Rev. Mex. Anest. Vol. 23, N° 5, 1974

Variaciones del equilibrio ácido-base con el uso de Anestesia Disociativa en Obstetricia

Guillermo Vasconcelos-Palacios.‡*
Carmen Prieto-Aguirre.*
Esther Gutiérrez-Hidalgo.*
Samuel Briones.*
Martha Lila Castillo.*

A mayoría de los agentes anestésicos tienen como característica común la capacidad de ocasionar hipotensión arterial y otras alteraciones cardiorrespiratorias. En obstetricia es necesario evitar o controlar al máximo tales efectos por la grave repercusión que tienen sobre el producto. 1 Por otro lado, la hipotensión en sí es parte de numerosos síndromes obstétricos, para cuyo tratamiento se requieren procedimientos de analgesia y anestesia, los que pueden acentuar la alteración, con serias consecuencias. Es de vital importancia que en estos casos se recurra a métodos y agentes que ofrezcan un grado razonable de estabilidad del sistema cardiovascular, con el mínimo de inconvenientes y efectos colaterales indeseables.

La ketamina, motivo del presente estudio, es un derivado de la fecinclidina, droga relativamente nueva que confiere anestesia disociativa,2-4 o cataléptica,5,6 y a la cual se le conocen las siguientes propiedades farmacológicas: rápida inducción con profunda analgesia; 7 respuesta vasopresora central, 8-10 o estabilidad cardiovascular, 11,12 y mínima depresión respiratoria. 13,15 atributos le confieren cierto valor a su uso en obstetricia. 8,16-18 Esta droga tiene además características moleculares, solubilidad lipoidea) que permiten a la droga cruzar rápidamente la placenta y mantener un equilibrio de concentración entre la sangre del producto y la de la madre 19,20 (cuadro 1). En los casos estudiados se asoció la ketamina a diazepam o a droperidol, potentes tranquilizantes que inhiben los efectos colaterales que se atribuyen a este tipo de anestesia. 16,2130

El presente trabajo tiene cuatro objeti-

^{*} Trabajo de ingreso a la Academia Nacional de Medicina, presentado en la sesión ordinaria del 15 de agosto de 1973.

[‡] Académico numerario.

^{*}Hospital de Gineco-Obstetricia No. 1. Instituto Mexicano del Seguro Social.

Reimpreso de Gaceta Médica de México, Vol. 108, No. 1, Julio 1974.

vos: a) Valorar la utilidad de los agentes anestésicos usados con una técnica balanceada, para satisfacer las necesidades de la técnica quirúrgica en la operación cesárea electiva. b) Evaluar la repercusión de los efectos farmacodinámicos de las drogas sobre la madre y el neonato, mediante la determinación de gases en sangre, la calificación Apgar y la evolución clínica de ambos dentro de las primeras veinticuatro horas. c) Señalar las ventajas y los inconvenientes de la técnica. d) Definir sus principales indicaciones.

MATERIAL Y MÉTODOS

Se escogieron 25 pacientes de raza mestiza, de 17 a 42 años de edad, con embarazo a término calculado por el tiempo de amenorrea, las cuales fueron sometidas a operación cesárea. Estas pacientes no tenían antecedente de enfermedad hipertensiva, toxemia, psicopatía ni de otra patología importante. En el cuadro 2 se resumen las características de las pacientes estudiadas, tanto del grupo problema como del testigo. El primero fue constituido por 16 casos en los que se administró anestesia general con ketamina. Nueve pacientes más, sometidas a bloqueo peridural, se to-

maron como grupo testigo. Todas las pacientes recibieron, como medicación preanestésica, diazepam, 10 mg., y Atropigen® 2 mg., por vía intramuscular, una hora antes de la operación.

Antes de la inducción anestésica, se tomaron muestras de sangre arterial radial con técnica anaeróbica, en cantidad aproximada de 1.5 ml. por punción directa con aguja hipodérmica Yale No. 20 v con jeringa heparinizada. Veinte minutos después de administrada la dosis del anestésico, en ambos grupos, se recabó otra muestra de sangre arterial de la madre para gasometría, va que se considera que en este tiempo se ha logrado el efecto máximo de la droga. Al nacer el producto, no se ligó el cordón hasta después de un minuto, lapso durante el cual no se hizo ninguna maniobra excepto la aspiración de las secreciones orofaríngeas del niño. En este lapso, las pacientes recibieron ocitocina o ergonovina. Al minuto del nacimiento, se tomó un fragmento de cordón entre dos ligaduras, se refrigeró y se envió al laboratorio de investigación para gasometría. Se caracterizó la arteria del cordón para tomar muestras de sangre a los 30 minutos y a las dos horas del nacimiento

CUADRO No. 1 Algunas Caracteristicas que condicionan el paso a traves de la Placenta de las drogas utilizadas en el presente estudio

	Ketamina	Droperidol	Diazepam
Peso molecular	274.21	379.42	284.7
(pKa en agua)	7.5	7.6	3.5
Solubilidad en lípidos	1.000	1.000	1.000/2 ml.
	(dicloretano)	(octanol)	(cloroformo)
pH	Sol. 1% 4.45	3.0	6.5
	Sol. 5% 4.30		
Densidad	1.01	1.002	1.035

