
(Aho-Corasick) y posterior empalme de ocurrencias. (II) Extensión de semillas y detección del

posible microsatélite inexacto empleando programación dinámica.

Fig. 2 - Recurrencia que define el algoritmo de la segunda etapa en MIDAS. Es un

alineamiento local clásico aplicando técnica wraparound. Basándose en la repetición del
patrón, la ganancia en términos de tiempo y espacio se establece al permitir alinear la
secuencia problema solo con el patrón o unidad repetida en el microsatélite. Match,

mismatch (μ) e indel (δ) son las parámetros para coincidencias, sustituciones o
inserción/supresión respectivamente.

Con respecto a la extensión per se hay dos problemáticas, que aparecen con poca explicitud

en las aplicaciones reportadas por otros autores empleando alineamiento de secuencias, y

𝑆 𝑖, 0 = 0, 𝑆 0, 𝑗 = 0

𝑆 𝑖, 𝑗 = 𝑚𝑎𝑥

𝑆 𝑖 − 1, 𝑗 − 1 + 𝜇(𝑐𝑖 , 𝑐𝑗),

𝑆 𝑖 − 1, 𝑗 + 𝛿,

𝑆 𝑖 − 1, 𝑗 + 𝛿,
0

𝜇 𝑐𝑖 , 𝑐𝑗 =
𝑚𝑎𝑡𝑐ℎ 𝑠𝑖 𝑐𝑖 = 𝑐𝑗

𝑚𝑖𝑠𝑠𝑚𝑎𝑡𝑐ℎ 𝑠𝑖 𝑐𝑖 ≠ 𝑐𝑗

 𝛿 = 𝑖𝑛𝑑𝑒𝑙

𝑆 𝑖, 0 = 𝑚𝑎𝑥

𝑆 𝑖 − 1, 𝑝 ,

𝑆 𝑖 − 1,1 ,

𝑆 𝑖, 𝑝 ,
0

Recálculo de fila con reinicialización de S(i,0):

que deben ser aclaradas y razonablemente solucionadas: 1ro ¿hasta dónde extender en los

flancos de la secuencia para reportar el alineamiento? Cuando la secuencia problema es

relativamente corta el problema desaparece si utilizamos la secuencia en su totalidad para

buscar la sub-secuencia repetida local óptima. En la mayoría de los casos esto no es posible,

pensemos por ejemplo en un cromosoma humano de más de 200 millones de pares de bases,

con miles de microsatélites candidatos en diferentes regiones del genoma. La solución que

presenta MIDAS es utilizar tamaños de flancos de 3 veces el tamaño de la semilla y si el

alineamiento computado cubre más del 90 por ciento de la secuencia escogida se repite el

proceso de extensión de flancos y se realinea la secuencia. De esta forma garantizamos que la

región a extender para buscar el repetido inexacto sea dinámica y no excluya regiones donde

se pueda seguir extendiendo. 2do ¿cómo evaluar si un alineamiento es lo suficiente adecuado

para decidir seleccionarlo? Este problema es inherente a todos los métodos de alineamiento

de secuencia y se ha afrontado de variadas formas en dependencia del contexto. En

aplicaciones para detectar repetidos, algunos autores emplean el score o puntuación del

alineamiento como criterio de selección (este es el caso de TRF). Este enfoque es en cierta

medida arbitrario teniendo en cuenta que el score, si bien depende de los parámetros del

alineamiento, también depende del tamaño del mismo, y se establece cierto sesgo que

favorece a los SSR de mayor tamaño en detrimento de los más cortos, teniendo ambos igual

importancia. En el caso de MIDAS este problema desaparece teniendo en cuenta que se parte

de un SSR exacto y la extensión del mismo recaerá exclusivamente en los parámetros del

alineamiento, en otras palabras la aplicación no tiene la necesidad de escoger a priori un SSR

estableciendo un valor de corte a partir de la puntuación del alineamiento.

 Los parámetros del alineamiento son por defecto bastante restrictivos: (Match=2,

Mismatch=-5, Indel=-5), aunque el usuario tiene la opción de usar otros esquemas de

puntuación más relajados (4 en total) y luego podría depurar los SSRs a voluntad por

inspección visual. La Figura 3 ejemplifica lo mencionado anteriormente con los resultados de

la detección de dos SSR en un mismo genoma y con el mismo esquema de puntuación.

Fig. 3- Salida del programa para dos microsatélites situados en dos posiciones

(separadas por 379821 pb) del genoma vibrio cholerae IEC224 (NC_016944). El

patrón de secuencia es el mismo en ambos al igual que las unidades repetidas

exactas (aag)4. La secuencia en verde es el SSR exacto, en amarillo la extensión

inexacta y el resto son flancos. Los parámetros del alineamiento fueron (Match=2,

Mismatch=-3, Indel=-3). En (I) el programa extendió a una guanina (g) coincidente

en flanco izquierdo, sin embargo en (II) hay una extensión mucho mayor que

incluyen una sustitución y cinco inserciones o supresiones de bases. Notar que

esta extensión quedaría reducida a una repetición exacta en caso de emplear

parámetros más restrictivos, (ej. Match=2, Mismatch=-5, Indel=-5).

Resultados y Discusión

MIDAS se presenta en su versión 1.0 (binario) para plataforma Windows 32 y 64 bits

(descargar midas_v1.0.zip del material suplementario) y su código fuente está escrito

totalmente en C++ STL compatible, de modo que puede ser compilado para otras plataformas

(Linux, Mac OS, etc.) empleando los compiladores y librerías adecuados. Es una aplicación de

consola, ideal para hacer procesamientos por lotes (batch) y encadenar a otras aplicaciones

(pipelines) mediante asignación de argumentos por línea de comandos. Los argumentos de la

aplicación son tres: nombre de fichero (genoma a escanear en formato FASTA o GBFF ambos

de tipo simple o multi-locus), tamaño máximo de la unidad repetida a escanear y esquema de

I
Patrón:aag (3 pb)
Posición SSR Exacto:571222
Posición Inicial SSR Inexacto:571222
Posición Final SSR Inexacto:571234
Cantidad de Coincidencias:13
Cantidad de Sustituciones:0
Cantidad de Ins/Del:0
Puntuación Alineamiento:26

gtgttagaagaaatttcccgtgaagaagaagaagcgggcatgacgttagg
 |||||||||||||
 gaagaagaagaag

II
Patrón:aag (3 pb)
Posición SSR Exacto:951043
Posición Inicial SSR Inexacto:951030
Posición Final SSR Inexacto:951055
Cantidad de Coincidencias:23
Cantidad de Sustituciones:1
Cantidad de Ins/Del:5
Puntuación Alineamiento:28

gcccaaccgtaaaagcggtaa-aag-agaa-attggaagaagaagaagccaaattcgattttg
 || ||| |||| | *|||||||||||||
 aagaagaagaaga—-agaagaagaagaag

parámetros del alineamiento para match, mismatch e indel, 4 en total, (2,-7,-7) (2,-5,-7) (2,-5,-

