TRABAJOS ORIGINALES

Evaluación del pronóstico de mortalidad por los índices de gravedad APACHE II y IV

Assessment of the mortality prognosis by the APACHE II and IV severity rates

Dr. Abdel Elicio Peña Quijada, Dr. Amaury Chang Cruz, Dr. Armando Bárbaro Pardo Núñez, Dr. Teddy Osmin Tamargo Barbeito, Dra. Rosa Jiménez Paneque.

Hospital Universitario Clínico Quirúrgico "Hermanos Ameijeiras". La Habana. Cuba.

RESUMEN

Introducción: Los sistemas pronósticos son herramientas que utilizadas racionalmente superan la experiencia individual de cualquier médico, aplicando al juicio clínico sin suplantarlo, un necesario orden de prioridades, profundidad y objetividad estadística para la toma de decisiones médicas y administrativas, no se puede considerar ningún sistema pronóstico como terminado, por lo que debe evaluarse su desempeño en tiempo real. Los pronósticos originales son continuamente ajustados y actualizados con el decursar del tiempo, variándose las decisiones basadas en estas predicciones.

Objetivos: Validar el uso de nuevos modelos pronósticos de mortalidad basados en los scores de gravedad APACHE II y IV.

Métodos: Se realizó un estudio de cohorte de carácter retrospectivo, con 507 pacientes de la unidad de cuidados intensivos del Hospital Universitario "Hermanos Ameijeiras"; el pronóstico se estableció por regresión logística múltiple, comprobándose la calibración de los modelos por el test de Hosmer Lemeshow y la razón estandarizada de mortalidad, la discriminación se obtuvo de las curvas características operativas del receptor.

Resultados: Las variables más influyentes en la mortalidad fueron los scores de gravedad APACHE II y IV. Los modelos en general lograron calibración por algún método y todos tuvieron excelente discriminación. No se encontraron diferencias significativas en el pronóstico de los modelos APACHE II y APACHE IV.

Conclusiones: Todos los modelos validaron su utilidad pronóstica en la UCI, equiparándose con los utilizados en todo el mundo.

Palabras clave: APACHE IV, regresión logística múltiple, scores pronósticos de mortalidad.

ABSTRACT

Introduction: The prognostic systems are tools that if are rationally used they overcome the individual experience of any physician, applying to clinical criterion but without to take its place, a necessary order of priorities, depth and statistic objectivity for medical and administrative decisions-making, any prognostic system may be taking into account as something finished, thus it is essential to assess its performance in a real time. The original prognosis is continuously fitted over the time, changing the decisions based on these predictions.

Objectives: To validate the use of new prognostic models of mortality based on the APACHE II and IV severity scores.

Methods: A retrospective and cohort study was conducted in 507 patients admitted in the intensive care unit of the Hermanos Ameijeiras" Clinical Surgical University Hospital; prognosis was established by multiple logistic regression, verifying the calibration of models by Hosmer Lemeshow' test and the mortality standardized ratio; discrimination was achieved from the characteristic functional curves of the recipient.

Results: The variables with greater influence on mortality were APACHE II and IV severity scores. In general, the models achieved calibration by some method and all had an excellent discrimination. There were not significant differences in the prognosis of the APACHE II and APACHE IV models.

Conclusions: All the forms validated its prognostic usefulness in the ICU compared with those used at world scale.

Key words: APACHE IV, multiple logistic regression, mortality prognostic scores.

INTRODUCCIÓN

Las unidades de cuidados intensivos (UCI) representan uno de los componentes más importantes en los sistemas modernos de salud. Es conocido que las características de los pacientes que se atienden cambian constantemente, con una amplia gama de patologías que requieren cuidados críticos. Esto acarrea la necesidad de evaluar la efectividad de la atención médica a este tipo de pacientes y predecir su mortalidad, lo que determina el surgimiento de modelos para la evaluación pronóstica. En la práctica, se incrementa el uso de modelos pronósticos matemáticos para interpretar y predecir las dinámicas y controles en la toma de decisiones. En cuidados intensivos, cuando se menciona algún índice pronóstico de mortalidad, se hace referencia a un sistema que estima la probabilidad que tiene un paciente de egresar vivo o fallecido.

En 1983, una conferencia de consenso sobre cuidados críticos de los Institutos Nacionales de Salud, en los Estados Unidos, formuló las siguientes recomendaciones: "La combinación de enfermedades que comprometen la vida, recursos limitados, técnicas terapéuticas y de monitoreo invasivas y los altos costos imponen la necesidad de contar con datos adecuados en los cuales basar las decisiones y establecer prioridades. Las investigaciones deben estar destinadas a determinar de qué manera las unidades de terapia intensiva pueden ser utilizadas para el máximo beneficio de los pacientes críticos. Tales investigaciones deben incluir procedimientos destinados a seleccionar a los pacientes, priorizando el ingreso a pacientes que pueden beneficiarse

de la atención en estas unidades y excluyendo a aquéllos que no tienen posibilidad de beneficiarse con el tratamiento intensivo. En este sentido, se deben estimular las investigaciones destinadas a desarrollar índices pronósticos en función de las condiciones de admisión, diagnósticos y otras variables fisiológicas agudas".¹

Los sistemas pronósticos en cuidados intensivos se han desarrollado en parte para satisfacer los requerimientos precedentes. Son instrumentos que predicen la evolución de los pacientes basándose en parámetros fisiológicos que se correlacionan con la evolución, el análisis estadístico o la opinión de expertos. Estas herramientas utilizadas racionalmente superan la experiencia individual de cualquier médico, aplicando al juicio clínico sin suplantarlo, un necesario orden de prioridades, profundidad y objetividad estadística para la toma de decisiones médicas y administrativas.²

En 1981 William Knaus, en la Universidad George Washington, desarrolló la primera versión del APACHE, posteriormente en 1985 se publica la versión APACHE II, en 1991 APACHE III y en 2006 APACHE IV. Todas las versiones con un grado de complejidad creciente basan sus predicciones en modelos de regresión logística múltiple. La variable común a todos los modelos es el score de gravedad APACHE determinado por la suma de tres componentes básicos: la edad, valoración de enfermedades crónicas y el Acute Physiology Score (APS). De todas las versiones el APACHE II es la más divulgada y utilizada en todo el mundo, por su sencilla aplicación y alto nivel predictivo. La última versión, más compleja, representa la actualidad de los sistemas APACHE, con varias aplicaciones predictivas importantes: probabilidad de morir en la UCI y el hospital, probabilidad de egresar vivo en las próximas 48 horas, prolongación de la estadía en UCI y hospitalaria, la obtención de un Therapeutic Intervention Scoring System (TISS), determinar el riesgo del tratamiento activo, la monitorización hemodinámica invasiva y duración de la ventilación mecánica, lo cual hace que supere con creces a sus predecesores. El futuro de los sistemas APACHE conduce a la sofisticación. La CERNER Corp. en lo que consideran como critical outcomes desarrolla disímiles aplicaciones predictivas entre las que se incorpora el proyecto IMPACT, este enfoca un sistema de riesgo ajustado por el Mortality Probability Model III (MPM-III) combinado con las predicciones del APACHE IV. La compañía posee en estos momentos una base datos con actualización diaria, que sobrepasa el millón de pacientes estadounidenses. Pretenden reajustar el puntaje de las variables incluidas en el APS, incorporar nuevas mensuraciones de laboratorio vía digital e incluir información genómica de sus pacientes a través la herramienta digital Path Net Helix™ Solution.^{3,4-8}