CUADRO No. 2 CARACTERISTICAS DE LOS GRUPOS ESTUDIADOS

Caso	Edad (años)	Peso (Kg.)	A Complexión	ntecede G*	ntes ob P†	stét A‡		Indicación cesárea	Duración de la operación (minutos)
Grup	o proble	ema							
1	31	85	Obesa	IV	II	0	I	Iterativa	120
2	37	80	Fuerte	XVII	X	VI	0	Placenta previa	
								no sangrante	60
3	25	75	Obesa	I	0	0	0	Placenta previa	50
4	17	55	Delgada	I	0	0	0	Desproporción	70
5	25	65	Media	I	0	0	0	Desproporción	60
6	40	68	Obesa	XVIII	XIV	III	0	Postmadurez	80
7	28	85	Obesa	III	0	0	II	Iterativa	75
8	24	61.5	Media	III	II	0	0	Cirugía vaginal	45
9	38	50	Delgada	v	0	0	IV	Iterativa	95
10	42	75	Obesa	xv	XII	0	II	Iterativa	60
11	23	60	Media	IV	I	0	II	Desproporción	60
12	25	50	Delgada	II	0	0	I	Iterativa	50
13	30	61	Fuerte	IV	0	0	Ш	Iterativa	85
14	22	55	Media	III	I	0	I	Sangrado trans-	
								vaginal	50
15	34	75	Obesa	ΧI	VI	Ш	0	Placenta previa	
			- 2200				-	no sangrante	70
16	26	70	Fuerte	II	0	0	I	Desproporción	40
Grun	o testig	^						F	
1	30	81.5	Obesa	Ш	0	0	II	Iterativa	90
2	19	50	Delgada	ĭ	0	ŏ	0	Presentación	30
4	10	00	Deigada	1	U	U	U	pélvica	90
3	21	55	Media	III	0	0	II	Iterativa	90
4	39	53	Media	V	0	0	III	Iterativa	90
5	21	82	Obesa	iV	Ĭ	0	II	Iterativa	90
6	40	60	Media	III	ī	0	I	Desproporción	120
7	38	59	Media	II	0	0	Ī	Desproporción	110
8	22	62	Media	I	0	0	0	Desproporción	75
9	31	80	Obesa	īv	0	0	III	Iterativa	70

^{*} Total de embarazos.

Técnica anestésica

Grupo testigo. En nueve casos sin contraindicaciones para el bloqueo peridural, se aplicó éste con la paciente en decúbito lateral, por el método de Dogliotti; con aguja Tuohy 16 y catéter de polivinilo inerte, situado en dirección cefálica. Una vez tomada la muestra de sangre arterial y con todo el equipo quirúrgico listo, a tra-

vés del catéter se aplicó una dosis fraccionada de 300 a 400 mg de lidocaína al 2 por ciento en solución simple, respetando el periodo de latencia (10 a 12 minutos) y prescindiendo de analgésicos o drogas sedantes. Se administró oxígeno por vía nasal a razón de dos litros por minuto,

Grupo problema. La inducción de la anestesia se hizo con 10 a 20 mg de diaze-

[†] Partos anteriores.

[.] Abortos.

[§] Cesáreas anteriores.

pam y 1.5 mg de ketamina por Kg de peso, seguidos de 60 mg de succinilcolina para intubación endotraqueal fácil, rápida y atraumática. Las dosis totales utilizadas para el mantenimiento anestésico variaron dentro de los siguientes márgenes: ketamina, 100 a 250 mg.; diazepam, 10 a 40 mg.; droperidol, 1.2 a 7.5 mg (este medicamento no se usó en los casos 1, 8, 11 y 13); succinilcolina, 100 a 360 mg.

La ventilación pulmonar en la mitad de los casos fue controlada manualmente y, en la otra, mediante respirador Bird Mark 4-8 y 4-10, ajustado de acuerdo al volumen corriente calculado en el nomograma de Radford para cada caso en particular y administrando oxígeno al cien por ciento.

Durante la anestesia se anotaron las cifras de tensión arterial cada 2, 5 y 10 minutos; en todos los casos se registró la frecuencia cardiaca y se efectuó vigilancia electrocardiográfica transoperatoria con el monitor y centinela Birtcher Mod. 425. Se tomaron registros electrocardiográficos de las imágenes dudosas en el osciloscopio, para su interpretación y estudio. La venoclisis se mantuvo únicamente con dextrosa al 5 por ciento para evitar desviaciones del equilibrio ácido-base.

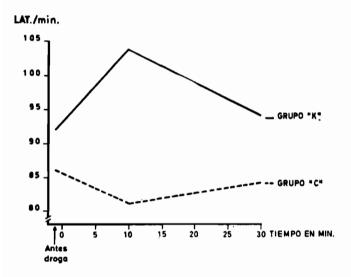
El recién nacido fue calificado por el pediatra al primero, quinto y décimo minutos de vida, de acuerdo con la valoración de Apgar. Se cateterizó la arteria umbilical con un catéter de polietileno K 332, que se introdujo en una longitud de 30 a 35 cm con el objeto de situarlo a nivel de la aorta torácica. De este catéter se tomaron muestras a los 30 minutos y a las dos horas de vida. Cuando se requirió la administración

de soluciones alcalinizantes, se cateterizó la vena umbilical.

La madre y el niño fueron observados estrechamente durante el periodo de recuperación y visitados a las 24 horas. Todas las muestras de sangre arterial, inmediatamente después de tomadas, se colocaron en un baño de hielo y se enviaron al laboratorio en donde se procedió al microanálisis, utilizando equipo de Astrup marca Radiometer. A cada muestra se le determinó el pH actual y dos tonometrías después de haber saturado la sangre con una mezcla de bióxido de carbono y oxígeno a dos concentraciones distintas y conocidas con el propósito de graficar los datos obtenidos en el nomograma de Siggaard-Andersen. 31,32 También, se determinó la presión del oxígeno por medio del electrodo de Clark del mismo equipo y se obtuvieron los datos relativos a la fórmuula roja por los métodos habituales.33

Todos los casos que no reunieron los requisitos de normalidad, señalados por factores no previstos tales como circulares de cordón, bloqueos fallidos y similares, fueron eliminados. Las técnicas anestésicas fueron aplicadas por uno solo de los autores a fin de evitar factores de error personal que pudieran modificar los resultados.