5) (2,-3,-5). Como salidas MIDAS devuelve tres ficheros de tipo texto que tienen como

nombre el fichero de entrada y las extensiones .xls, .dat y .mfaa (el .xls para abrir

directamente con Excel u otra aplicación de hojas de cálculo). El fichero .xls (Fig. 5) tiene

formato tabular y sus columnas son: Pattern (motivo), Length (tamaño de la unidad repetida),

Copies (No. de copias), Start (posición inicial en el genoma), End (posición final en el genoma),

Score (puntuación del alineamiento), Matches (bases coincidentes), Mismathces (bases no

coincidentes), Indel (inserciones y supresiones de bases), Inaccuracy (% de inexactitud del

repetido, medida de imperfección del mismo), 5' Flank (secuencia flanco al extremo 5´),

5'Entropy (entropía composicional del flanco 5´), 3' Flank (secuencia flanco al extremo 3´),

3'Entropy (entropía composicional del flanco 3´). Algunos autores de software para la

detección de repetidos en tándem reportan la entropía composicional de la región repetida,

siendo esta obvia y mayoritariamente baja. Lo que permite que un microsatélite pueda

utilizarse como marcador genético es las variaciones en el número de copias y los flancos que

permiten su amplificación en técnicas de PCR. MIDAS reporta la entropía de los flancos,

candidatos para diseñar los cebadores en técnica de PCR, dando una medida de cuán

informativos y únicos pueden ser éstos en el genoma.

El fichero con extensión .dat presenta en forma no tabular los datos anteriores y permite

visualizar el alineamiento de secuencia. Por último, el fichero con extensión .mfaa presenta

los microsatélites detectados en formato multi-fasta, en el cual la región del repetido está

marcada en minúscula y los flancos en mayúscula. Este formato permite hacer procesamiento

por lotes (batch) con blastn (opción de enmascaramiento explícito de sub-secuencias), para la

búsqueda de candidatos polimórficos intra- e inter- especies (Fig. 4). El encabezado de este

fichero presenta información como el número de acceso del GenBank, el motivo y las

posiciones en el genoma.

Fig. 4 - Formato del fichero con extensión .mfaa (multi-fasta con la región repetida marcada con letra

minúscula).

El genoma de Salmonella enterica (subsp. enterica Serovar Cubana str., código de acceso

NC_021818) tomado del repositorio del NCBI (https://www.ncbi.nlm.nih.gov/), fue

https://www.ncbi.nlm.nih.gov/

escaneado con MIDAS y los resultados se muestran en Fig. 5. Este genoma presenta

4,977,480 pares de bases (pb) y el tiempo de cómputo, incluida la creación de los ficheros de

salida, fue menor de 3 segundos. Un total de 95 SSRs fueron detectados, 2 hexa-, 14 tetra-,

70 tri-, 7 di- y 2 mono-nucleótidos (cantidad y unidad repetida respectivamente). Los

parámetros de detección fueron: unidad repetida <=6 y Match=2, Mismatch=-3, Indel=-3

(esquema tipo 4 como parámetros del alineamiento para la fase de extensión). Es notable el

porcentaje de SSRs con tri-nucleótidos como unidad repetida (74%), lo que hace sospechar de

su localización en regiones codificantes fundamentalmente, a pesar de que en los genomas

bacterianos predominan estas regiones. Los números de copia muestran un rango de 3 a 15,

con media 5.8, para un coeficiente de variación de 50%, resaltando entre estos los SSRs 1 y 2

(de hexa-nucleótidos con 14 copias), 37, 75 y 76 (de tri-nucleótidos con 13, 14 y 15 copias

respectivamente) y el 93 (de di-nucleótidos con 13 copias).

La entropía composicional media de los flancos 5´ y 3´ es de 1.86 y 1.88 respectivamente, los

cuales se pueden considerar elevadas por su cercanía a 2 (valor máximo). Entre estas destaca

curiosamente el flanco 3´del SSR No. 23 y el flanco 5´del SSr No. 30, ambos con entropía

composicional máxima.

Fig. 5 - Resultados de la detección de SSRs en el genoma de Salmonella enterica
(subsp. enterica Serovar Cubana str., código de acceso NC_021818). Esta
representación es la que muestra el fichero de salida con extensión .xls.

Accession: NC_021818.1

No. Pattern Length Copies Start End Score Matches Mismatces Indel Inaccuracy(%) 5' Flank 5'Entropy 3' Flank 3'Entropy

1 accacg 6 14 4124875 4124962 131 79 9 0 10.2 gcagcagtggctagcgggaa 1.82 tcatggtcacatacatccgg 1.99

2 accatg 6 14 4124875 4124963 133 80 9 0 10.1 gcagcagtggctagcgggaa 1.82 catggtcacatacatccgga 1.97

3 aaac 4 3 4539606 4539617 24 12 0 0 0 agaacctcttatgaaattca 1.85 tcagccttaatcttatgctt 1.82

4 aaat 4 3 1341668 1341679 24 12 0 0 0 tcaaactggtgatatatggg 1.9 gtgagagagttatatttccg 1.88

5 acgc 4 4 1895851 1895869 28 18 1 1 10 cgatctggcgcgtctctttg 1.79 ggcgccaggagagagactta 1.85

6 agcc 4 3 163898 163910 26 13 0 0 0 gcgacgcgtaccgaagcggt 1.85 gcttaccggaattaacatag 1.96

7 agcc 4 4 2430728 2430743 27 15 1 0 6.25 aggccgaaggtgccgagaat 1.85 gttccgcctggtaacgagta 1.99

8 agcc 4 5 3149711 3149730 30 18 2 0 10 taccggtagccccgccgcgg 1.71 tcgcctgacattgtcgcgtt 1.88

9 agcg 4 3 2599506 2599517 24 12 0 0 0 caaagaaacgccgatatgaa 1.76 gcctcgcgccaggacattaa 1.94

10 aggc 4 4 888148 888163 32 16 0 0 0 ttttttccttacgttagtta 1.6 cggccgccgcagagtgccgg 1.6

11 cctg 4 3 1043085 1043096 24 12 0 0 0 cgcttcctgaaaaagcgttc 1.99 gaagagcgacgtttgctggt 1.91

12 cgtt 4 3 2175064 2175075 24 12 0 0 0 gcgaggctaaaaacgcttcg 1.95 ttatcggtcaggcactggct 1.95

13 ctgg 4 4 197857 197875 33 18 1 0 5.26 ggtcggcgcaacggagcaaa 1.77 gatgcgcccggatctgacct 1.93

14 ctgg 4 3 836393 836407 30 15 0 0 0 aatgggcggagcgtcatcgc 1.91 gacctcgctataattgtgca 1.99

15 ctgg 4 9 3751746 3751782 29 29 8 1 23.7 gtgctgaccggtatttatat 1.91 gtcgtcgcgcaacaaaccac 1.85