En nuestro país se han realizado varios estudios alrededor de los índices pronósticos adecuándolos a las condiciones de las unidades cubanas, tanto las destinadas a pacientes adultos como pediátricos. Se han elaborado estudios sobre MPM II, Simplified Acute Physiology Score (SAPS) y escasas validaciones del APACHE II, siendo en ocasiones solo meras descripciones del comportamiento del índice en diferentes patologías, a partir de datos de los estudios originales.⁹⁻²⁷

En nuestra UCI se validó en el año 1987 el sistema APACHE II, y desde entonces se utiliza periódicamente adaptado a las condiciones y el tipo de pacientes que se atiende. También se desarrolló un sistema computarizado basado en los resultados de este trabajo que sirve para calcular la probabilidad de morir al ingreso de cada paciente. En el año 2003 se realizó otra investigación en la propia UCI para demostrar si el uso del APS del APACHE II podía distinguir por sí solo la probabilidad de morir de forma evolutiva.²⁸

Es necesario precisar que no se puede considerar ningún sistema pronóstico como terminado, por lo que debe evaluarse su desempeño en tiempo real. Los pronósticos originales son continuamente ajustados y actualizados con el decursar del tiempo, variándose las decisiones basadas en estas predicciones. El comentario se ajusta a las serias críticas realizadas al desempeño del sistema APACHE II.²⁹⁻³²

Dada la importancia de los índices pronósticos, la necesidad de renovar el modelo APACHE II y al no existir hasta el momento estudios publicados sobre el APACHE IV en Cuba, nos propusimos validar el uso de nuevos modelos pronósticos basados en los índices de gravedad APACHE II y IV, para la estimación de mortalidad en la unidad de cuidados intensivos del Hospital Clínico Quirúrgico "Hermanos Ameijeiras", asimismo, analizar la influencia de las variables incluidas en los modelos predictivos sobre el riesgo de morir; estimar la probabilidad de morir por los modelos adaptados de APACHE II y IV; validar los índices pronósticos propuestos e identificar entre los modelos, el de mejor pronóstico de mortalidad.

MÉTODOS

Se realizó un estudio de cohorte de carácter retrospectivo, con pacientes egresados de la unidad de cuidados intensivos del Hospital Clínico Quirúrgico "Hermanos Ameijeiras", de La Habana. El periodo de estudio abarcó dos años, utilizando el intervalo desde el 15 abril de 2005 hasta el 15 de abril de 2007. La muestra se conformó con las historias clínicas de 507 pacientes al aplicar los siguientes criterios:

Criterios de inclusión:

- ≥ 16 años de edad.
- Tiempo de evolución en la UCI ≥ 12 horas.

Criterios de exclusión:

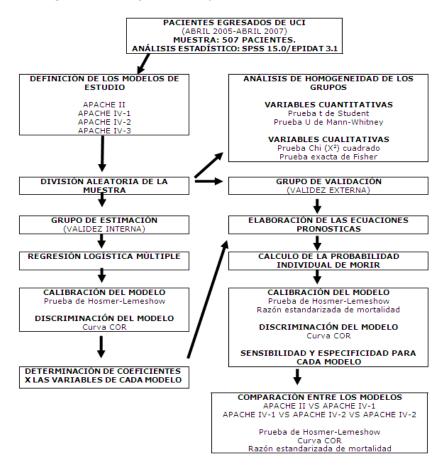
- Imposibilidad de obtener el valor de una variable objeto de estudio durante la evolución del paciente.
- Reingresos en la propia UCI en un periodo < 72 horas.
- Pacientes remitidos de otras unidades de cuidados intensivos con más de 24 horas de evolución en la misma.
- Pacientes relacionados con cualquier tipo de cirugía cardiaca.
- Diagnóstico de muerte encefálica al ingreso.

Operacionalización de las variables:

Score de gravedad APACHE II: valor del APACHE II tras 24 horas de ingreso en la UCI. Se calcula su valor a partir de la fórmula conocida (A + B + C). Se suman los puntos de los acápites A (APS: Acute Physiology Score), B (puntuación por edad) y C (puntuación por enfermedad crónica).

Score de gravedad APACHE IV: valor del APACHE IV diario durante la estadía en la UCI. Se calcula su valor a partir de la fórmula conocida (A + B + C). A los propósitos de la investigación actual se establecieron los índices APACHE IV-1, APACHE IV-2 y APACHE IV-3, correspondiendo a los APACHE IV del día 1, día 2 y día 3 de evolución en cuidados progresivos.

Δ APS IV: indica el delta o variación en la puntuación del Acute Physiology Score (APS), con respecto al día previo. Calculada solo para el APACHE IV, se obtuvo evolutivamente a partir de las 48 y hasta las 72 horas de estadía.


- Δ APS IV-2 = APS IV-2 APS IV-1.
- \triangle APS IV-3 = APS IV-3 APS IV-2.

Se incluyeron otras variables comunes a versiones previas de los modelos de APACHE: edad, enfermedades crónicas, sexo, estadía pre-UCI, PaO₂/FiO₂, Escala del Coma de Glasgow ajustada, estado al egreso, tipo de paciente, procedencia, ventilación mecánica artificial, trombólisis en el IMA y el diagnóstico con 9 categorías modificadas para el estudio (cardiovascular, genitourinario, gestación y puerperio, gastrointestinal, neurológico, respiratorio, trasplante, traumas y otros).

Recogida de datos

Se determinó que el seguimiento evolutivo de los pacientes se efectuaría solo durante las primeras 72 horas de estadía en UCI. Toda la información fue introducida en una base de datos digitalizada creada en el software SPSS 15.0 Statistics Professional Edition for Windows ©. Esto garantizó el procesamiento de los valores perdidos por el usuario o el sistema, los datos duplicados, atípicos y la validación automatizada con reglas intervariables, con lo cual se minimizó el sesgo en la información.

Se presenta el diagrama de flujo con los procedimientos utilizados:

En todas las pruebas de hipótesis se fijó un nivel de significación < 0,05.

RESULTADOS

Tabla 1. Características de los grupos de estudio para los modelos APACHE II y APACHE IV-1

Características	GE (n	= 295)	GV (n	= 212)	n
Caracteristicas	Media	DE	Media	DE	р
Edad	55,7	18,7	55,5	18,4	0,749ª
Score de gravedad APACHE II	18,6	9,6	18,8	9,5	0,735ª
Score de gravedad APACHE IV-1	55,2	34,2	56,8	32,6	0,605ª
Estadía pre-UCI	3,8	8,8	3,4	8,5	0,790 ^b
PaO ₂ /FiO ₂ -1	390,9	175,4	396,5	182,8	0,661 ^b
ECG ajustada	2,6	4,2	2,9	4,4	0,516 ^b
Sexo	No.	%	No.	%	
Masculino	128	43,4	104	49,1	0.2060
Femenino	167	56,6	108	50,9	0,206 ^c
ECNT (APACHE II)					
No se precisa	167	56,6	106	50	
Hígado	4	1,4	4	1,9	
Cardiovascular	9	3,1	8	3,8	0,727 ^d
Respiratorio	3	1,0	3	1,4	0,727
Renal	28	9,5	19	9,0	
Inmunocompromiso	84	28,5	72	34,0	
ECNT (APACHE IV)					
No se precisa	206	69,8	137	64,6	
Cáncer Metastásico	32	10,8	26	12,3	
Leucemia/Mieloma múltiple/Inmunosupresión	52	17,6	46	21,7	0,608 ^d
Cirrosis Hepática	5	1,7	3	1,4	

GE: grupo de estimación. GV: grupo de validación. DE: desviación estándar. p: probabilidad.

a: prueba t de Student, b: prueba U de Mann-Whitney, c: prueba chi (X^2) cuadrado de homogeneidad con corrección por continuidad de Yates, d: prueba chi (X^2) cuadrado de homogeneidad sin corrección por continuidad de Yates.