RESULTADOS

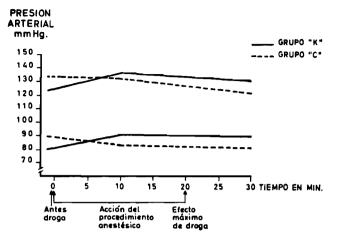

Cambios hemodinámicos. En las pacientes anestesiadas con ketamina, la frecuencia cardiaca se elevó hasta un nivel máximo a los 10 minutos de iniciada la anestesia, después de los cuales descendió pau-

CUADRO No. 3

CAMBIOS EN LA FRECUENCIA CARDIACA Y LA PRESION ARTERIAL ANTES Y
DESPUES DE INICIAR EL PROCEDIMIENTO ANESTESICO

		Ketamina			oqueo peridu	
	Antes	Des	oues	Antes	Después	
		10′	30 [/]		10′	30′
Frecuenciar cardiaca (la-						
tidos/minuto)	92 (13)*	104 (21)	94 (19)	86 (9)	81 (12)	84 (13)
Presión arterial sistóli-	, ,	. ,		` ,	` ,	
ca (mm Hg)	123 (14)	136 (20)	130 (20)	133 (13)	127 (19)	122 (8)
Diastólica	80 (10)	91 (13)	89 (14)	89 (9)	83 (11)	81 (8)
Media	101 (10)	114 (15)	110 (16)	111 (11)	105 (14)	102 (7)

^{*} Las cifras entre paréntesis corresponden a la desviación estándar.



1 Cambios hemodinámicos. Alteraciones de la frecuencia cardiaca durante los procedimientos anestésicos. ("K" = ketamina; "C" = control.)

latinamente, hasta los 30 minutos, cuando recobró cifras semejantes a las iniciales. En el grupo testigo, por el contrario, la frecuencia cardiaca descendió moderadamente y a partir de los 10 y hasta los 30 minutos, se recuperó satisfactoriamente. Cabe hacer notar que en algunos casos en que la frecuencia llegó a ser de 60 latidos por minuto, fue menester el empleo de aminóxido de atropina (cuadro 3, fig. 1).

Tanto la tensión arterial sistólica, como la diastólica y la media, exhibieron un as-

censo significativo durante los diez primeros minutos. De los 10 a los 30 minutos
se observó un descenso moderado sin llegar
a niveles normales. En el grupo control,
los resultados demostraron un descenso
tensional moderado hasta los 10 minutos,
que continuó progresivamente hasta los 30,
siendo también de poca importancia estadística. En ningún caso hubo necesidad de
usar vasopresores y no se observaron modificaciones trascendentes en los complejos
electrocardiográficos (cuadro 3, fig. 2).

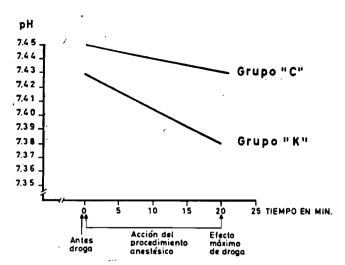
2 Cambios hemodinámicos. Modificaciones de la presión arterial materna durante los diferentes procedimientos anestésicos estudiados.

Una vez efectuadas las determinaciones del grupo experimental, se procedió a determinar el tamaño de muestra necesario para obtener una variación máxima de 0.05 en el pH materno, con una probabilidad de 95 por ciento. Se encontró que el número de casos necesario para estudiar como grupo testigo era de siete. Por posibilidades técnicas y de laboratorio del departamento de investigación se pudo estudiar un total de nueve casos en el grupo testigo. Se analizaron ocho variables que pudieran ofrecer cambio de significación estadística,

en relación con las cifras que se aceptan como normales para embarazadas normales y para los niños recién nacidos sanos, a la altura de la ciudad de México. A continuación se dan los resultados de cada una de ellas para la madre y el recién nacido.

Cambios en la sangre materna (cuadro 4)

pH. No se observó alteración significativa con el uso de la ketamina; así mismo, no se apreció diferencia entre los grupos


CUADRO No. 4 ALTERACIONES ENCONTRADAS EN LA SANGRE MATERNA ANTES Y DURANTE EL PROCEDIMIENTO ANESTESICO

	Antes de l	a anestesia	Durante la	anestesia
	Ketamina	Bloqueo	Ketamina	Bloqueo
pH actual	7.43 (0.04)*	7.45 (0.08)	7.38 (0.12)	7.43 (0.05)
PO ₂ (mmHg)	80.73 (8.16)	96.89 (42.49) †	172.57(40.28)	110.12 (3.84) ±
PCO ₂ (mmHg)	25.67 (4.0)	26.44 (7.0)	29.94 (11.0)	28.44 (4.67)
HCO_3 (mEq/1)	20.00 (1.0)	21.53 (3.74)	20.62 (5.62)	21.27(2.24)
Exceso de base $(mEq/1)$	-5.47 (1.14)¶	-3.67 (4.67)¶	-6.13 (3.01)	-3.86(2.71)
CO_2 total $(mEq/1)$	17.02 (1.67)	18.36 (4.75)	18.80 (6.45)	20.75 (6.24)
Hematocrito $(\%)$	34.03 (3.80)	34.55 (4.74)	37.78 (7.02)	36.17 (3.38)
Hemoglo. $(mg./100 ml.)$	11.00 (1.13)¶	11.54 (1.62)¶	12.10 (2.42)	11.85 (1.11)

^{*} Las cifras entre paréntesis corresponden a la desviación estándar.

[†] p < 0.005. ‡ p < 0.0005. ¶ p < 0.05.

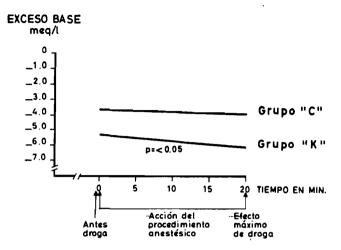
Anestesia Disociativa 317

3 Modificaciones del pH actual en la sangre materna durante los procedimientos anestésicos estudiados.

puede observar un ligero descenso del pH durante el efecto máximo, en relación con experimental y testigo. Sin embargo, se las cifras obtenidas antes de la inducción (figura 3).

PCO₂. Tampoco en este parámetro se encontró diferencia significativa en las diferentes comparaciones.