16 ggtt 4 5 218111 218131 27 18 3 0 14.3 taaccttttggcaacgctac 1.95 agtgtatggcccgcgctgtt 1.88

17 aat 3 11 3213661 3213695 30 28 7 1 22.2 cctcatgaattcttggggaa 1.99 caaaagttgcgaaataaata 1.68

18 acc 3 9 480757 480784 31 23 5 0 17.9 gaatcctccatcggtgactg 1.99 taacatttccacaaagacct 1.77

19 acc 3 4 1138726 1138737 24 12 0 0 0 tgaccggcaccaatggcaag 1.9 caactactggcgcagtggag 1.94

20 acc 3 5 4039134 4039149 27 15 1 0 6.25 tgaagctacaaattcagggg 1.93 gcggggagcaggttctgcaa 1.86

21 acc 3 4 4670518 4670530 26 13 0 0 0 cagggtcaagcggcgcgggg 1.6 gcctcgcgtttcgtaaaatt 1.96

22 agc 3 8 237150 237175 35 24 1 2 11.1 cagagcggattgggtctggt 1.84 gatccactattccgcaatgc 1.94

23 agc 3 10 1119681 1119712 39 27 5 0 15.6 ccatcgaccaccacggcgac 1.68 cgattaataaggcgtccgtc 2

24 agc 3 4 1734328 1734340 26 13 0 0 0 gactgacgtttgagatttac 1.94 tctcgctggagggtccgcag 1.85

25 agc 3 4 4460210 4460221 24 12 0 0 0 gcgccattgctcatgaaaat 1.99 cgaatcggcctcctggagaa 1.95

26 atc 3 4 800165 800176 24 12 0 0 0 gcgtctcctcctcgcgacca 1.76 cagcggggagattccgggat 1.86

27 atc 3 5 902834 902850 29 16 1 0 5.88 gttatgatatactttttgca 1.74 agggcatcaacaagtccttc 1.97

28 atc 3 5 1615528 1615544 27 16 0 1 5.88 agcagaataccggacagaat 1.82 ggccgtaacctttcgggcct 1.88

29 atc 3 4 2479307 2479320 28 14 0 0 0 catccgatgtgctgggcagg 1.91 gccgccacagaggatgccga 1.78

30 atc 3 4 3964635 3964648 28 14 0 0 0 tgtagatatcgtcaccggac 2 cccagcgccagtagcacgct 1.82

31 atg 3 6 108398 108416 28 18 1 1 10 cgtcgacgtccgcatcggtc 1.85 aacgcagcttgtccgggttg 1.94

32 atg 3 4 219057 219068 24 12 0 0 0 ggcattccggtgcctgcgtt 1.79 tctttattgttggtgtacat 1.68

33 atg 3 4 1557419 1557430 24 12 0 0 0 tcgcgagcccccctgccaac 1.68 gcgatcacccacgcaaatat 1.88

34 ccg 3 4 320384 320397 28 14 0 0 0 gcgcattcaccagtagtcct 1.96 taacggattgccgccgctgg 1.93

35 ccg 3 6 792037 792054 31 17 1 0 5.56 ccattaggcctgccaacgta 1.96 atgccattaataataccgga 1.91

36 ccg 3 4 849993 850006 28 14 0 0 0 ggctttttccacgaccggca 1.94 ttacagataaccaggtgatc 1.96

37 ccg 3 13 917144 917184 31 33 5 4 21.4 caggcggctcagggagactt 1.91 atcagatgaacgtgttggtc 1.95

38 ccg 3 4 1354972 1354985 28 14 0 0 0 ccgcggtggcagcggcgcag 1.58 aggtatggcgcaggatgcgg 1.79

39 ccg 3 4 1510859 1510870 24 12 0 0 0 ggtgatggagcgcctggtcc 1.82 ggcatggctatcgtccggat 1.94

40 ccg 3 6 2201801 2201818 36 18 0 0 0 ggcgaaggccaaatttttta 1.95 tatgaaacgcaaaagcggca 1.82

41 ccg 3 5 3026100 3026116 29 17 0 1 5.56 gaacgcctccaccacctttc 1.76 gtatgcccttccatcaaaat 1.9

42 ccg 3 6 3493256 3493274 33 18 1 0 5.26 cgcagactgagtacgacata 1.94 gaaggtgttcagatcggcaa 1.93

43 ccg 3 5 3745335 3745351 29 16 1 0 5.88 tgagatcgataattcatcaa 1.87 atcgcagcaacgaatgcaga 1.86

44 ccg 3 4 3987068 3987081 28 14 0 0 0 tagatagcggcagcttcacg 1.99 atcgggccaaacaaaagcgg 1.77

45 ccg 3 4 4151511 4151523 26 13 0 0 0 ccgatcggtcccatgccagg 1.87 tgcggaatgcagaaggtttt 1.88

46 ccg 3 5 4370073 4370087 30 15 0 0 0 tcctccgtctgccgttccag 1.72 ggaaacctgctcgaccagcg 1.88

47 ccg 3 9 4465409 4465435 39 24 3 0 11.1 caactgtgccgtcaagttca 1.99 agtgaaattggctcagtaca 1.94

48 ccg 3 7 4591653 4591674 34 20 2 0 9.09 aatactcataaccaaagcga 1.74 gctcgcgtttaccgtcttct 1.74

49 ccg 3 4 4757355 4757367 26 13 0 0 0 gccaacctgccctgggtgtt 1.88 gaggaacccttcctgaagca 1.95

50 ccg 3 5 4818240 4818254 30 15 0 0 0 ctgcgcgctgggttttctga 1.78 ggatgtggtttgccgatgcg 1.78

51 ccg 3 4 4935620 4935632 26 13 0 0 0 tgcactgcgtcatggcgcta 1.95 attttgatacgtccgacgcg 1.99

52 ccg 3 6 4945192 4945211 30 18 2 0 10 cccgtcgcggcgaagcacag 1.74 aaagggcattccgttcaccc 1.96

53 cct 3 9 480759 480785 39 24 3 0 11.1 atcctccatcggtgactgca 1.96 aacatttccacaaagacctg 1.85

54 cgg 3 5 237802 237816 30 15 0 0 0 tcgcgcgccaaccggcgaac 1.72 aaatgaccaaatggtttaat 1.78

55 cgg 3 5 436672 436686 25 14 1 0 6.67 cgctatcggttccagataat 1.99 agagcagtgccatcaggtcg 1.94

56 cgg 3 4 493840 493852 26 13 0 0 0 ttcaaacgtcagacgttcca 1.95 agtgaatttgtagctcagca 1.95

57 cgg 3 4 506644 506656 26 13 0 0 0 gataggaatagcagaaagga 1.58 aaagtcgccccacaaatagt 1.87

58 cgg 3 6 778415 778432 29 17 0 1 5.56 tgaccctcttcacggatgac 1.96 atagtcagcgcgcattgcgg 1.96

