Revista Mexicana de Anestesiología

Volumen 28

Suplemento Supplement 2005

Artículo:

Obstructive sleep apnea: anatomy, physiology and perioperative considerations

Derechos reservados, Copyright © 2005: Colegio Mexicano de Anestesiología, AC

Otras secciones de este sitio:

- Índice de este número
- Más revistas
- Búsqueda

Others sections in this web site:

- **Contents of this number**
- **More** journals
- Search

CONFERENCIAS MAGISTRALES

Vol. 28. Supl. 1 2005 pp S29-S35

Obstructive sleep apnea: anatomy, physiology and perioperative considerations

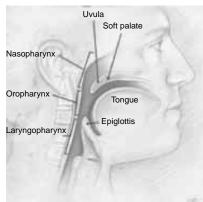
David J. Cook, M.D.*

* Associate Professor of Anesthesiology. Mayo Clinic College of Medicine, Rochester, MN, USA.

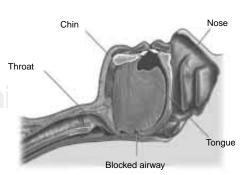
SCOPE OF THE PROBLEM

- About 1 in 15 middle aged adults have moderate OSA
- · Incidence in men twice that of women
- 60-90% of adult OSA patients are obese
- Incidence increases with age
- Probably 90% of sufferers are undiagnosed
- Generally obesity and older age are concentrated in the surgical population
- Incidence of OSA in surgical patients probably significantly higher than in the general population
- Given U.S. demographics, diagnosis of OSA is predicted to increase 5-10 fold in the next decade

WHO HAS OSA?


ANATOMY AND PHYSIOLOGY

OSA is defined as cessation of airflow for > 10s, occurring ≥ 5X/hour of sleep

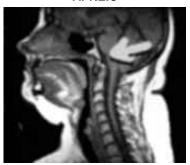

- Clinically results in disturbed sleep cycles, daytime sleepiness and cardiovascular changes
- Anatomy and physiology are well described, relevance to anesthetic care is clear

THE NORMAL AIRWAY

- Three collapsible pharyngeal segments (retropalatal, retroglossal and hypopharynx)
- Pharyngeal muscles actively keep airway open during inspiration

SITES OF OBSTRUCTION

 Genioglossus moves the tongue anteriorly to keep the etroglossal air space open


NEGATIVE AIRWAY PRESSURE

- The greater the obstruction, the greater negative pressure developed
- Much greater demands on airway muscles to keep airway patent

NORMAL

APNEIC

Restriction of the airway during an apneic event

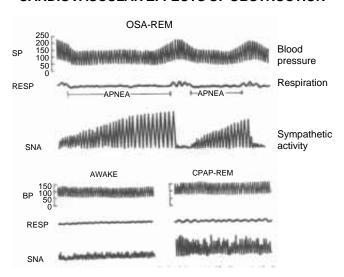
ANATOMY AND PHYSIOLOGY IN OSA

- With obesity there is deposition of fat in the lateral pharyngeal walls
 - Decreases airway diameter and airflow resistance
 - Alters primary axis of airway from transverse to anterior-posterior

Mechanical efficiency of pharyngeal muscles probably reduced

THE SLEEP CYCLE

- With non-REM sleep, rhythmic activity of upper airway muscles decreases
- In REM sleep pharyngeal tone decreases, may disappear
- Airway obstruction may be a positive feedback loop


AIRWAY OBSTRUCTION IN OSA SLEEP

- Increased resistance to airflow and increased negative inspiratory pressure
- Decreased pharyngeal tone during REM sleep
- · Extrinsic airway compression for tissue
- Snoring occurs in 30-40% of obese men, represents periods prior to and following airway closure

PHYSIOLOGIC EFFECTS OF OBSTRUCTION

- Decreased PaO₂
- Increased PaCO₂
- · Arousal, increased sympathetic tone
 - Hypertension, systemic and pulmonary

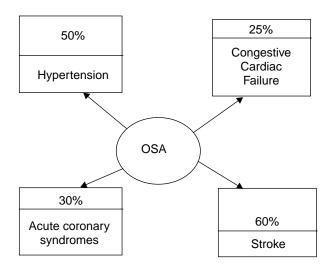
CARDIOVASCULAR EFFECTS OF OBSTRUCTION

CARDIAC EFFECTS OF OSA

- Increased sympathetic tone
- Increased MvO₂
- Myocardial ischemia and dysrhythmias
- Systemic and pulmonary hypertension

OSA episodes likened to "...sequential administration of several hundred bolus of pressor agent each day".