Tabla 1.1. Características de los grupos de estudio para los modelos APACHE II y APACHE IV-1 (continuación)

Complexions	GE (n = 295)	GV (ı	n = 212)					
Características	No.	%	No.	%	р				
Diagnóstico									
Cardiovascular	69	23,4	38	17,9					
Genitourinario	10	3,4	9	4,2					
Gestación y Puerperio	13	4,4	5	2,4					
Gastrointestinal	46	15,6	38	17,9					
Neurológico	70	23,7	50	23,6	0,112ª				
Respiratorio	58	19,7	34	16,0					
Trasplante	8	2,7	12	5,7					
Traumas	14	4,7	12	5,7					
Otros	7	2,4	14	6,6					
Estado al egreso									
Vivo	217	73,6	148	69,8	0.400b				
Fallecido	78	26,4	64	30,2	0,408 ^b				
Tipo de paciente									
Clínico/Quirúrgico Electivo	242	82,0	168	79,2	0 E01b				
Quirúrgico de Urgencia	53	18,0	44	20,8	0,501 ^b				
Procedencia									
Ingreso directo	86	29,2	74	34,9					
Sala del hospital	82	27,8	45	21,2	0.1228				
SO/UCPO	51	17,3	47	22,2	0,122ª				
Otro hospital	76	25,8	46	21,7					
VAM-1									
Sí	124	42,0	93	43,9	0.740b				
No	171	58,0	119	56,1	0,748 ^b				
Trombólisis en el IMA									
Sí	7	2,4	3	1,4	0 E33¢				
No	288	97,6	209	98,6	0,532 ^c				

GE: grupo de estimación. GV: grupo de validación. DE: desviación estándar. p: probabilidad.

a: prueba chi (X^2) cuadrado de homogeneidad sin corrección por continuidad de Yates, b: prueba chi (X^2) cuadrado de homogeneidad con corrección por continuidad de Yates, c: prueba exacta de Fisher.

Las tablas $\frac{1}{2}$ y $\frac{1.1}{2}$ muestran las características de los grupos de estudio para los modelos APACHE II y APACHE IV-1 (n = 507). El comportamiento de todas las variables fue homogéneo en los grupos de estudio. Las 3 más significativas se destacan a continuación. El score de gravedad APACHE II con un rango de valores posibles entre 0 y 71 puntos, tuvo medias de $18,6 \pm 9,6$ (GE) y $18,8 \pm 9,5$ (GV). Para el estudio el score tuvo un valor mínimo 2 y máximo de 46 puntos, todos los pacientes con valores iguales o superiores a 33 puntos fallecieron. El score de gravedad APACHE IV-1 tuvo un valor máximo predefinido de 299 puntos. Entre grupos, las medias fueron de $55,2 \pm 34,2$ (GE) y $56,8 \pm 32,6$ (GV). Se obtuvo un valor mínimo de 4 y máximo de 159 puntos, comprobando además un punto de corte ≥ 114 , que significó 0 % de supervivencia al rebasar este valor. La estadía pre-UCI, obtuvo medias de $3,8 \pm 8,8$ (GE) y $3,4 \pm 8,5$ (GV), reflejándose un valor mínimo de 0 y un máximo de 62 días.

Tabla 2. Características de los grupos de estudio para el modelo APACHE IV-2

Características	GE (n	= 227)	GV (n	= 180)	n
Caracteristicas	Media	DE	Media	DE	р
Score de gravedad APACHE IV-2	52,3	33,9	54,6	34,7	0,508ª
Δ APS IV-2	-1,55	18,3	-3,4	19,8	0,611 ^b
PaO ₂ /FiO ₂ -2	395,6	155,1	408,6	166,8	0,424 ^b
Sexo	No.	%	No.	%	
Masculino	87	38,3	85	47,2	0.0000
Femenino	140	61,7	95	52,8	0,088 ^c
Diagnóstico					
Cardiovascular	49	21,6	28	15,6	
Genitourinario	9	4,0	8	4,4	
Gestación y Puerperio	11	4,8	5	2,8	
Gastrointestinal	33	14,5	35	19,4	
Neurológico	56	24,7	40	22,2	0,102 ^d
Respiratorio	48	21,1	30	16,7	
Trasplante	8	3,5	12	6,7	
Traumas	7	3,1	9	5,0	
Otros	6	2,6	13	7,2	

GE: grupo de estimación. GV: grupo de validación. DE: desviación estándar. p: probabilidad.

a: prueba t de Student, b: prueba U de Mann-Whitney, c: prueba chi (X^2) cuadrado de homogeneidad con corrección por continuidad de Yates, d: prueba chi (X^2) cuadrado de homogeneidad sin corrección por continuidad de Yates.

Tabla 2.1. Características de los grupos de estudio para el modelo APACHE IV-2 (continuación)

Características	GE (r	n = 227)	GV (ı	n = 180)	_					
Caracteristicas	No.	%	No.	%	р					
Estado al egreso	Estado al egreso									
Vivo	169	74,4	126	70,0	0,375ª					
Fallecido	58	25,6	54	30,0	0,373					
Tipo de paciente										
Clínico/Quirúrgico Electivo	187	82,4	139	77,2	0 242a					
Quirúrgico de Urgencia	40	17,6	41	22,8	0,242 ^a					
Procedencia										
Ingreso directo	53	23,3	53	29,4						
Sala del hospital	76	33,5	41	22,8	0,063 ^b					
SO/UCPO	45	19,8	47	26,1	0,063					
Otro hospital	53	23,3	39	21,7						
VAM-2										
Sí	94	41,4	72	40	0.0523					
No	133	58,6	108	60	0,853ª					

GE: grupo de estimación. GV: grupo de validación. DE: desviación estándar. p: probabilidad.

a: prueba chi (X^2) cuadrado de homogeneidad con corrección por continuidad de Yates, b: prueba chi (X^2) cuadrado de homogeneidad sin corrección por continuidad de Yates.

Las tablas $\underline{2}$ y $\underline{2.1}$, reflejan las características de los grupos de estudio para el modelo APACHE IV-2 (n=407). La primera variable de interés por su resultado fue el score de gravedad APACHE IV-2, con medias entre 52,3 \pm 33,9 (GE) y 54,6 \pm 34,7 (GV). Los valores generales oscilaron entre 2 y 166 puntos, interpretándose que todo paciente que alcanzó puntuaciones \geq 126, inevitablemente falleció en su evolución en la UCI. La variable Δ APS IV-2 consideró medias que se comportaron en -1,55 \pm 18,3 (GE) y -3,4 \pm 19,8 (GV). Mostró un rango de valores generales para esta variable que fluctuó entre – 46 y + 76 puntos.

Las tablas 4, 5, 6 y 7 muestran todas las funciones logísticas estimadas. El denominador común fue la significación de los scores de gravedad de APACHE II y IV evolutivos como las variables más influyentes en el pronóstico de mortalidad. En los 2 primeros días también mostraron una influencia significativa la Escala del Coma de Glasgow y la ventilación mecánica artificial.