Exceso de base. No se pudo demostrar diferencia significativa entre los valores iniciales y los obtenidos durante el efecto máximo de la droga, ni con las muestras equivalentes en tiempo en el grupo testigo. La diferencia entre ambos grupos no fue significativa antes de la inducción, pero sí lo fue durante el efecto máximo de ambos procedimientos, acusando tal hecho la presencia de acidosis de origen metabólico como resultado del método anestésico estudiado (fig. 4).


Bicarbonato plasmático. No se encontró ninguna diferencia significativa.

CO₂ total. Tampoco en este caso se encontraron diferencias estadísticamente significativas entre los grupos analizados.

Hematocrito y hemoglobina. No se encuentra ninguna diferencia significativa en los valores del hematocrito. La diferencia aparece entre los valores promedio de hemoglobina, antes y durante el máximo efecto en el grupo experimental, lo que no acontece en el grupo testigo; sin embargo, no existen diferencias apreciables al comparar los valores correspondientes al grupo experimental y al testigo. Como puede observarse, las pacientes estuvieron correctamente manejadas durante el transoperatorio; siendo transfundidas cuando se crevó necesario y sus niveles de hemoglobina y hematocrito al final del estudio se incrementaron ligeramente, hecho que también pudo haber sido influenciado por hemoconcentración

PO₂. Existen diferencias significativas en los valores correspondientes a la determinación inicial y durante el efecto máximo en cada uno de los grupos, observándose cifras altas durante el efecto máximo del procedimiento anestésico, lo que coincidió con la ventilación manual o mecánica

Rev. Mex. Anest.

4 Modificaciones del factor metabólico del equilibrio ácido-base.

ejercida sobre las pacientes. En un caso del grupo testigo se encontró un valor inicial de 200 mmHg porque la paciente fue intubada y asistida debido a hiperexcitabilidad cortical. Al comparar los valores correspondientes a las lecturas iniciales en los grupos experimental y testigo no se encuentra diferencia significativa, pero sí existe al comparar los valores correspondientes al máximo efecto (fig. 5).

Cambios en la sangre de los productos (cuadro 5)

Las maniobras de reanimación fueron las habituales y ningún caso ameritó intubación endotraqueal. La valoración de Apgar se presenta en los cuadros 6 y 7.

Las determinaciones efectuadas se hicieron en sangre de cordón umbilical al momento del nacimiento, la siguiente fue hecha en sangre de arteria aorta a los 30 minutos de vida y la última a las dos horas de vida independiente. La primera comparación se hizo entre las muestras obtenidas al nacimiento y a los 30 minutos; la

segunda comparación se realizó entre las determinaciones efectuadas a los 30 minutos y a las dos horas.

pH. No se encuentra diferencia significativa en la primera comparación, ni a nivel interno de los grupos, ni entre los valores correspondientes de los dos grupos. En la segunda comparación se encuentra diferencia significativa al contrastar los valores del grupo experimental con los correspondientes del grupo testigo dos horas después del nacimiento.

PCO₂. En la primera comparación se encuentran diferencias significativas a un alto nivel de probabilidad en ambos grupos de estudio. Sin embargo, estas diferencias desaparecen al comparar los valores del grupo experimental y del testigo. Cuando se comparan los niveles en sangre arterial 30 y 120 minutos después del nacimiento, la diferencia persiste altamente significativa en ambos grupos, pero entre los valores correspondientes de cada grupo no se encuentra diferencia significativa. Al comparar la primera determinación de sangre ar-

CUADRO No. 5

NACIMIENTO, ALTERACIONES ENCONTRADAS EN LA SANGRE DEL PRODUCTO EN EL MOMENTO DEL LOS 30 MINUTOS Y A LAS DOS HORAS DESPUES DE ESTE

		Keta	Ketamina			Bloqueo peridural	peridural	
	2	ΑU	30,	120	2 >	AU AU	30,	120′
pH actual	7.31 (0.00) †	7.20 (0.03)	7.26*	7.31*	7.28 (0.05)	7.22 (0.04)	7.28 (0.05)	7.35*
PO ₂ (mmHg)	44.60 (15.32)	26.00 (14.14)	63.21 (17.39)	100.86 (46.56)	25.37 (9.21)	33.33 (23.18)	53.55 (12.75)	96.00 (38.63)
PCO ₂ (mmHg)	37.31 (8.70)	48.50 (3.78)	44.48 (5.64)	$38.21 \ (9.5\theta)$	43.24 (9.12)	41.66 (11.01)	43.63 (5.77)	35.12 (8.70)
HCO ₂ (mEq/1)	19.14 (2.12)	17.20 (1.35)	18.24 (1.47)	19.24 (2.13)	19.03 (1.27)	16.80 (2.24)	19.17 (1.99)	20.83 (3.09)
Exceso de base (mEq/1).	—6.83 (3.01)	-9.50 (2.16)	—8.03 (2.08)	-6.98 (3.12)	-6.88 (1.83)	9.70 (2.79)	-6.81 (2.84)	5.34 (3.91)
CO ₂ total (mEq/1)	19.28 (1.95)	20.20 (1.65)	20.30 (2.29)	19.25 (2.92)	20.86 (2.87)	21.38 (7.24)	21.35 (2.75)	19.90 (5.14)
Hematocrito (%)	44.20 (6.84)	:	54.85 (5.93)	59.23 (8.01)	46.75 (5.31)	48.25 (5.56)	49.88 (4.83)	51.00 (4.82)
Hemoglobina (g./100 ml.).	14.74 (1.31)	:	16.93 (1.75)	19.43 (4.18)	14.75 (2.06)	15.27 (1.32)	16.14 (1.38)	16.40 (1.57)

VU = Vena umbilical. AU = Arteria umbilical.

* n / 0.05

† Las cifras entre parentesis corresponden a la desviación estándar.