59 cgg 3 11 1399278 1399310 31 27 6 1 20.6 aagaacgcatttgatgagcc 1.96 atctggtcgatgttcggtca 1.93

60 cgg 3 4 1420189 1420200 24 12 0 0 0 gtcgcgccaagccctggaac 1.85 gaagatgccaataaacccgt 1.91

61 cgg 3 5 1543714 1543729 27 15 1 0 6.25 cggtgataatgctgtggatt 1.86 ttagcggtccgctgctgatc 1.9

62 cgg 3 6 1598682 1598701 25 17 3 0 15 tcggcgatggccgggattgt 1.82 acctggcgattcgctatggc 1.95

63 cgg 3 10 1698496 1698527 34 27 5 1 18.2 gcgtatgacgtactgattgt 1.93 tctactcggcgcgcaaaggc 1.93

64 cgg 3 5 1828708 1828722 25 14 1 0 6.67 gagcatatagaggcttctgc 1.99 ttccgctatcgacgcggtga 1.95

Fig. 5 - (cont.). Resultados de la detección de SSRs en el genoma de
Salmonella enterica (subsp. enterica Serovar Cubana str., código de acceso
NC_021818). Esta representación es la que muestra el fichero de salida con

extensión .xls.

Conclusiones

Se presenta la aplicación MIDAS para la detección de microsatélites (SSRs) exactos e

inexactos. El algoritmo es totalmente combinatorio y tiene dos etapas o procedimientos

generales: 1ra detección de SSRs exactos por técnica de reconocimiento de patrones de texto

exactos y 2da extensión de los mismos mediante técnica de programación dinámica. Se

muestran los resultados, y un breve análisis, de la detección de estas secuencias en el

genoma de Salmonella entérica (subsp. entérica Serovar Cubana). La aplicación es eficiente e

intuitiva, presentando tiempos de ejecución bajos (4,977,480 pb en 3 seg.) y una cantidad

mínima de parámetros de entrada lo cual lo hace más asequible para el usuario. Presenta

formatos de salida descriptivos, tabulados y bioinformáticos que permiten una fácil y muy

completa visualización para el análisis de los resultados, permitiendo también el

encadenamiento de éstos con otras aplicaciones, por ejemplo para extracción de rasgos

anotados en otros repositorios o detección de polimorfismos mediante búsquedas extensivas

de tipo BLAST.

65 cgg 3 4 1898266 1898278 26 13 0 0 0 agcggcttgcgcctgtctga 1.88 ctgggctatctcttcatcgc 1.86

66 cgg 3 4 2477755 2477766 24 12 0 0 0 tccgatcagccgaaaccgct 1.91 aatgcgttacgcctgcggcg 1.93

67 cgg 3 4 2888933 2888945 26 13 0 0 0 tgttgtttcagcaaatcttc 1.86 aattgtaaataatagccctg 1.87

68 cgg 3 4 3883088 3883099 24 12 0 0 0 attctggttgtgccgtcata 1.91 gatggccggtgcggtgccgc 1.65

69 cgg 3 4 3929160 3929172 26 13 0 0 0 cgaaaacagaaacgccagaa 1.44 aaaccacgcgacgccgctag 1.77

70 cgg 3 4 4727117 4727130 28 14 0 0 0 gccatgatgctgctgatcat 1.99 cattcaagcaggtgctggtc 1.99

71 cgg 3 4 4786486 4786497 24 12 0 0 0 cgggaagccgagcaggaaac 1.56 agaccagtcccgccagcggc 1.72

72 cgt 3 4 749920 749931 24 12 0 0 0 aatacggcgccactaccggc 1.86 accggctggctggacaccgt 1.88

73 cgt 3 5 3347418 3347432 25 14 1 0 6.67 gacttaaacaatccgcccag 1.88 ggcgctggttgcatcacgaa 1.96

74 cgt 3 5 3602816 3602832 29 17 0 1 5.56 ccgaacagtttatcgataaa 1.91 catcaccggaaaaccctata 1.8

75 ctg 3 14 360753 360794 54 36 6 0 14.3 acaggctgcgtttgagccca 1.97 tagcgtttgctggcgttgtt 1.68

76 ctg 3 15 424437 424482 42 36 10 0 21.7 aagaaaaattcggtgtttcc 1.93 aagaaaaaactgaattcgac 1.71

77 ctg 3 4 1101330 1101342 26 13 0 0 0 tgatcccgacggtattcgag 1.99 gtagcgacgctatccagacg 1.95

78 ctg 3 4 1391866 1391877 24 12 0 0 0 tcctggcaggcgcggataaa 1.94 accgatcagcaaggattatt 1.96

79 ctg 3 10 1845945 1845976 34 26 6 0 18.8 tggcgcaggccaggccatca 1.86 gcgattgcgaaaaagttcga 1.93

80 ctg 3 6 1965950 1965968 28 17 2 0 10.5 atgccggatgtgattaccgg 1.96 tttgtcgcgctcggtcatgc 1.79

81 ctg 3 4 2822605 2822617 26 13 0 0 0 agcgtcgtgaagaagaaagc 1.8 aagtggaagaacgcactcgt 1.93

82 ctg 3 4 3247298 3247309 24 12 0 0 0 tactggcgatgatcatgcgc 1.99 gcgtcaatctcgtggctggt 1.88

83 ctt 3 5 226114 226129 27 15 1 0 6.25 gaagacggactgcatatcca 1.94 gaagatgcggaagatcatgc 1.88

84 ggt 3 4 198817 198830 28 14 0 0 0 atccatgaaacggcagacgc 1.88 ataaactcacctatgcgggc 1.97

85 ggt 3 4 3696472 3696483 24 12 0 0 0 gttgccacggcagggtcacc 1.88 tggcgtgattttgataccga 1.93

86 ggt 3 4 3742603 3742615 26 13 0 0 0 ggacccgccagggttttgtg 1.86 acaacgtgagcgtgcggaac 1.88

87 cg 2 6 1227443 1227455 26 13 0 0 0 ggcgcgccaggcgataattt 1.96 tcgtcgggtaagtcaatcgc 1.99

88 cg 2 6 1532556 1532568 26 13 0 0 0 caggcggcgctgaccgtggt 1.78 gaaaaactgggtattaatcc 1.91

89 cg 2 6 2255344 2255355 24 12 0 0 0 caactggcagacgcttatgc 1.99 aatcgacgcccggcagctat 1.94

90 cg 2 6 3019348 3019359 24 12 0 0 0 gacgaagatgaagcgtttgc 1.93 taactacgtcgtcaaattgc 1.95

91 cg 2 8 4109832 4109847 27 16 0 1 5.88 acccgctatcttacgcctgt 1.87 ttccggcatcggtatttgcg 1.88

92 cg 2 6 4111111 4111123 26 13 0 0 0 agctatcaccctaacgccaa 1.8 tggcacagcaggcaacggaa 1.78