Bradley, T.; Circulation 2003


CARDIAC EFFECTS OF OSA

- Chronic exposure:
 - Cardiac remodeling:

myocyte necrosis, apoptosis

- Worsening of LV failure
- RV failure (*cor pulmonale*)

CHRONIC CARDIOVASCULAR EFFECTS

DIAGNOSIS OF OSA

- Sleep study is definitive
- Presumptive diagnosis:
- Obesity (BSA $> 30 \text{ kg/m}^2$)
 - Snoring or apnea during sleep
 - Daytime drowsiness/fatigue
- In surgical patients, assume OSA risk is there

ANESTHETICS AND OSA

All CNS depressants decrease pharyngeal dilator activity

thiopental propofol narcotics (I.V. and epidural) NMBs benzodiazepines nitrous oxide

- Arousal, CO₂ and O₂ responsiveness are diminished
- Interaction of anesthetics and OSA sleep cycle may last a week postoperatively

OSA AND AIRWAY MANAGEMENT

- Presumption of difficult airway
- Prior anesthetic history may be mitigating
 - Prior intubation

- Adequacy of mask airway
- Change in body weight or OSA severity
- Dependence on nocturnal CPAP
- Strategy for difficult airway no different
- · Pre-defined airway management strategy

Regional versus general anesthesia

- Surgical requirement
- Patient preference
- Technical difficulty anticipated
- Risk of inability to ventilate
- · Risk of aspiration
- Spontaneous ventilation
- Topicalization, sevoflurane
- Patient position, patient accessibility
- Special caution in MAC
- Outpatient surgi-centers, remote locations, more risky than standard operating and recovery rooms

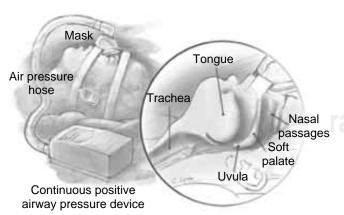
OSA AND POSTOP MANAGEMENT

- Regional analgesic techniques
- Awake extubation
- Pre-defined defined airway management strategy
- Surgery for OSA, more conservative Bleeding, swelling, panic
- CPAP unit in PAR (non-airway surgery)

NEGATIVE PRESSURE PULMONARY EDEMA

METHODS OF MANAGEMENT

- Medical
 - CPAP/BiPAP
 - Weight loss


- Dental splints/tongue retaining devices
- Nasopharyngeal tubes
- Sleep hygiene
- Surgical

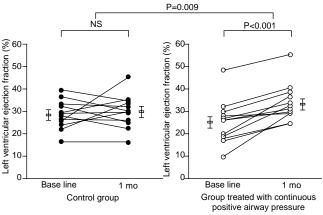
CPAP AND BIPAP

- CPAP: continuous positive airway pressure
 - (typically 5-10 cm H₂O pressure)
- BiPAP: Bilevel pressure support CPAP
 - Bi-pressure: senses inspiration,
 - Provides additional pressure to increase ventilation volume

CPAP EFFECTS

CPAP IN PATIENTS WITH HEART FAILURE AND OSA

- 24 patients with EF \leq 45% with OSA
- · All receiving optimal Rx for heart failure
- · Randomly assigned to medical therapy or CPAP
- Pre and post (1 month) respiratory and echocardiographic assessment of treatment effect (blinded)
 Kaneko Y et al NEJM 2003


Effects of CPAP on Heart Rate and Blood Pressure

Heart rate and blood pressure*.

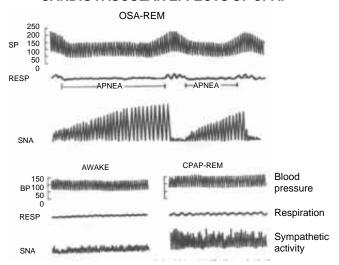
Variable	Control group			Group receiving continuous positive airway pressure		
	Base line	1 Mo	P value	Base line	1 Mo	P value
Heart rate (beats/min)	67 ± 4	67±4	NS	68 ± 3	64± 3	0.007 [†]
Systolic blood pressure (mmHq)	128 ± 7	134 ± 8	NS	126 ± 6	116 ± 5	0.02 [‡]
Diastolic blood pressure (mmHq)	60 ± 4	58 ± 3	NS	62 ± 4	59 ± 2	NS

^{*} NS denotes not significant. Plus-minus values are means \pm SE. There were no significant differences in base line values between the control group and the group given continuos positive airway pressure. Unless otherwise specified, P values are for the comparisons between base-line values and one-month values within the group.