CUADRO No. 6
CALIFICACION DE APGAR.
GRUPO PROBLEMA

Caso	Al minuto	5 minutos	10 minutos
1	8	10	10
2	10	8 .	. 8
2 3	3	10	10
4	9	10	10
5	6	8	10
6	6	7	8
7	6	6	7
8	7	6	10
9	7	7	9
10	7	10	10
11	7	9	9
12	7	9	10
13	3	7	10
14	7	9	9
15	6	7	10
16	5	7	9

CUADRO No. 7

CALIFICACION DE APGAR.
GRUPO TESTIGO

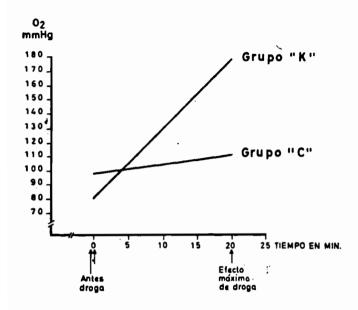
Caso	Al minuto	5 minutos	10 minutos
1	8	10	10
2	9	10	10
3	8	9	10
4	4	6	10
5	6	8	9
6	10	10	10
7	9	10	10
8	8	9	10
9	10	10	10

terial en vena umbilical y la última determinación efectuada en arteria del recién nacido, aunque la diferencia estadística es significativa, aparentemente es poco importante y no existe diferencia entre los valores correspondientes a cada grupo.

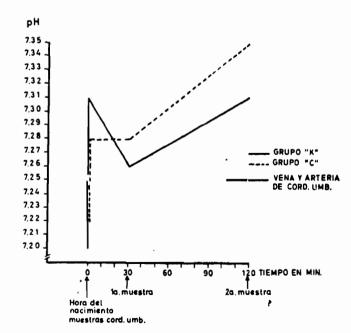
Exceso de base. Se encuentra diferencia significativa únicamente entre los valores obtenidos en la vena umbilical y la arteria del recién nacido a los 30 minutos. En to-

das las otras comparaciones no existe diferencia significativa.

Bicarbonato plasmático. No hay diferencias significativas en ninguna de las comparaciones.


CO₂ total. En la primera comparación no se encuentran diferencias significativas. En la segunda solamente se encuentra diferencia significativa en el grupo testigo, probablemente debido a la existencia de un caso en el que la determinación fue de 47 mEq./l.

Hemoglobina y hematocrito. Se encuentran diferencias significativas solamente al efectuar la comparación entre los grupos experimental y testigo a las dos horas del nacimiento, debido seguramente a hemoconcentración. En cuanto al hematocrito, las diferencias se encuentran dentro de los grupos experimental y testigo, al comparar la sangre en vena umbilical y al hacer la comparación de valores obtenidos en arteria a las dos horas.


PO₂. Al efectuar comparaciones de los valores obtenidos en cada grupo, todas ellas resultaron estadísticamente significativas. Sin embargo no existe esa diferencia al comparar los valores correspondientes del grupo testigo con el grupo experimental.

COMENTARIO

Aún es causa de polémica entre los diversos grupos 34-36 si en obstetricia los procedimientos de anestesia regional ofrecen mayor seguridad que los de anestesia general. En términos generales, es opinión de los autores que la anestesia de elección debe ser aquella que cause la mínima alteración en las funciones de la madre, que no deprima al producto, que ofrezca oxigenación

5 Modificaciones de la PO₂ de la sangre arterial materna durante el estudio.

6 Modificaciones del pH arterial de los recién nacidos.

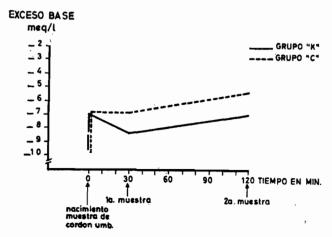
eficiente, estabilidad en el sistema cardiovascular, protección efectiva contra la regurgitación del contenido gástrico hacia el árbol respiratorio, e integridad de la contractilidad uterina después de la extracción del producto para una involución efectiva.³⁷

En el Hospital de Gineco-Obstetricia número Uno, del IMSS, se ha preferido el bloqueo peridural para la operación cesárea, por las manifiestas ventajas que se le señalan en sus justas indicaciones. 36,38 Por tal razón, en este estudio se tomaron nueve pacientes bajo bloqueo peridural como grupo testigo. No obstante, por la urgencia de la operación, por el estado psíquico exaltado de la paciente o por alguna contraindicación formal del bloqueo peridural, es necesario emplear anestesia general en algunos casos. Durante muchos años usamos el ciclopropano, por sus conocidas propiedades, como el agente de elección en los casos en que se indicaba la anestesia general en obstetricia. Sin embargo, los terribles accidentes ocurridos en varios hospitales del Distrito Federal y de la provincia del país; las condiciones atmosféricas de la ciudad de México en ciertas épocas del año; las deficientes medidas de seguridad de nuestros hospitales y la tendencia internacional de no usar agentes explosivos en anestesia, por razones obvias, nos obligaron a eliminar el ciclopropano de nuestros quirófanos. 89,40

La mayoría de los agentes anestésicos de valor actual, tanto endovenosos como por inhalación, tienen serios inconvenientes para el producto 41 y para la tonicidad uterina, 42 pero sobre todo son causa de hipotensión en la madre e indirectamente de

serias alteraciones en la perfusión uteroplacentaria.^{1,19}

Los informes sobre el uso de ketamina en obstetricia 5,13,16,21 llevaron a los autores del presente estudio al empleo de ésta por los atributos de la droga antes citados. Sin embargo, debido a los numerosos informes de sueños desagradables,1,43,44 alucinaciones,23 recurrencia de éstas,24 náusea y vómito, 13,45,46 y otros efectos colaterales indeseables, se decidió no usar la ketamina como anestésico único, sino combinada con diazepam y/o droperidol, tranquilizantes cuyas acciones farmacodinámicas compensan sus efectos y los refuerzan en una sinergia medicamentosa útil.46-51 Las respuestas presoras bruscas se controlan satisfactoriamente con droperidol, reduciéndose la dosis total de ketamina cuando se usa este agente.52 La utilidad clínica en el grupo experimental es altamente satisfactoria, como puede advertirse en los resultados. Tanto la inducción como el mantenimiento anestésico y la recuperación marcharon sin incidentes con ventilación controlada manual y mecánicamente. En términos generales, se puede decir que el procedimiento anestésico es satisfactorio en lo que respecta a la madre. Sin embargo, cabe hacer algunas consideraciones importantes sobre los resultados obtenidos en el recién nacido.