93 cg 2 13 4540368 4540393 35 24 1 2 11.1 tgaagatatcagtctgctgc 1.99 gtatcggctatttgccgcag 1.95

94 a 1 11 3004616 3004626 22 11 0 0 0 agcgtcgggttttctttttc 1.68 tccattaaatacaaagtgtt 1.8

95 t 1 10 170557 170566 20 10 0 0 0 tccttagcatctgctaagga 1.99 gcctaaaattacctgattat 1.86

Referencias

1. Liang S, Watanabe H, Terajima J, Li C, Liao J, Tung S, Chiou C. Multilocus Variable-Number
Tandem-Repeat Analysis for Molecular Typing of Shigella sonnei. JOURNAL OF CLINICAL
MICROBIOLOGY Nov 2007;45(11):3574–80.
2. Martin P, Makepeace K, Hill S, Hood D, Moxon E. Microsat instability regulates transcription
factor binding and gene expression. Proc Natl Acad Sci USA. 2005; 102(10):3800-4.
3. Mitas M. Trinucleotide repeats associated with human disease. Nucleic Acids Res.
1997;25(12):2245-54.
4. Arzimanoglou I, Gilbert F, Barber H. Microsatellite instability in human solid tumors. Cancer
1998;82(10):1808-20.
5. Moxon ER, Rainey PB, Nowak MA, Lenski RE. Adaptive evolution of highly mutable loci in
pathogenic bacteria. Current Biology. 1994;4:24-33.
6. Moxon R, Bayliss C, Hood D. Bacterial contingency loci: the role of simple sequence DNA
repeats in bacterial adaptation. Annu. Rev.Genet. 2006;40:307–333.
7. Bayliss CD, Field D, Moxon ER. The simple sequence contingency loci of Haemophilus
influenzae and Neisseria meningitidis. J. Clin. Invest. 2007;107:657–662.
8. Grover A, Aishwarya V, Sharma PC. Searching microsatellites in DNA sequences: approaches
used and tools developed. Physiol Mol Biol Plants 2012 Jan–Mar; 18(1):11–19.
9. Leclercq S, Rivals E, Jarne P. Detecting microsatellites within genomes: significant variation
among algorithms. BMC Bioinformatics. 2007;8:125.
10. Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids
Res. 1999;27:573–580.
11. Mudunuri SB, Nagarajaram HA IMEx: Imperfect Microsatellite Extractor. Bioinformatics.
2007;23:1181–1187.
12. Merkel A, Gemmell N. Detecting short tandem repeats from genome data: opening the
software black box. Brief Bioinform. 2008;9:355–366.
13. Zhou H, Du L, Yan H. Detection of tandem repeats in DNA sequences based on parametric
spectral estimation. IEEE Trans Inf Technol Biomed. 2009;13:747–755.
14. Castelo AT, Martins W, Gao GR. TROLL: Tandem repeats occurrence locator.
Bioinformatics. 2002; 18:634–636.

Artículo original

MIDAS: Computer application for the identification of exact and
inaccurate microsatellites in genomic sequences.

MIDAS: Aplicación informática para la identificación de microsatélites
exactos e inexactos en secuencias genómicas.

Carlos M. Martínez Ortiz 1*

1Department of Biochemistry, ICPB “Victoria de Girón”, University of Medical Science,
La Habana, Cuba

*email address: cmmo@infomed.sld.cu

ABSTRACT
Microsatellites are tandem repeat, frequent and diverse short sequences in the
genomes of all species, constituting important markers in multiple areas of genomics-
based research. Associations of these markers have been found in a significant number
of human diseases. Vaccine development has shown how pathogens can evade the
immune response by simply altering the composition of repeat sequences in their
genes. There are numerous computer applications for the detection of these
sequences, but they do not meet all expectations due to the divergence of criteria and
approaches applied to solving the problem of their detection. MIDAS implements a
non-heuristic solution based on two combinatorial algorithms in series: the first one
detects exact microsatellites, and the second one, if the model parameters allow it,
extends the sequences to their optimal inaccurate version. The application has as input
the genomic sequence in GBFF or FASTA format and its output provides the
microsatellite positions in the genomic sequence, as well as sizes, alignments, flanks
and other statistics. The algorithm is highly efficient and comprehensive, detecting all
possible repeat sequences regardless of their nucleotide composition.
Keywords: SSR; microsatellite; molecular marker; data mining; algorithms

RESUMEN

Los microsatélites son secuencias cortas repetidas en tándem, frecuentes y diversas en
los genomas de todas las especies, constituyendo importantes marcadores en
múltiples áreas de investigación basadas en la genómica. Se han encontrado
asociaciones de estos marcadores a un número importante de enfermedades en
humanos. En el desarrollo de vacunas se ha demostrado cómo los patógenos pueden
evadir la respuesta inmune simplemente alterando la composición de las secuencias
repetidas en sus genes. Existen numerosas aplicaciones informáticas destinadas a la
detección de estas secuencias, no obstante éstas no cubren todas las expectativas

mailto:cmmo@infomed.sld.cu

debido a la divergencia de criterios y enfoques aplicados a la solución del problema de
su detección. MIDAS implementa una solución no heurística basada en dos algoritmos
combinatorios en serie: el primero detecta microsatélites exactos, y el segundo, de
permitirlo los parámetros del modelo, extiende las secuencias a su versión inexacta
óptima. La aplicación tiene como entrada la secuencia genómica en formato GBFF o
FASTA y su salida brinda las posiciones de los microsatélites en la secuencia genómica,
así como tamaños, alineamientos, flancos, posiciones, etc. El algoritmo tiene una
elevada eficiencia y es exhaustivo, detectando todas las posibles secuencias repetidas
independientemente de su composición nucleotídica.
Palabras Clave: SSR, microsatélite, marcador molecular, minería de datos,
algoritmo.

Introduction

Microsatellites are short tandem repeat sequences (known by their acronyms STR for
short tandem repeats or SSR for simple sequence repeat) with repetition units
between 1 and 6 bps (some authors extend their definition up to 8 bps), which can be
tracts of repetitions ranging from a few copies to hundreds of copies. These sequences
are abundant in the eukaryotic genomes, mainly associated with, but not exclusive, to
non-coding regions. They are also present in prokaryotes genomes, constituting
important markers for the genotyping, classification and epidemiological control of
species of interest (1). Among the main motivations for the study of these sequences
are their participation in processes such as recombination and transcription regulation
(2), and when found in coding regions they cause neurodegenerative conditions such as
fragile X syndrome, Huntington's disease (HD), spinobulbar-muscular atrophy (SBMA),
Haw River syndrome (DRPLA), spinocerebellar ataxias (SCA1, SCA2, SCA3, SCA6, SCA7,
and SCA17), as well as some types of cancer (3,4). Vaccine development has shown how
pathogens can evade the immune response by simply altering the composition of
repeat sequences in their genes (5). It has been proved how microsatellite expansion
and contraction in bacteria can regulate expression of specific genes or affect its
coding sequence resulting in phase or antigenic variation. This is particularly
advantageous in pathogenic bacteria at contingency loci, as a way to evade the
defense strategies of its host (6,7) . As genetic markers they have been widely used in
genetic population studies due to their high polymorphism as a consequence of their
high mutation rates, allelic diversity, co-dominance and being selectively neutral. Its
use in forensic medicine for the identification of persons and degree of kinship is also
well known.