Tabla 3. Características de los grupos de estudio para el modelo APACHE IV-3

Características	GE (n	= 161)	GV (n	= 137)		
Caracteristicas	Media	DE	Media	DE	р	
Score de gravedad APACHE IV-3	51,6	33,9	58,1	34,8	0,107ª	
Δ APS IV-3	0,21	18,6	3,8	21,6	0,088 ^b	
PaO ₂ /FiO ₂ -3	406,7	156,2	401,5	169,3	0,502 ^b	
Sexo	No.	%	No.	%		
Masculino	56	34,8	63	46,0	0.0646	
Femenino	105	65,2	74	54,0	0,064 ^c	
Diagnóstico						
Cardiovascular	25	15,5	16	11,7		
Genitourinario	8	5,0	7	5,1		
Gestación y Puerperio	8	5,0	4	2,9		
Gastrointestinal	25	15,5	27	19,7		
Neurológico	38	23,6	34	24,8	0,282 ^d	
Respiratorio	39	24,2	21	15,3		
Trasplante	8	5,0	12	8,8		
Traumas	5	3,1	6	4,4		
Otros	5	3,1	10	7,3		

GE: grupo de estimación. GV: grupo de validación. DE: desviación estándar. p: probabilidad.

a: prueba t de Student, b: prueba U de Mann-Whitney, c: prueba chi (X^2) cuadrado de homogeneidad con corrección por continuidad de Yates, d: prueba chi (X^2) cuadrado de homogeneidad sin corrección por continuidad de Yates.

Las tablas 3 y 3.1 expresan las características de los grupos de estudio para el modelo APACHE IV-3 (n = 298). El índice de gravedad APACHE IV-3 tuvo un comportamiento inter-grupos que aportó medias de 51,6 ± 33,9 (GE) y 58,1 ± 34,8 (GV), el índice adquirió puntajes entre 8 y 169; con un valor \geq 96 puntos, a partir del cual todos los pacientes fallecieron. Para el Δ APS IV-3, las medias calculadas fueron de 0,21 ± 18,6 (GE) y 3,8 ± 21,6 (GV). La variable adquirió puntajes en el intervalo de -37 hasta +96 puntos.

Tabla 3.1. Características de los grupos de estudio para el modelo APACHE IV-3 (Continuación)

Características	GE (ı	n = 161)	GV (n	= 137)	р
Garaster istreas	No.	%	No.	%	P
Estado al egreso					
Vivo	118	73,3	94	68,6	0,447ª
Fallecido	43	26,7	43	31,4	0,447
Tipo de paciente					
Clínico/Quirúrgico Electivo	127	78,9	104	75,9	0.6263
Quirúrgico de Urgencia	34	21,1	33	24,1	0,636ª
Procedencia					
Ingreso directo	33	20,5	34	24,8	
Sala del hospital	51	31,7	31	22,6	0,230 ^b
SO/UCPO	36	22,4	40	29,2	0,230
Otro hospital	41	25,5	32	23,4	
VAM-3					
Sí	62	38,5	54	39,4	0,967ª
No	99	61,5	83	60,6	0,907

GE: grupo de estimación. GV: grupo de validación. DE: desviación estándar. p: probabilidad.

a: prueba chi (X^2) cuadrado de homogeneidad con corrección por continuidad de Yates, b: prueba chi (X^2) cuadrado de homogeneidad sin corrección por continuidad de Yates.

Tabla 4. Estimación de la Función de Regresión Logística (APACHE II).

					IC 95 % Exp (E	
Variables	В	BE	р	Exp (B)	LI	LS
Constante	-4,293	-1,650	0,01	0,014		
Score de gravedad APACHE II	0,114	1,085	0,005	1,12	1,036	1,212
Estadía pre-UCI	0,024	0,205	0,268	1,024	0,982	1,068
PaO ₂ /FiO ₂ -1	-0,001	-0,139	0,594	0,999	0,996	1,002
ECG ajustada	0,205	0,870	0,003	1,227	1,073	1,405
Sexoª	-0,744	-0,371	0,107	0,475	0,193	1,173
Tipo de paciente ^b	0,131	0,052	0,803	1,14	0,407	3,194
Trombólisis en el IMA	-1,906	-0,265	0,151	0,149	0,011	2,009
VAM-1	1,318	0,653	0,005	3,736	1,505	9,276
Procedencia	Dumm	y (catego	oría de r	eferencia	: ingreso	directo)
Sala	0,771	0,335	0,208	2,163	0,651	7,191
SO/UCPO	0,323	0,128	0,661	1,381	0,325	5,865
Otro hospital	0,892	0,382	0,166	2,439	0,692	8,606
Diagnóstico	Du	mmy (ca	tegoría	de refere	ncia: trau	ıma)
Cardiovascular	0,034	0,014	0,977	1,035	0,104	10,32
Genitourinario	0,725	0,138	0,607	2,065	0,131	32,676
Gestación y puerperio	-0,751	-0,139	0,618	0,472	0,025	9,073
Gastrointestinal	-0,011	-0,004	0,993	0,989	0,097	10,132
Neurológico	-0,827	-0,352	0,503	0,437	0,039	4,91
Respiratorio	-1,186	-0,458	0,317	0,305	0,03	3,117
Trasplante	-0,276	-0,054	0,871	0,759	0,027	21,075
Otros	-1,646	-0,364	0,314	0,193	0,008	4,736

IC: intervalo de confianza, LI: límite inferior, LS: límite superior, B: coeficiente. BE: coeficiente estandarizado, p: probabilidad, Exp (B): odds ratio.

a: la categoría de referencia es el sexo femenino, b: la categoría de referencia es clínico/quirúrgico electivo.

Tabla 5. Estimación de la Función de Regresión Logística (APACHE IV-1).

					IC 95 %	Exp (B)
VARIABLES	В	BE	р	Exp (B)	LI	LS
Constante	-4,672	-4,672 -1,599 0,003 0,009				
Score de gravedad APACHE IV-1	0,043	1,434	< 0,001	1,044	1,021	1,067
Estadía pre-UCI	0,019	0,165	0,371	1,019	0,978	1,063
PaO ₂ /FiO ₂ -1	0,000	0,071	0,793	1,000	0,997	1,003
ECG ajustada	0,193	0,822	0,005	1,213	1,06	1,389
Sexo ^a	-0,867	-0,432	0,067	0,42	0,166	1,062
Tipo de paciente ^b	0,604	0,238	0,269	1,83	0,627	5,337
Trombólisis en el IMA	-1,66	-0,231	0,191	0,19	0,016	2,286
VAM-1	1,241	0,615	0,008	3,459	1,389	8,614
Procedencia	Dumn	ny (categ	oría de ref	erencia: i	ngreso di	recto)
Sala	0,755	0,328	0,235	2,128	0,612	7,4
SO/UCPO	0,806	0,318	0,298	2,238	0,49	10,214
Otro hospital	0,822	0,352	0,216	2,275	0,618	8,368
Diagnóstico	Di	ummy (ca	ategoría de	e referenci	a: traum	a)
Cardiovascular	-0,362	-0,148	0,75	0,696	0,075	6,452
Genitourinario	0,000	0,000	1,000	1,000	0,064	15,52
Gestación y puerperio	-1,036	-0,192	0,495	0,355	0,018	6,964
Gastrointestinal	-0,744	-0,277	0,519	0,475	0,049	4,568
Neurológico	-1,122	-0,477	0,352	0,326	0,031	3,458
Respiratorio	-1,173	-0,452	0,302	0,31	0,033	2,863
Trasplante	-1,115	-0,217	0,508	0,328	0,012	8,9
Otros	-1,24	-0,274	0,443	0,289	0,012	6,895

IC: intervalo de confianza, LI: límite inferior, LS: límite superior, B: coeficiente, BE: coeficiente estandarizado, p: probabilidad, Exp (B): odds ratio. a: la categoría de referencia es el sexo femenino, b: la categoría de referencia es

clínico/quirúrgico electivo.