Como se demostró en los estudios en recién nacidos sanos de Castillo y col.,⁵³ el desequilibrio ácido-base que se manifiesta como acidosis mixta y que se acentúa hacia los primeros treinta minutos del nacimiento; se hace evidente en el presente estudio, el cual se planeó para saber si el procedimiento anestésico empleado tenía algún

Ańestesia Disociativa 323

efecto sobre los estadios de recuperación del niño

El promedio del pH muestra una excelente cifra para la vena umbilical, de acuerdo a lo considerado como óptimo para ese momento de la vida.54 Posteriormente, se puede observar que hacia los 30 minutos el promedio desciende hasta 7.26 y después se eleva para recuperar su nivel inicial. En este momento se trata de un organismo que se está habituando por sí mismo a la vida independiente, echando mano de todos los recursos que tiene a su alcance. El mismo fenómeno se vuelve a hacer patente en varios parámetros. La PCO, tiende también a ser mayor hacia la media hora de vida y, posteriormente, al mejorar la relación ventilación/perfusión, alcanza cifras aceptables para el recién nacido en nuestras condiciones de altitud; sin embargo, cabe hacer hincapié en los resultados del grupo testigo: el pH se mantiene sin variaciones después del nacimiento y asciende hacia las dos horas. También, las cifras de PCO, muestran una evolución muy favorable hacia la normalidad, con mayor rapidez que el grupo problema. Todo esto recuerda al bloqueo peridural como el procedimiento de elección en obstetricia.

En cuanto al exceso de base (fig. 7), se observó el incremento de la acidosis en relación con su factor metabólico hacia la media hora y su posterior recuperación al valor inicial. Con esto se pudieron comprobar los resultados de algunos estudios, 16,43 de que la ketamina tiene un efecto acidificante del medio interno; así mismo, se comprobó su paso a través de la placenta 55,56 y se demostró un incremento ligera de la acidosis mixta del recién nacido, especialmente sobre su componente metabólico. Algunos autores 57 han comunicado que con el uso del diazepam se puede observar caída en el pH y aumento en la PaCO2, debido a cambios importantes en la ventilación por depresión respiratoria. Sin embargo, en el presente estudio no es posible atribuir al diazepam la acidosis encontrada en algunos casos, pues todas las pacientes fueron intubadas y se mantuvieron con ventilación controlada. Por otro lado, una posibilidad por comprobar con estudios ulteriores sería el que la acidosis metabólica y

7 Modificación del factor metabólico de la sangre arterial de los recién nacidos.

la depresión tardía en el recién nacido se deban a la acción del diazepam en la sangre del niño, ya que esta droga atraviesa fácilmente la placenta.

La succinilcolina es usada como relajante muscular de elección en obstetricia. A las dosis usuales no atraviesa la placenta en cantidades significativas.^{58,59}

Tres de los niños ameritaron la administración rápida de soluciones alcalinizantes para lograr una correcta recuperación del equilibrio ácido-base. Para tal propósito, se empleó la siguiente fórmula: bicarbonato de sodio (mEq./l.) = peso corporal (Kg.) × déficit de base (mEq./l.) × 0.2. Un hecho de observación, fue la recuperación tardía en aquellos niños en los que se retrasó el tratamiento.

Otro hecho que importa señalar es el incremento de la PO₂ en la sangre arterial del recién nacido al recuperarse del stress del nacimiento. En relación con las determinaciones efectuadas a las dos horas, en dos casos se encontraron de 174 y 200 mm Hg, lo que no tiene explicación clínica; probablemente se trató de una contaminación de la muestra ya que esos niños se recuperaron espontáneamente. Por lo anterior, el promedio de la PO₂ obtenido en esta casuística es poco confiable.

En cuanto a las determinaciones de hemoglobina y hematocrito, comparando la muestra del cordón umbilical y la del niño a las dos horas, llama poderosamente la atención la hemoconcentración que se hizo evidente en forma progresiva. Una probable explicación puede ser la constante movilización de líquidos intersticiales e intravasculares que ocurre en el recién nacido, hasta lograr la estabilización definitiva de los parámetros hemodinámicos.

En el postoperatorio de las pacientes los efectos colaterales fueron mínimos y no se observaron vómitos ni fenómenos desagradables en la esfera psíguica. Aun cuando la casuística presentada en este estudio es pequeña, en nuestro hospital hemos usado este mismo procedimiento en un número importante de casos con problemas obstétricos, lo que será motivo de una comunicación posterior. Podemos estimar, con otros autores,60 que una de las principales indicaciones de este procedimiento anestésico debe ser la emergencia obstétrica,18 considerada como riesgo alto, así como en las pacientes hipovolémicas por hemorragia 5 y en estado de choque. Sin embargo, antes de aplicarla en nuestras normas, pensamos en la conveniencia de investigar los efectos de la ketamina v su combinación con tranquilizantes y anticonvulsivantes en las pacientes normales que serán sometidas a operación cesárea. Otra de sus principales indicaciones son las pacientes asmáticas, ya que se ha demostrado la acción broncodilatadora de ketamina 61

En algunos casos, por supuesto, no se obtienen los buenos resultados que se desean con este procedimiento, por lo que insistimos en la necesidad de que el anestesiólogo sea particularmente cauto en seleccionar adecuadamente la técnica en sus justas indicaciones, en vigilar estrechamente las respuestas farmacodinámicas y en corregir el desequilibrio ácido-base correctamente, tanto en la madre como en el niño. Todas las drogas tienen características farmacológicas propias, así como ventajas e inconvenientes en cada caso en particular. La principal indicación de ketamina está en aquellos casos en que sus ventajas justifican sus inconvenientes. 23,62,63

Anestesia Disociativa

RESUMEN

Con el propósito de justipreciar la acción farmacodinámica de la ketamina en comparación con otros agentes anestésicos, se estudiaron sus efectos en 25 pacientes libres de patología sistémica importante, sometidas a operación cesárea electiva.