The microsatellites have been experimentally identified from genomic libraries of
organisms of interest, inspecting thousands of clones by hybridization with
microsatellite probes. In addition to their high cost, these methods contain the bias
inherent in the composition of pre-selected sequence patterns. With the
modernization and lower cost of sequencing technologies, along with collaborations
for the public exchange of sequences such as GenBank, EMBL, DDBJ, among others,
bioinformatics methods have taken supremacy, giving rise to numerous applications
that implement algorithms oriented to this end. However, the very dynamics of these
sequences, subjected to different evolutionary forces, their particular roles, as well as
the particular interest of researchers in one or the other depending on their
composition, general features and biological purpose, has led these bioinformatics
applications to implement different computational criteria, and consequently, to show
variations in their results (8,9). To cite a few examples, we find applications that extend
their detection system to repeat regions with longer periodicities (i.e. minisatellites
and satellites); others detect only exact repeats or with minimal variations defined a
priori; others use preset dictionaries of microsatellites or detect regions of low
complexity and then confirm those using established rules. Applications such as TRF,
IMEx, START, SRF or TROLL (10, 11, 12, 13, 14) are examples of software widely used for
mining these kind of sequences, implemented with different algorithmic criteria. The
conclusion is that there is not a unique solution, the spectrum of applications is
diversified according to the types of SSR of interest and the computational methods
used, being reflected in result’s differences.

The application we present, MIDAS (MIcrosatellite Detection Assistant System), fulfills
with the following general principles: 1st only exact or inaccurate microsatellites are
detected (i.e. not composite nor complex tandem repeats with patterns between 1-8
bp); 2nd exact microsatellites are detected and then extended if their flanks show a
high sequence similarity with the repetition pattern; 3st the exact detection is
exhaustive (i.e. all possible patterns that could make up an SSR are taken into
account); and 4th extension is done by local alignment providing an optimal solution
according to pre-determined alignment parameters.

The following section, Methods, describes in detail the sequence of steps followed by
the application, algorithmic fundamentals, particular solution proposed to the
problems of inaccurate detection of SSRs, and examples of detection of exact and
inaccurate SSRs. It also describes the parameters and input - output formats of the
application.

In the Results section, it is exhibited and analyzed the outputs corresponding to the
detection of SSRs for Salmonella enterica (subsp. enterica Serovar Cubana). The input
parameters and output formats of the application are described too.

Methods

The procedure starts with the detection of an exact repeat sequence, i.e. without
substitutions, insertions or deletions of bases. For this purpose, the Aho-Crasick
automaton (ACA) is implemented in the first stage, which finds all the occurrences of
words in a text from the construction of a word tree. In the proposed implementation,
a tree is constructed that contains all the words, of sizes between 1-8 nucleotides (one
of the parameters of the application allows setting the upper limit of this range),
formed by combinations of the 4 nucleotide bases, and with the specificity that they
do not themselves constitute repeat sequences (e.g. aaaaaa) and excluding its cyclic
permutations. ACA computes the search for these occurrences efficiently in time
proportional to the size of the text and without pre-processing it. The occurrences of
adjacent identical words are spliced and their position recorded, establishing the exact
repeats or "seeds" of possible inaccurate repeats. With this step, the algorithm
behaves like any other application that detects exact repetitions in an exhaustive and
deterministic way (Fig. 1 (I)). The limitations of programs that detect only these
sequences are obvious in terms of the biological purpose pursued. Let's think, just as
an example, of a repeat that has a simple modification in a base, in which case the
program would detect two repeats of the same class separated by a base, when in fact
they were part of the same repeat. The generalized version of this problem creates an
infinite number of situations that are less trivial and complicated to exemplify, and
constitutes the main motivation for the proposed solution. In short, it is a matter of
detecting an exact repeat "seed", with a reasonable number of repetitions not
occurring by mere chance, from which to detect, if it exist, the inaccurate repeat one
of which it is part. If there is no such approximate or inaccurate extension, the
corresponding exact repetition will be reported, in this case free of ambiguity.

Fig. 1- Sequence of steps of the algorithm implemented in MIDAS in its two
fundamental stages. (I) Detection of exact microsatellites (seeds), using word tree

(Aho-Corasick) and subsequent splicing of occurrences. (II) Seed extension and
detection of possible inaccurate microsatellite using dynamic programming.

The second stage of the algorithm solves the problem described above. The aim is to
search for the possible inaccurate candidate from the flanks of the exact seed
previously detected. Dynamic programming, i.e. the local alignment of the problem
sequence, including flanks, against the repetition pattern, is used at this stage using
the efficient wraparound technique (WDP, wraparound dynamic programming) (Fig.
1(II), Fig. 2). As is typical in sequence alignment methods, the optimal solution is
dependent on the alignment parameters that define the weightings by coincidence,
substitution or insertion/deletion of bases, which will ultimately determine the degree
of conservation of the reported microsatellite.

Fig. 2. Recurrence that defines the algorithm of the second stage in MIDAS. It is a
classic local alignment applying wraparound technique. Based on the repetition of

the pattern, the gain in terms of time and space is established by allowing to align the
problem sequence only with the pattern of the microsatellite. Match, mismatch (μ)

and indel (δ) are the parameters for matches, substitutions or insertion/deletion
respectively.

With respect to the extension per se there are two problems, which appear little
explicit in the applications reported by other authors using sequence alignment, and
which must be clarified and reasonably solved: 1st, how far do we extend on the flanks
of sequence to report the alignment? When the sequence under study is relatively
short the problem disappears if we use the all the sequence to find the optimal local
repeat subsequence. In most cases this is not possible, think for example of a human
chromosome with 200 million of base pairs, and thousands of candidate
microsatellites in different regions of the genome. The solution presented by MIDAS is
to use flank sizes of 3 times the seed size, and if the computed alignment covers more
than 90 percent of the chosen sequence, the flank extension process is repeated and
the sequence is realigned. In this way, we guarantee that the region to be extended to
look for the inaccurate repeat is dynamic and does not exclude regions where it can
continue to be extended. 2nd, How to evaluate if an alignment is adequate to decide to
select it? This problem is inherent to all methods of sequence alignment and has been
addressed in a variety of ways depending on the context. In applications for tandem
repeats, some authors use the alignment score as selection criteria (this is the case of
TRF). This approach is somewhat arbitrary, bearing in mind that while the score
depends on the parameters of alignment, it also depends on the size of the alignment,
and a certain bias is established that favors larger SSRs over shorter ones, being both
equally important. In the case of MIDAS this problem disappears taking into account
that the starting point is an exact SSR and the extension of the same will fall exclusively
on the alignment parameters, in other words the application does not have the need
to choose a priori an SSR establishing a cut-off value from the alignment score.