Tabla 6. Estimación de la Función de Regresión Logística (APACHE IV-2)

Variables	В	BE	р	Exp (B)	IC 95 %	6 Exp (B)
Variables		DL	Р	EXP (B)	LI	LS
Constante	-5,026	-2,880	0,017	0,007		
Score de gravedad APACHE IV-2	0,059	2,021	< 0,001	1,061	1,034	1,088
PaO ₂ /FiO ₂ -2	-0,001	-0,214	0,689	0,999	0,995	1,003
Sexo ^a	-0,813	-0,405	0,162	0,444	0,142	1,387
Tipo de paciente ^b	0,930	0,366	0,172	2,534	0,668	9,616
VAM-2	1,548	0,762	0,005	4,703	1,600	13,827
Δ APS IV-2	0,002	0,047	0,862	1,002	0,975	1,031
Procedencia	Dumm	y (catego	oría de refe	erencia: in	greso dir	ecto)
Sala	1,117	0,484	0,178	3,055	0,603	15,492
SO/UCPO	1,254	0,496	0,181	3,505	0,558	22,008
Otro hospital	1,215	0,520	0,179	3,372	0,574	19,811
Diagnóstico	Du	mmy (ca	tegoría de	referencia	ı: trauma	1)
Cardiovascular	-1,270	-0,519	0,423	0,281	0,013	6,271
Genitourinario	-1,106	-0,210	0,544	0,331	0,009	11,747
Gestación y puerperio	-0,963	-0,178	0,599	0,382	0,011	13,773
Gastrointestinal	-1,264	-0,470	0,447	0,282	0,011	7,332
Neurológico	-0,794	-0,338	0,614	0,452	0,021	9,859
Respiratorio	-0,842	-0,325	0,595	0,431	0,019	9,633
Trasplante	-1,178	-0,230	0,549	0,308	0,007	14,575
Otros	-19,422	-4,288	0,999	0,000	0,000	0,000

IC: intervalo de confianza, LI: límite inferior, LS: límite superior, B: coeficiente, BE: coeficiente estandarizado, p: probabilidad, Exp (B): odds ratio.

a: la categoría de referencia es el sexo femenino, b: la categoría de referencia es clínico/quirúrgico electivo.

Tabla 7. Estimación de la Función de Regresión Logística (APACHE IV-3)

Marriables	D	DE		From (D)	IC 95 %	6 Exp (B)
Variables	В	BE	р	Exp (B)	LI	LS
Constante	-2,766	-2,607	0,205	0,063		
Score de gravedad APACHE IV-3	0,063	2,151	< 0,001	1,065	1,033	1,097
PaO ₂ /FiO ₂ -3	-0,004	-0,647	0,124	0,996	0,991	1,001
Sexo ^a	-0,199	-0,099	0,767	0,819	0,219	3,062
Tipo de paciente ^b	-0,038	-0,015	0,961	0,963	0,212	4,364
VAM-3	0,435	0,212	0,547	1,544	0,375	6,366
Δ APS IV-3	0,009	0,190	0,659	1,010	0,968	1,053
Procedencia	Dumm	y (catego	ría de refe	rencia: in	greso dir	ecto)
Sala	1,216	0,527	0,248	3,374	0,429	26,532
SO/UCPO	1,862	0,736	0,084	6,436	0,781	53,018
Otro hospital	1,131	0,484	0,312	3,098	0,347	27,688
Diagnóstico	Dui	mmy (cat	egoría de	referencia	: trauma	1)
Cardiovascular	-2,210	-0,903	0,202	0,110	0,004	3,277
Genitourinario	-0,592	-0,112	0,775	0,553	0,010	31,752
Gestación y puerperio	-1,302	-0,241	0,540	0,272	0,004	17,418
Gastrointestinal	-2,383	-0,887	0,194	0,092	0,003	3,369
Neurológico	-1,405	-0,598	0,406	0,245	0,009	6,723
Respiratorio	-1,500	-0,579	0,371	0,223	0,008	5,991
Trasplante	-1,318	-0,257	0,534	0,268	0,004	16,995
Otros	-20,982	-4,633	0,999	0,000	0,000	0,000

IC: intervalo de confianza, LI: límite inferior, LS: límite superior, B: coeficiente, BE: coeficiente estandarizado, p: probabilidad, Exp (B): odds ratio.

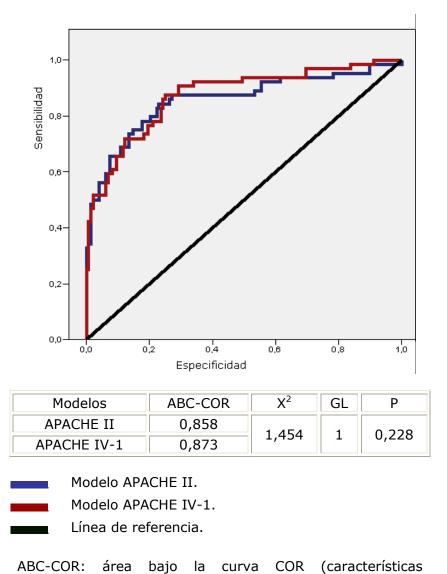
a: la categoría de referencia es el sexo femenino, b: la categoría de referencia es clínico/quirúrgico electivo.

Tabla 8. Calibración y discriminación de los modelos pronósticos

Modelos			R-LEMESHOW ibración)	ABC-COR (discriminación)		
		С	р	ÁREA	IC de 95 %	
\/-!: d	APACHE II	24,578	0,002	0,909	0,866 - 0,952	
Validez interna	APACHE IV-1	8,362	0,399	0,915	0,872 - 0,958	
(Grupo Estimación)	APACHE IV-2	9,259	0,321	0,922	0,876 - 0,968	
Listimación	APACHE IV-3	16,49	0,036	0,911	0,850 - 0,972	
V 1: 1	APACHE II	8,977	0,062	0,858	0,795 - 0,921	
Validez externa	APACHE IV-1	5,869	0,209	0,873	0,818 - 0,928	
(Grupo Validación)	APACHE IV-2	5,884	0,208	0,872	0,810 - 0,935	
validacion)	APACHE IV-3	12,489	0,014	0,926	0,865 - 0,987	

ABC-COR: área bajo la curva COR (características operativas del receptor), IC: intervalo de confianza, C: chi (X²) cuadrado, p: probabilidad.

Entre todos los modelos se evidencia que los modelos APACHE II y APACHE IV-3 no calibraron por Hosmer-Lemeshow, pero en general todos tuvieron una excelente discriminación por ABC-COR por reflejar un valor superior a 0,80, con intervalos de confianza ajustados (tabla 8).


Tabla 9. Mortalidad observada, pronosticada y razón estandarizada de mortalidad determinadas por los modelos pronósticos en la validación

Modelos	APACHE II	APACHE IV-1	APACHE IV-2	APACHE IV-3
n	212	212	180	137
Fallecidos	64	64	54	43
Mortalidad observada	64/212 (0,30)	64/212 (0,30)	54/180 (0,30)	43/137 (0,31)
Mortalidad pronosticada	58/212 (0,27)	62/212 (0,29)	59/180 (0,33)	44/137 (0,32)
REM	1,10	1,03	0,91	0,97
IC de 95 %	0,85 -1,40	0,80 -1,31	0,69 -1,19	0,72-1,30

n: muestra, REM: razón estandarizada de mortalidad, IC: intervalo de confianza para la REM.

Al representarse todos los modelos en la <u>tabla 9</u>, se establece necesariamente una comparación entre la mortalidad real y la esperada, existiendo similitudes. La REM se mantuvo cercana a 1,00 en todos los modelos, lo cual denota buena calibración por

este método al determinar intervalos de confianza ajustados, incluyendo en ellos el valor 1,00. Los APACHE II y IV-1 subestimaron la mortalidad (REM > 1,00) y el APACHE IV-2 y IV-3 la sobrestimaron (REM < 1,00).

operativas del receptor). X²: prueba chi cuadrado. GL: Grados de libertad. P: probabilidad

Fig. 1. Comparación de las ABC-COR para modelos APACHE II y APACHE IV-1

La comparación en el gráfico 1 de los modelos APACHE II y APACHE IV-1, muestra valores distintos de ABC-COR y diferenciación visual cualitativa en el recorrido de las curvas, a favor del APACHE-IV-1; sin embargo no existe diferencia estadística significativa entre modelos (p = 0,228).