En la madre no se encontraron diferencias estadísticamente significativas entre el grupo testigo y el sometido a ketamina. En este último, los recién nacidos exhibieron acidosis metabólica, la que en tres casos

ameritó corrección con soluciones alcalinizantes. Los efectos colaterales atribuibles a ketamina fueron mínimos; no se observaron vómitos ni fenómenos desagradables en la esfera psíquica de las pacientes.

325

Se señalan algunas particulares indicaciones del procedimiento analizado, insistiéndose en la necesidad de seleccionar adecuadamente las pacientes, vigilar estrechamente las respuestas farmacodinámicas y corregir el desequilibrio ácido-base cuando ocurre.

BIBLIOGRAFIA

 Vasconcelos Palacios, G.: Complicaciones en el recién nacido por anestesia inadecuada. Ginecol. Obstet. Méx. 34:201, 1973.

 Pender, J.W.: Dissociative anesthesia. J.A. M.A. 215:1126. 1971.

 Domino, E.F.; Chodoff, P. y Corssen, G.: Pharmacologic effects of Cl-581. A new dissociative anesthesia in man. Clin. Pharmacol. Ther. 6:279, 1965.

 Myasaka, M. y Domino, E.F.: Neuronal mechanisms of ketamine induced anesthesia. Int. I Neuronbarmacol 7:577, 1968.

- J. Neuropharmacol. 7:577, 1968.
 Ferrer, A.; Brechneil, V.L.; Diamond, A.; Cozen, H. y Crandall, P.: Ketamine induced electroconvulsive phenomena in the human limbic and thalamic regions. Anesthesiology 38:4, 1973.
- 6. Winter, W.D.: Epilepsy or anesthesia with ketamine. Anesthesiology 36:309, 1972.
- Little, B.: Study of ketamine as an obstetric anesthetic agent. Amer. J. Obstet. Gynecol. 113:247, 1972.
- McDonald, J.S.; Mateo, C.V. y Reed, E.C.: Modified nitrous oxide or ketamine hydrochloride for cesarean section. Anesth. Analg. (Cleve.) 51:975, 1972.
- (Cleve.) 51:975, 1972.

 9. Traber, D..; Wilson, R.D. y Priamo, L.L.:
 The effect of alpha-adrenergic blockade on the cardiopulmonary response to ketamine.
 Anesth. Analg. (Cleve.) 50:737, 1971.
- Dowly, E.G. y Kaya, K.: Studies of the mechanism of cardiovascular responses to Cl-581. Anesthesiology 29:931, 1968.

- Bovill, J.G.; Clark, E.R.S.J. y Davis, E.A.: Some cardiovascular efects of ketamine in man. Brit. J. Pharmacol. 41:411 P, 1971.
- 12. Hensel, I.: Studies on circulatory and metabolism changes during ketamine anesthesia. Anaesthetist 21:44, 1972.
- Chodoff, P. y Stella, J.G.: Use of Cl-581 a phencyclidine derivate of obstetric anesthesia. Anesth. Analg. (Cleve.) 45:527, 1966.
- 14. Chodoff, P.: Evidence for central adrenergic action of ketamine: Report of a case. Anesth. Analg. (Cleve.) 51:247, 1972.
- Nettles, D.C.; Herrin, Y.J. y Mullen, J.G.: Ketamine induction in poor risk patients. Anesth, Analg. (Cleve.) 52:59, 1973.
- Meer, F.M.; Dowing, J.W. y Coleman, J.: An intravenous method of anesthesia for cesarean section. Part II: Ketamine. Brit. J. Anaesth. 45:191, 1973.
- Lorfy, A.G.; Amir Jahed, A.K. y Moarefi, P.: Anesthesia with ketamine: Indications, advantages and shortcomings. Anesth. Analg. (Cleve.) 49:969, 1970.
- Kshama, S. y Jawalekar, C.: Effect of ketamine on isolated myometrial activity. Anesth. Analg. (Cleve.) 51:685, 1972.
- Moya, F. y Smith, B.: Uptake, distribution and placental transport of drugs and anesthetics. Anesthesiology 62:465, 1965.
- Bonica, J.J.: Placental transfer of anesthetics and related drugs and their effects on fetus and newborn. En: Principles and practice

of obstetric analgesia and anesthesia. Filadelfia, F.A. Davis Company, 1967, v. 1, p. 191.

Moore, I.; McNahb, T.G. y Dundee, J.W.: Preliminary report on ketamine in obstetrics. Brit, J. Anaesth. 43:779, 1971.

Hervey, W.H. y Hustead, R.F.: Ketamine for dilatation and curettage procedures. Patient acceptance. Anesth. Analg. (Cleve.) 51:647, 1972.

23. Abajian, J.D.; Page, P. y Morgan, M.: Effects of droperidol and nitrazepam on emergency reactions following ketamine anesthesia. Anesth. Analg. (Cleve.) 52:385, 1973.

24. Fine, J. y Finestone, S.: Sensory disturbances following ketamine anesthesia: recurrent hallucinations. Anesth. Analg. (Cleve.) 52:428, 1973.

25. Becsey, L.: Reduction of the psychotomymetic and circulatory side efects of ketamine by droperidol. Anesthesiology 37:536, 1972.

Brewer, C. y Davidson, J.: Psychosis and ketamine. Brit. Med. J. 1:442, 1972.

Sierra, O. y Hoyos Ramírez, J.: Efectos indeseables de la ketamina. Rev. Mex. Anest. 21: 354, 1972.

Dndee, J.W.; Bovill, J.G. y Clarke, R.S.J.: Problems with ketamine in adults. Anesthesia 26:86, 1971.