The alignment parameters are by default quite restrictive (Match=2, Mismatch=-5,
Indel=-5), although the user has the option of using other more relaxed scoring
schemes (4 in total) and then could debug SSRs at will by visual inspection. Figure 3
exemplifies the above with the results of the detection of two SSR in the same genome
and with the same scoring scheme.

Fig. 3- Output of the program for two microsatellites located in two
positions (separated by 379821 bp) of the genome vibrio cholerae IEC224

(NC_016944). The sequence pattern is the same in both as well as the
number of exact repeat units (aag)4. The sequence in green is the exact SSR,

in yellow the inaccurate extension and the rest are flanks. The alignment
parameters were (Match=2, Mismatch=-3, Indel=-3). In (I) the program

extended to a guanine (g) coincident in left flank, however in (II) there is a
much greater extension that includes a substitution and five insertions or
deletions of bases. Note that this extension would be reduced to an exact

repetition if more restrictive parameters were used, (e.g. Match=2,
Mismatch=-5, Indel=-5).

Results and Discussion

MIDAS is presented in its version 1.0 (binary) for Windows 32 and 64 bits platform
(download v1.0.zip of the supplementary material) and its source code is written
entirely in C++ STL compatible, so that it can be compiled for other platforms (Linux,
Mac OS, etc.) using the appropriate compilers and libraries. It is a shell application,
ideal for batch processing and linking to other applications (pipelines) by command
line argument assignment. The application's arguments are three: 1th file name
(genome to be scanned in FASTA or GBFF format, both single or multi-locus), 2nd
maximum size of the repeat unit to be scanned and 3rd alignment parameter scheme

for match, mismatch and indel, 4 in total, (2,-7,-7) (2,-5,-5,-7) (2,-5,-5) (2,-3,-5). As
output, MIDAS returns three text files named equal the input file and with extensions
.xls, .dat and .mfaa (the.xls could open directly with Excel or another spreadsheet
application). The .xls file (Fig. 5) is in tabular format and its columns are: Pattern,
Length (period), Start (initial position in the genome), End (final position in the
genome), Score (alignment score), Matches (matching bases), Mismathces (non-
matching bases), Indel (insertions and deletions of bases), Inaccuracy (% of inaccuracy
of the repeat, measurement of imperfection of the repeat), 5' Flank (flank sequence to
the 5’ end), 5' Entropy (compositional entropy in 5´ flank), 3' Flank (flank sequence to
the 3´ end), 3' Entropy (compositional entropy in 3´ flank). Some developers of
software for tandem repeats detection report the compositional entropy of the repeat
region, this being obvious and mostly low. What allows a microsatellite to be used as a
genetic marker is the variations in the number of copies and the uniqueness of flanks
for its amplification in PCR techniques. MIDAS reports the entropy of the flanks, being
these candidates for primer design in PCR technique, and giving a measure of how
informative and unique they may be in the genome.

The file with .dat extension presents the previous data in a non-tabular form and
allows the sequence alignment to be displayed. Finally, the file with extension .mfaa
presents the detected microsatellites in multi-fasta format, with the repeat region
marked in lower case and the flanks in upper case. This format allows batch processing
with blastn (in Filter and Masking Options, mask lowercase letters checkbox), for the
search of intra- and inter-species polymorphic candidates (Fig. 4). The header of this
file presents information such as the GenBank access number, the pattern and the
positions in the genome.

Fig. 4-File format with extension .mfaa (multi-fasta with repeat region marked with
lowercase letter).

The genome of Salmonella enterica (subsp. enterica Serovar Cubana str., access code
NC_02181818) taken from the NCBI repository (https://www.ncbi.nlm.nih.gov/), was
scanned with MIDAS and the results are shown above (Fig. 5). This genome has
4.977.480 base pairs and the computation time, including the creation of the output
files, was less than 3 seconds. A total of 95 SSRs were detected, 2 hexa-, 14 tetra-, 70
tri-, 7 di- and 2 mono-nucleotides (number and repeat unit respectively) The detection
parameters were: repeat unit <=6 and Match=2, Mismatch=-3, Indel=-3 (type 4 scheme
of alignment parameters for the extension phase). The percentage of SSRs with tri-
nucleotides (74%) is notable, which makes it suspicious of their location in coding
regions, despite the fact that these regions predominate in bacterial genomes. The

https://www.ncbi.nlm.nih.gov/

copy numbers show a range of 3 to 15, with an average of 5.8, for a coefficient of
variation of 50%, highlighting among these the SSRs numbers 1 and 2 (hexa-
nucleotides with 14 copies), 37, 75 and 76 (of tri-nucleotides with 13, 14 and 15 copies
respectively) and 93 (of di-nucleotides with 13 copies).

Fig. 5- Results of the detection of SSRs in the genome of Salmonella enterica (subsp.
entericaSerovar Cubana str., access code NC_021818). This representation is the one shown in

the output file with .xls extension.

Fig. 5- (cont.) Results of the detection of SSRs in the genome of Salmonella enterica (subsp.
entericaSerovar Cubana str., access code NC_021818). This representation is the one shown in

the output file with .xls extension.

The average compositional entropy of the 5´ and 3´ flanks is 1.86 and 1.88 respectively,
which can be considered high due to their proximity to 2 (maximum value). Among
these, the most outstanding are 3´ flank of SSR No. 23 and 5´ flank of SSR No. 30, both
with maximum compositional entropy.

Conclusions

In this paper we present MIDAS, an application for detection of accurate and
inaccurate microsatellites (SSRs). The algorithm is fully combinatorial and has two
general stages or procedures: 1st detection of exact SSRs by the technique of exact text
patterns recognition and 2nd extension of them by means of dynamic programming
technique. The result, and a brief analysis, of these sequences in the genome of
Salmonella enterica (subsp. enterica Serovar Cubana) are shown. The application is
efficient and intuitive, featuring low runtimes (processing 4,977,480 bp in 3 sec.) and a
minimum number of input parameters which makes it more users friendly. It presents
descriptive, tabulated and bioinformatic output formats that allow an easy and very
complete visualization for the analysis of the results, also allowing the linking of these
with other applications, for example extraction of annotated features in GenBank or
detection of polymorphisms through extensive BLAST database searches.