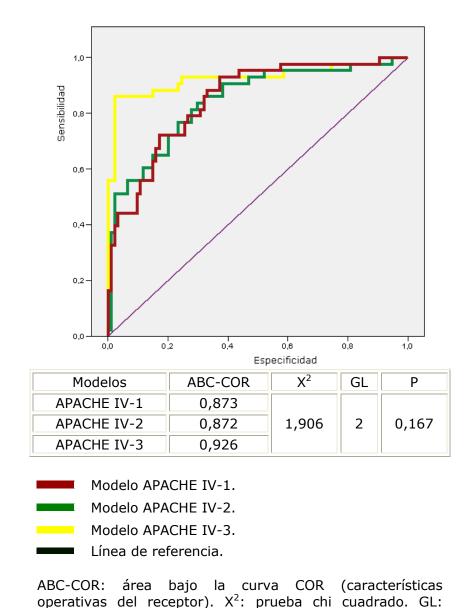


Fig. 2. Comparación de las ABC-COR para modelos APACHE IV evolutivos

Grados de libertad. P: probabilidad

La interpretación del gráfico 2 para los modelos APACHE IV evolutivos, muestra valores distintos de ABC-COR y análisis visual cualitativo que diferencia al APACHE IV-3 como el mejor modelo, pero al compararlos con un método estadístico, no existen diferencias significativas (p = 0.167).

Puede decirse que el APACHE IV-1 tuvo mejores resultados que el APACHE II en cuanto a la calibración por H-L, pero resultados similares por REM y ABC-COR (discriminación). Entre ellos hubo disparidad entre la sensibilidad (APACHE II > APACHE IV-1) y especificidad (APACHE II < APACHE IV-1). Entre los modelos de APACHE IV, fue el IV-3 el que no calibró por H-L, pero con resultados parejos en

cuanto a la REM y ABC-COR. El APACHE IV-3 obtuvo los valores más altos de sensibilidad y especificidad con respecto a los otros.

DISCUSIÓN

El score de gravedad APACHE II, brinda información acerca de la gravedad de un paciente a partir del puntaje que obtiene por sus componentes. Esta variable constituye la base del modelo con el mismo nombre, su influencia sobre la mortalidad se refleja en la regresión logística asociada con otras variables independientes. Para este estudio el punto de corte referido se fijó en 33 a partir del análisis del comportamiento del índice en toda la muestra. Chang et al³⁵⁻³⁷, utilizaron el score como predictor de mortalidad evolutiva, fijando 3 categorías con diferencias en la mortalidad, siendo la > 35 puntos la que representó el 100 % de fallecidos. Aunque estos trabajos fueron posteriormente criticados y modificados por varios investigadores aún mantienen vigencia como prototipo de estudio.³³⁻³⁹ Pérez Assef¹⁴ en el Hospital "Enrique Cabrera" de la Habana, validó los resultados de Chang, obteniendo que todos los pacientes con los puntajes > 35 ya descritos fallecieron. Sanvastano³¹ en Argentina, año 2009, dividió el valor del puntaje en 4 categorías obteniendo 80 % de mortalidad por score superior a 30 puntos.

Como las versiones anteriores, el score de gravedad APACHE IV evalúa la asociación entre el APS IV, la edad y las enfermedades crónicas. El aumento del número de variables del APS y la mayor puntuación otorgada en este caso a los componentes del índice establecen diferencias con el APACHE II. Fue interés particular de los autores de este trabajo evaluar este índice e incluirlo en las regresiones logísticas, demostrando ser la variable de mayor influencia sobre la probabilidad de morir en los modelos evolutivos. Los puntos de corte para la mortalidad no están bien definidos como el APACHE II, por estudios previos, no obstante el rango para 100 % de mortalidad debe ubicarse entre los 96 y 114 puntos. Conviene contrastar con otros estudios los valores medios del índice, aún cuando la mayoría de las investigaciones actuales no reflejen su puntaje específico, como demostró Kam et al⁴⁰, en su revisión de 200 artículos originales sobre el tema. Zimmerman et al⁴¹, definen una media de score APACHE IV en 51,4 puntos. En general pueden ser equiparables los resultados al ubicarlos en el contexto de una UCI polivalente, que se ajusta tal y como se aprecia a estándares mundiales. Como no existen trabajos sobre APACHE IV en Cuba publicados, no es posible comparación alguna.

Se ha demostrado la influencia del nosocomio en los días previos al ingreso en la UCI, sobre la evolución posterior del paciente. En general los pocos pacientes con estadías previas prolongadas correspondieron a pacientes con enfermedades neurológicas y hematológicas que reportan estadías prolongadas (>30 días) en la institución. El valor medio fue de 3,4 \pm 8 días influido sin dudas por valores extremos de 2 pacientes neuroquirúrgicas con más de 60 días de estadía. Zimmerman and Kramer et al^{3,41}, obtuvieron una estadía previa de 0,94 días, evaluando además que la probabilidad de morir se incrementaba en más de un 10 % cuando el Previous ICU LOS (Previous ICU Length of Stay), superaba los 4 días.

El resto de las variables mostraron un comportamiento similar a lo reportado por otros autores en el mundo.

De forma general el validar un modelo pronóstico implica discernir en el comportamiento de su capacidad predictiva la discriminación y calibración con que lo

hace, siendo esta última el talón de Aquiles para los modelos como el APACHE. El método de bondad de ajuste de Hosmer y Lemeshow ha sido ampliamente criticado, pero continua siendo la referencia para calibrar los modelos asociando a la REM. Las razones de la no calibración pueden estar relacionadas con la variabilidad de pacientes en la muestra y la mortalidad por causas adquiridas en la UCI que se presenta en un plazo < 48 horas tras el egreso a una sala hospitalaria. El no calibrar por este método no constituye una limitante para utilizar estos modelos demostrado por varios estudios que no lograron este objetivo: Arabi et al 43, con APACHE II (p < 0,001), Domínguez y colaboradores APACHE II (p = 0,025), Kuzniewicz et al 2 para APACHE IV (p = 0,01). Para los modelos APACHE II que sí calibraron por H-L pueden citarse estos resultados comparativos: Padrón y colaboradores (p = 0,56), Krauss et al (p > 0,05). Considerando la calibración del APACHE IV: Zimmerman et al (p = 0,08), Keegan et al (p = 0,145). En general puede apreciarse la disparidad existente entre los resultados de diversos autores, aún así se utilizan buscando la calibración por otros métodos.

Para analizar la REM como método de calibración adicional se expone a continuación una muestra sobre el resultado de este parámetro en varias investigaciones que no calibraron: Juneja et al⁴⁷ y Metaxa et al,⁴⁸ las dos en relación con sistemas de APACHE II. La tendencia general fue a la calibración: Dahhan et al⁴⁹ (REM = 1,06, IC 95 %:0,7-1,5), Arabi et al⁴³ (REM = 0,95, IC 95 %:0,83-1,06). Puede analizarse que existen similitudes en el comportamiento de la REM con lo reportado, siendo la sobrestimación de la mortalidad por estos índices la tendencia general con raras excepciones. Las REM obtenidas por este estudio tienen un alto nivel de ajuste, al contrastar la evidencia planteada.