Bovill, J.G.; Clarke, R.S.J. y Dundee, J. W.: Clinical studies of induction agents. XXXVIII: Effect of premedicants and supplements in ketamine anesthesia. Brit, J. Anaesth, 43:600, 1971.

Sadove, M.S.; Hatano, S. v Redlin, T.I.: Clinical study of droperidol in the prevention of the side efects of ketamine anesthesia: A progress report. Anesth. Analg. (Cleve.) 50: 526, 1971.

Siggaard Andersen, O. y Engel, K.: A new acid-base nomogram. An improved method for the calculation of the relevant blood acid base data. Scand. J. Clin. Lab. Invest. 12: 177, 1960.

32. Siggaard Andersen, O.: Blood acid-base alignment nomogram scales for pH, PCO2, CO2. Scand. J. Clin. Lab. Invest. 15:211, 1963.

Bach, J.R.: The measurement of blood pH with the radiometer capillary blood electrodes. Copenhague, Emdruvej Nv. 1963.

Stenger, V.G.: Observations on pentothal, nitrous oxide, and succinylcholine anesthesia at cesarean section. Amer. J. Obstet. Gynecol. 99:699, 1967.

35. Moya, F. y Smith, B.: Spinal anesthesia for cesarean section. Clinical and biochemical studies of effects on maternal physiology. JAMA. 179:609, 1962.

Benson, R.; Berendes, H. y Weiss, W.: Fetal compromise during elective cesarean section. Amer. J. Obstet. Gynecol. 105:579, 1969.

Crawford, J.: Anesthesia for obstetrics. Brit. J. Anaesth. 43:864, 1971.

Martínez Reding, C.: Bloqueo peridural en cirugía obstétrica. Rev. Mex. Anest. 58:67, 1962.

De Avila, C.A.: Fuegos y explosiones en quirófanos. Rev. Mex. Anest. 49:217, 1960.

Walter, C.W.: Anesthetic explosions. A con-

tinuing threat. Anesthesiology 25:505, 1964. Burt, R.A.P.: The foetal and maternal pharmacology of some of the drug for the relicf of pain in labour. Brit. J. Anaesth, 43:824,

Vasicka, A. y Kretchmer, H.: Effect of conduction and inhalation anesthesia on uterine contractions. Amer. J. Obstet. Bynecol. 82: 600, 1961.

Austin, T.R.; Bevan, D.F. y Tamlyn, R.S.: Ketamine and intermittent positive pressure ventilation for major surgery. Proceedings of the V World Congress of Anesthesiologist. Excerpta Medica 90/102, Kyoto, 1972.

Gallon, S.: Ketamine for dilatation and curettage. Can. Anaesth. Soc. J. 18:600, 1971.

45. Jastak, T.J. y Gorreta, C.: Ketamine HCL as a continuos drip anesthetic for outpatient.

Anesth. Analg. (Cleve.) 52:341, 1973.
Sadove Max, S.: Hatano, S. y Redlin, T.:
Clinical study of droperidol in the prevention of the side effects of ketamine anesthesia: A preliminary report. Anesth. Analg. (Cleve.) *50*:388, 1971.

Thompson, G.E. y Moore, D.C.: Ketamine, diazepam and incovar: a computerized comparative study. Anesth. Analg. (Cleve.) 50: 458, 1971.

Sinclair, D.M.: Ketamine combined with neuroleptoanalgesia. A preliminary communication. Anesthesia 28:241, 1971.

McLean, A.G.: Ketamine and diazepam in the adult patient. Med. J. Aust. 2:338, 1971.

O'Neil, A.A.; Winnie, A.P.; Zadigian, M.E. y Collins, V.J.: Premedication for ketamine anesthesia. Phase 1: The classic drugs. Anesthesiology Anal. (Cleve.) 51:475, 1972.

Erbuth, P.H.; Reiman, B. y Klein, R.L.: The influence of chlorpromazine, diazepam and droperidol on emergence of ketamine. Anesth. Analg. (Cleve.) 51:693, 1972.

52. Khoury, C.; Allen, C.R. y Ashy, T.: Effect of alpha adrenergic blockakde with droperidol on the cardiopulmonary response to ketamine. Fed. Proc. 31:2015, (res.), 1972.

 Castillo Sosa, M.L.; Guevara, R.G.: Zambra-na, A.; Smith, H.; Gutiérrez, B. y Karchmer, S.: Recuperación del equilibrio ácido base en el recién nacido sano. Rev. Mex. Pediat. Por publicarse.

Hon, E.H. y Kazin, A.F.: Observations of fetal heart rate and fetal biochemistry. Amer. Anestesia Disociativa 327

- J. Obstet. Gynecol. 83:333, 1962.
- Dill, W.A.; Chucot, L.; Chang, L. Glasko: Determination of ketamine in blood plasma. Anesthesiology 34:73, 1971.
- Dick, W.: Experiences with Ketalar in obstetric anesthesia. Proceedings of the V World Congress of Anesthesiologists. Kyoto, Excerpta Medica, 1972.
- Dalen, J.: The hemodynamic and respiratory effects of diazepam (Valium). Anesthesiology 30:3, 1969.
- Kvisselgard, N. y Moya, F.: Investigation of placental threshold to succinylcholine. Anesthesiology 22:7, 1961.

 Russell, K.P.: Anesthesia at cesarean section. Amer. J. Obstet. Gynecol. 99:5, 1967.

 Virtue, R.: Anaesthetic agent: 2 orthochlorophenyl, 2 methyllamino cyclohexanone HCL (Cl-581). Anesthesiology 28:823, 1967.

- 61. Corssen, G.; Gutiérrez, J.; Revs, J.G. y Huber, F. Jr.: Ketamine in the anesthetic management of asthmatic patients. Anesth. Analg. (Cleve.) 51:588, 1972.
- 62. Wilson, R.D.: Evaluation of Cl-1848 C: A new dissociative anesthetic in normal human volunteers. Anesth. Analg. (Cleve.) 29:236, 1970.
- 63. Scars, B.E.: Complication of ketamine. Ancsthesiology 35:231, 1971.