65 cgg 3 4 1898266 1898278 26 13 0 0 0 agcggcttgcgcctgtctga 1.88 ctgggctatctcttcatcgc 1.86

66 cgg 3 4 2477755 2477766 24 12 0 0 0 tccgatcagccgaaaccgct 1.91 aatgcgttacgcctgcggcg 1.93

67 cgg 3 4 2888933 2888945 26 13 0 0 0 tgttgtttcagcaaatcttc 1.86 aattgtaaataatagccctg 1.87

68 cgg 3 4 3883088 3883099 24 12 0 0 0 attctggttgtgccgtcata 1.91 gatggccggtgcggtgccgc 1.65

69 cgg 3 4 3929160 3929172 26 13 0 0 0 cgaaaacagaaacgccagaa 1.44 aaaccacgcgacgccgctag 1.77

70 cgg 3 4 4727117 4727130 28 14 0 0 0 gccatgatgctgctgatcat 1.99 cattcaagcaggtgctggtc 1.99

71 cgg 3 4 4786486 4786497 24 12 0 0 0 cgggaagccgagcaggaaac 1.56 agaccagtcccgccagcggc 1.72

72 cgt 3 4 749920 749931 24 12 0 0 0 aatacggcgccactaccggc 1.86 accggctggctggacaccgt 1.88

73 cgt 3 5 3347418 3347432 25 14 1 0 6.67 gacttaaacaatccgcccag 1.88 ggcgctggttgcatcacgaa 1.96

74 cgt 3 5 3602816 3602832 29 17 0 1 5.56 ccgaacagtttatcgataaa 1.91 catcaccggaaaaccctata 1.8

75 ctg 3 14 360753 360794 54 36 6 0 14.3 acaggctgcgtttgagccca 1.97 tagcgtttgctggcgttgtt 1.68

76 ctg 3 15 424437 424482 42 36 10 0 21.7 aagaaaaattcggtgtttcc 1.93 aagaaaaaactgaattcgac 1.71

77 ctg 3 4 1101330 1101342 26 13 0 0 0 tgatcccgacggtattcgag 1.99 gtagcgacgctatccagacg 1.95

78 ctg 3 4 1391866 1391877 24 12 0 0 0 tcctggcaggcgcggataaa 1.94 accgatcagcaaggattatt 1.96

79 ctg 3 10 1845945 1845976 34 26 6 0 18.8 tggcgcaggccaggccatca 1.86 gcgattgcgaaaaagttcga 1.93

80 ctg 3 6 1965950 1965968 28 17 2 0 10.5 atgccggatgtgattaccgg 1.96 tttgtcgcgctcggtcatgc 1.79

81 ctg 3 4 2822605 2822617 26 13 0 0 0 agcgtcgtgaagaagaaagc 1.8 aagtggaagaacgcactcgt 1.93

82 ctg 3 4 3247298 3247309 24 12 0 0 0 tactggcgatgatcatgcgc 1.99 gcgtcaatctcgtggctggt 1.88

83 ctt 3 5 226114 226129 27 15 1 0 6.25 gaagacggactgcatatcca 1.94 gaagatgcggaagatcatgc 1.88

84 ggt 3 4 198817 198830 28 14 0 0 0 atccatgaaacggcagacgc 1.88 ataaactcacctatgcgggc 1.97

85 ggt 3 4 3696472 3696483 24 12 0 0 0 gttgccacggcagggtcacc 1.88 tggcgtgattttgataccga 1.93

86 ggt 3 4 3742603 3742615 26 13 0 0 0 ggacccgccagggttttgtg 1.86 acaacgtgagcgtgcggaac 1.88

87 cg 2 6 1227443 1227455 26 13 0 0 0 ggcgcgccaggcgataattt 1.96 tcgtcgggtaagtcaatcgc 1.99

88 cg 2 6 1532556 1532568 26 13 0 0 0 caggcggcgctgaccgtggt 1.78 gaaaaactgggtattaatcc 1.91

89 cg 2 6 2255344 2255355 24 12 0 0 0 caactggcagacgcttatgc 1.99 aatcgacgcccggcagctat 1.94

90 cg 2 6 3019348 3019359 24 12 0 0 0 gacgaagatgaagcgtttgc 1.93 taactacgtcgtcaaattgc 1.95

91 cg 2 8 4109832 4109847 27 16 0 1 5.88 acccgctatcttacgcctgt 1.87 ttccggcatcggtatttgcg 1.88

92 cg 2 6 4111111 4111123 26 13 0 0 0 agctatcaccctaacgccaa 1.8 tggcacagcaggcaacggaa 1.78

93 cg 2 13 4540368 4540393 35 24 1 2 11.1 tgaagatatcagtctgctgc 1.99 gtatcggctatttgccgcag 1.95

94 a 1 11 3004616 3004626 22 11 0 0 0 agcgtcgggttttctttttc 1.68 tccattaaatacaaagtgtt 1.8

95 t 1 10 170557 170566 20 10 0 0 0 tccttagcatctgctaagga 1.99 gcctaaaattacctgattat 1.86

References

1. Liang S, Watanabe H, Terajima J, Li C, Liao J, Tung S, Chiou C. Multilocus Variable-
Number Tandem-Repeat Analysis for Molecular Typing of Shigella sonnei. JOURNAL OF
CLINICAL MICROBIOLOGY Nov 2007;45(11):3574–80.
2. Martin P, Makepeace K, Hill S, Hood D, Moxon E. Microsat instability regulates
transcription factor binding and gene expression. Proc Natl Acad Sci USA. 2005;
102(10):3800-4.
3. Mitas M. Trinucleotide repeats associated with human disease. Nucleic Acids Res.
1997;25(12):2245-54.
4. Arzimanoglou I, Gilbert F, Barber H. Microsatellite instability in human solid tumors.
Cancer 1998;82(10):1808-20.
5. Moxon ER, Rainey PB, Nowak MA, Lenski RE. Adaptive evolution of highly mutable
loci in pathogenic bacteria. Current Biology. 1994;4:24-33.
6. Moxon R, Bayliss C, Hood D. Bacterial contingency loci: the role of simple sequence
DNA repeats in bacterial adaptation. Annu. Rev.Genet. 2006;40:307–333.
7. Bayliss CD, Field D, Moxon ER. The simple sequence contingency loci of Haemophilus
influenzae and Neisseria meningitidis. J. Clin. Invest. 2007;107:657–662.
8. Grover A, Aishwarya V, Sharma PC. Searching microsatellites in DNA sequences:
approaches used and tools developed. Physiol Mol Biol Plants 2012 Jan–Mar; 18(1):11–
19.
9. Leclercq S, Rivals E, Jarne P. Detecting microsatellites within genomes: significant
variation among algorithms. BMC Bioinformatics. 2007;8:125.
10. Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic
Acids Res. 1999;27:573–580.
11. Mudunuri SB, Nagarajaram HA IMEx: Imperfect Microsatellite Extractor.
Bioinformatics. 2007;23:1181–1187.
12. Merkel A, Gemmell N. Detecting short tandem repeats from genome data:
opening the software black box. Brief Bioinform. 2008;9:355–366.
13. Zhou H, Du L, Yan H. Detection of tandem repeats in DNA sequences based on
parametric spectral estimation. IEEE Trans Inf Technol Biomed. 2009;13:747–755.
14. Castelo AT, Martins W, Gao GR. TROLL: Tandem repeats occurrence locator.
Bioinformatics. 2002; 18:634–636.