Las ABC-ROC utilizadas para evaluar la discriminación de los modelos, se comportaron con un ajuste óptimo de las predicciones comparado a lo reportado por otros autores que no tuvieron un buen resultado: Landa y colaboradores, ¹⁶ Arabi et al.⁴³ Otras investigaciones fueron similares a la que se presenta con buena discriminación: Park et al.⁵⁰ (ABC-COR = 0,82, IC 95 %:0,70-0,89), Zimmerman et al.^{3,41} (ABC-COR = 0,88, sin especificar el IC 95 %).

Al comparar la capacidad pronóstica global de los modelos APACHE IV-1 y APACHE II se establecieron discrepancias en la calibración por H-L, que a criterio nuestro se explican por las diferencias entre los índices de gravedad de cada uno. Al parecer las variables contenidas en el APS IV con una mayor puntuación y estratificación diferente de la edad y las enfermedades crónicas influyeron en este resultado.

No es posible, justificar diferencias significativas entre los modelos de APACHE IV. No obstante, al no calibrar por H-L en modelo IV-3, podría decirse que esto se explica por la reducción ostensible de la muestra en relación con los días anteriores. El mundo se comporta de manera diferente. APACHE II superior a APACHE III, 30,51,52 APACHE IV superior a APACHE III, APACHE IV superior a APACHE IV es superior a APACHE II y III. APACHE IV se muestra superior en sus predicciones. Los cambios al modelo predictivo de APACHE II en la investigación que se presenta minimizó las diferencias con el APACHE IV.

Concluimos que los scores de gravedad APACHE II y IV son las variables más significativas en el pronóstico de mortalidad. La estimación de la probabilidad de morir por los modelos modificados de APACHE II y APACHE IV fue exitosa, al no existir diferencias significativas entre la mortalidad real y la pronosticada. Pueden utilizarse en la UCI del Hospital Clínico Quirúrgico "Hermanos Ameijeiras" los modelos de

APACHE II y IV validados, con buen nivel de discriminación y calibración comparables con otros utilizados en el mundo. No existen diferencias significativas en la capacidad pronóstica de los modelos modificados de APACHE II y APACHE IV-1 o entre los modelos de APACHE IV evolutivos utilizados en el estudio.

REFERENCIAS BIBLIOGRÁFICAS

- 1. National Institutes of Health. Consensus Development Conference on Critical Care Medicine. Crit Care Med 1983 Mar 7-9; 46:1-26.
- 2. Lovesio, Carlos. El factor pronóstico en terapia intensiva. En: Lovesio, Carlos. Medicina Intensiva. 5ª.ed. Argentina: El Ateneo, 2006. p.1541-1546.
- 3. Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute Physiology and Chronic Health Evaluation (APACHE) IV: Hospital mortality assessment for today's critically ill patients. Crit Care Med 2006; 34(5):1297-1310.
- 4. Kakar P, Govil et al. Validation of APACHE IV in patients with severe acute pancreatitis. Critical Care Medicine 2008; 12 (2):500.
- 5. Brinkman S, et al. External validation of Acute Physiology and Chronic Health Evaluation IV in Dutch intensive care units and comparison with Acute Physiology and Chronic Health Evaluation II and Simplified Acute Physiology Score II. Crit Care Med 2006; 34(5):1297-310.
- 6. Zimmerman JE, Kramer AA, McNair DS, Malila F. The Impact of Diagnostic Specificity on the Accuracy of Apache IV Mortality Predictions. Critical Care Medicine 2005; 33(12):112.
- 7. Kramer AA, Jing Y, Zimmerman JE. Independent Validation of Apache IV ICU Length of Stay Prediction. Crit Care Med 2006; 34(12):455.
- 8. Haddad Z, Falissard BF, Chokri KC, Kamel BK, Nader BN, Nagi SN, Riadh SR. Disparity in outcome prediction between APACHE II, APACHE III and APACHE IV. Crit Care Med 2008;12 (2):501.
- 9. Padrón, y col. Validación del sistema predictivo APACHE II en un grupo de pacientes ingresados en la unidad de cuidados intensivos. Rev Cubana Med Milit 2003; 32(2):130-136.
- 10. Fernández FR, Padrón AS, Quiñónez AZ, Chávez EP. Utilización del Modelo de Probabilidad de Mortalidad II (MPM II) en un grupo de pacientes críticos. Revista Cubana de Medicina Intensiva y Emergencias 2003; 2:55-61.
- 11. Pérez AA, Oliva MP, Calixto DA, Díaz JM. Mortalidad hospitalaria en pacientes ingresados. Revista Cubana de Medicina Intensiva y Emergencias 2003; 2: 2-7.
- 12. Pérez AA, Oliva MP, Calixto DA, Naranjo SI, Hernández JDB, Tamayo FG. Determinación diaria de la severidad de las enfermedades para medir la mortalidad en cuidados intensivos. Journal-Quinta, Index médico, 2001[ref. 2 de octubre 2010].
- 13. Disponible en Web: http://indexmedico.com/publicaciones/indexmedjournal /edición5/ severidad-uci /perez-assef.htm
- 14. Fernández FR, Padrón AS, Quiñónez AZ, Chávez EP. Aplicación del Modelo de Probabilidad de Mortalidad II adaptado (MPM II) a un grupo de pacientes en estado crítico. Revista Cubana de Medicina Intensiva y Emergencias 2003; 2:62-68.
- 15. Pérez AA, Gómez PRF, Naranjo IS, Cid RF. Aplicación de los criterios pronósticos de Chang a los pacientes ingresados en cuidados intensivos. Mapfre Medicina 2002; 13:135-138.
- 16. Fernández FR, López JH, Pérez RFM y col. Aplicación de la escala pronóstica de Mayer en el niño politraumatizado. Revista Cubana de Medicina Intensiva y Emergencias 2003; 2:8-16.

- 17. Landa ALT, Rubiera RJ, Sordo RD. Valoración del APACHE II inicial como predictor de mortalidad en pacientes ventilados. Revista Cubana de Medicina Intensiva y Emergencias 2010; 9 (3):1771-1787.
- 18. Iraola MDF, Rodríguez RR, Santana AAC, Pons FM. Valor pronóstico del índice de trauma en la unidad de cuidados intensivos. Revista Cubana de Medicina Intensiva y Emergencias 2003; 2:2.
- 19. Pérez AA, Cid RF, Gómez PRF, Naranjo IS, Calixto AD. Comportamiento y pronóstico del síndrome de disfunción múltiple de órganos. Mapfre Medicina 2002; 13:165-169.
- 20. Pérez AA. Mortalidad materna en cuidados intensivos: evaluación con una escala pronóstica. Revista Cubana de Medicina Intensiva y Emergencias 2004; 3(4):5-10.
- 21. Morejón DC, Gómez AS, López MIP, Trueba DR, Castillo BDL. Morbimortalidad por trauma grave. Revista Cubana de Medicina Intensiva y Emergencias 2006; 5(2):333-354.
- 22. Padrón AS, Puga MT, Peña RD, Bravo RP, Quiñónez AZ. Validación de la Escala Pronóstica del Enfermo Crítico I (EPEC I) comparada con las predicciones de mortalidad del APACHE II. Revista Cubana de Medicina Intensiva y Emergencias 2002; 1:20-28.
- 23. Padrón AS, Puga MT, Peña RD, Bravo RP, Quiñónez AZ. Escala Pronostica del Enfermo Crítico (EPEC). Propuesta de una nueva escala predictiva. Primera versión. Rev Cub Med Int Emerg 2002; 1 9-:9
- 24. Abizanda R, Padrón A, Vidal B, Más S, Berenguer A, Madero J, Heras A. Estimación pronóstica en enfermos críticos. Validación de un nuevo y muy sencillo sistema de estimación pronóstica de supervivencia en pacientes ingresados en una Unidad de Cuidados Intensivos. Medicina Intensiva 2006;30(3):101-8.
- 25. Fernández FR. "Aplicación de sistemas predictivos a pacientes ingresados en cuidados intensivos". [Tesis doctoral]. Hospital Militar Central "Dr. Luis Díaz Soto". La Habana. 2005. Disponible en: http://www.docstoc.com/docs/38735631/SISTEMA-PARA-EVALUAR-LA-GRAVEDAD-DE-LOS-ADOLESCENTES-INGRESADOS.
- 26. Urrutia OM, Fernández FR, Francisco JCP, Cuevas AS. Sistema para evaluar la gravedad en unidades de cuidados intensivos "SEGRAV-23". La Habana. Infomed. [ref. 3 de agosto 2010]. Disponible en Web: http://www.sld.cu/galerias/pdf/sitios/urgencia/033/sistema_para_evaluar_la_gravedad_en_unidades_de_cuidados_intensivos.pdf
- 27. López MP. "Validación de un sistema para evaluar grado de gravedad en una UTIP". [Trabajo de Terminación de Residencia]. Hospital Militar "Carlos J. Finlay". Ciudad de La Habana. 1998. Disponible en Web: http://www.sld.cu/galerias/pdf/sitios/ucipediatria/fernandofdez.pdf
- 28. Urrutia OM. "Sistema para evaluar gravedad de adolescentes en cuidados intensivos". [Trabajo de Terminación de Residencia]. Hospital Militar Central "Dr. Luis Díaz Soto". Facultad "Calixto García". Ciudad de La Habana. 2005.
- 29. Disponible en Web: http://www.sld.cu/galerias/pdf/sitios/urgencia/033_-_sistema_para_evaluar_la_gravedad_en_unidades_de_cuidados_intensivos.pdf.
- 30. Mercader RB. "APACHE evolutivo en UCI". [Trabajo de Terminación de Residencia]. Hospital Docente Clínico Quirúrgico "Hermanos Ameijeiras". Ciudad de la Habana. 2003.
- 31. Hossein A. Toma de decisiones en periodos de tiempo crítico en economía y finanzas. Modelo de Selección en el Acertamiento de Box-Jenkins para Pronósticos. [monografía en Internet]. EE.UU. 2009. Disponible en Web: http://home.ubalt.edu/ntsbarsh/stat-data/Forecasts.htm
- 32. Kramer, AA. Predictive mortality models are not like fine wine. Critical Care Medicine 2005; 9:636-637.
- 33. Savastano L, Benito O, Cremaschi F. Análisis de la mortalidad en la unidad de

- cuidados intensivos del Hospital Central de Mendoza, Argentina. Revista Médica Universitaria 2009; 5(3): 73-75.
- 34. Molinero LM. La Regresión Logística (II).[monografía en Internet]. [ref. 10 de agosto 2010]. Disponible en Web: http://www.seh-lelha.org/rlogis2.htm.
- 35. Chang RWS, et al. Predicting deaths among intensive care units patients. Critical Care Medice 1998;16:34-42.
- 36. Chang RWS. Individual outcome prediction models for intensive care units. Lancet 1989; II:143-46.
- 37. Chang RWS, Jacobs S, Lee B. Predicting autocome among intensive care unit patients using computerized trend analysis of daily APACHE II scores corrected for organ failure. Int Care Med 1988;14: 558-566.
- 38. Chang RWS, Jacobs S, Lee B. Use of APACHE II severity of disease classification to identify intensive-care-unit patients who would not benefit from total parenteral nutrition. Lancet 1986; I:1483-1486.
- 39. Jacobs S, Chang RWS, Lee B: One year's experience with the APACHE II severity of disease classification system in a general intensive care unit. Anaesthesia 1987; 42: 738-744.
- 40. Jacobs S, Chang RWS, Lee B. Audit of intensive care: a 30 month experience using the APACHE II severity of disease classification system. Intensive Care Medice 1988;14:567-574.
- 41. Rogers J, Fuller HD. Use of daily Acute Physiology and chronic health evaluation (APACHE) II scores to predict individual patient survival rate. Critical Care Medicine 1994;1402-05.
- 42. Kam R, Bunce C, Handy JM. Inadvisably presenting APACHE scores as parametric data: a study of 200 original articles from leading journals. Critical Care Medicine 2011; 15(1): 502.
- 43. Zimmerman JE, Kramer AA, McNair DS, Malila FM, Shaffer VL. Intensive care unit length of stay: Benchmarking based on Acute Physiology and Chronic Health Evaluation (APACHE) IV. Crit Care Med 2006; 34(10): 2517-2529.
- 44. Kusniewicz MW, et al. Variation in ICU Risk-Adjusted Mortality: Impact of Methods of Assessment and Potencial Confounders. Chest 2008;133:1319-1327.
- 45. Arabi, et al. Assessment of six mortality prediction models in patients admitted with severe sepsis and septic shock to the intensive care unit: a prospective cohort study. Critical Care Medicine 2003; 7(5):321.
- 46. Domínguez L, y col. Evaluación de la reproducibilidad de la recogida de datos para el APACHE II, APACHE III adaptado para España y SAPS II en 9 Unidades de Cuidados Intensivos en España. Medicina Intensiva 2008;32(1):15-22.
- 47. Krauss C, et al. Assessment of the performance of the SAPS 3, SAPS II, and APACHE II prognostic models in a surgical ICU. Critical Care Medicine 2008, 12(2): 502.
- 48. Keegan MT, Gajic O, Afessa B. Influence of resuscitation status on the performance of APACHE III, APACHE IV and SAPS III. Critical Care Medicine 2011;15(1):505.
- 49. Juneja D, et al. ICU scoring systems: which one to use in oncology patients?. Critical Care Medicine 2011; 15(1): 503.
- 50. Metaxa V, et al. Impact of increased numbers of intensive care consultants on outcome in a central London teaching hospital. Critical Care Medicine 2011; 15(1):473.
- 51. Dahhan T, Al-Sanouri I, Al-Awadhi H, Jamil M, Kherallah M. Performance of the APACHE IV system in patients with acute renal failure. Critical Care Medicine 2009; 13(1): 509.
- 52. Park SK, et al. Acute Physiology and Chronic Health Evaluation II and Simplified Acute Physiology Score II in Predicting Hospital Mortality of Neurosurgical

- Intensive Care Unit Patients. J Korean Med Sci 2009; 24:420-6.
- 53. Keegan MT, et al. APACHE III outcome prediction in patients admitted to the intensive care unit after liver transplantation: a retrospective cohort study. BMC Surgery 2009; 9:11.
- 54. Pappachan JV, et al. Comparison of Outcome From Intensive Care Admission After Adjustment for Case Mix by the APACHE III Prognostic System. Chest Journal 2010; 132:410-417.
- 55. Dahhan T, Jamil M, Al-Tarifi A, Abouchala N, Kherallah M. Validation of the APACHE IV scoring system in patients with severe sepsis and comparison with the APACHE II system. Critical Care Medicine 2009; 13(1):511.
- 56. Livingston BM, MacKirdy FN, Howie JC, Jones R, Norrie JD. Assessment of the performance of five intensive care scoring models within a large Scottish database. Critical Care Medicine 2000; 28:1820-1827.
- 57. Vincent JL, Moreno R. Clinical review: Scoring systems in the critically ill. Critical Care Medicine 2010; 14:207.

Recibido: 10 de enero de 2012 Aprobado: 26 de enero de 2012

Abdel Elicio Peña Quijada. Hospital Universitario Clínico Quirúrgico "Hermanos Ameijeiras". La Habana. Cuba. Dirección electrónica: abdelpq@yahoo.com