EJECTION FRACTION BASELINE AND AT 1 MONTH

CPAP IN PATIENTS WITH HEART FAILURE AND OSA

- In the control group, no change in ejection fraction (from 29 ± 2 to 30 ± 2 percent)
- Ejection fraction increased in all 12 subjects treated with CPAP (from 25 ± 3 to 34 ± 2 percent)

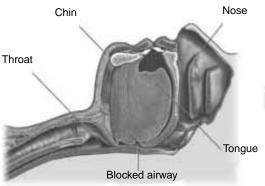

 $[\]dagger$ P = 0.09 for the comparison between the groups.

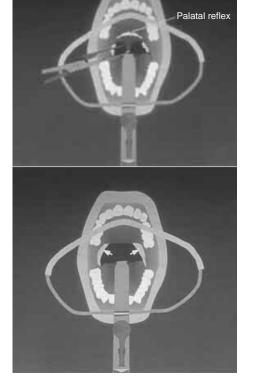
 $[\]ddagger$ P = 0.008 for the comparison between the groups.

While absolute change is small: Significant effect at this level of function Improvements in functional capacity can be meaningful • Uvulopalatopharyngoplasty (UPPP)

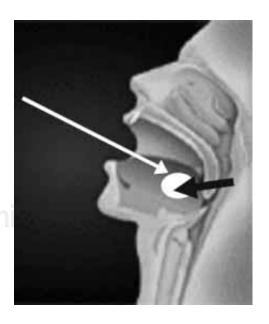
SURGERY FOR OSA

CARDIOVASCULAR EFFECTS OF CPAP

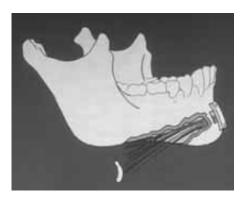

METHODS OF MANAGEMENT


- Medical
 - CPAP/BiPAP
 - Weight loss
 - Dental splints/tongue retaining devices
 - Nasopharyngeal tubes
 - Sleep hygiene
- Surgical- medical Rx fails, or surgical etiology

SURGERY FOR OSA


- Uvulopalatopharyngoplasty (UPPP)
- Genioglossus advancement
- Hyoid-myoid suspension
- Surgeries for non-obese OSA

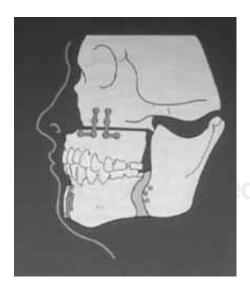
SITES OF OBSTRUCTION, SURGICAL **APPROACHES**



Radiofrequency tongue base reduction

SURGERY FOR OSA

Genioglossus advancement


• Hyoid-myoid suspension

The hyoid bone is pulled forward in front of the larynx, it can help stabilize the retroglossal space

Maxillomandibular advancement

SPECIALTY SURGERY FOR OSA

- · Maxillomandibular advancement
- Nasal
- Adenoid and tonsillectomy
- Tracheostomy- temporary
 Permanent (> 50/night, SpO₂ < 60%)
- (Gastric bypass)

PEDIATRIC OSA

 OSA symptoms in children typically differs from adults Snoring, worsened by URIs,

More continuous, without arousals

Irritability/behavior disorders

Poor attention span

Mouth breathing

Small stature (growth hormone)

- Peak age is 2-5 years, second peak, late teens
- Common cause is adenoid and tonsillar hyperplasia
- Sleep study rarely necessary
- Surgical treatment:

Adenoid and tonsillectomy

Turbinate reduction

UPPP

Maxillofacial reconstruction

- Adult-like OSA increasing (childhood obesity)
- Children with surgery for OSA overnight observation

Age < 3 years

History severe OSA

Medical co-morbidities

Craniofacial abnormalities

Social factors

CNS dysfunction or hypotonia

- CPAP not indicated
- · Document desaturations and apneic spells

DISORDERS ASSOCIATED WITH OSA

Arthrogryposis multiplex Achondroplasia congenita Beckwith-Wiedemann Down syndrome syndrome Hunter's syndrome Crouzon syndrome Klippel-Feil syndrome Fragile X syndrome Larsen's syndrome Hemifacial microsomia Prader-Willi syndrome Hurler's syndrome Pierre Robin sequence Marfan syndrome Riley-Day syndrome Pfeiffer's syndrome Treacher Collins syndrome Shy-Drager syndrome **Arnold-Chiari malformation** Cerebral palsy Hydrocephalus Hypothyroidism Meningomyelocele **Myotonic dystrophy** Laryngeal neurofibroma Sickle cell disease

Lymphoproliferative disorders

Vascular rings

Syringobulbia/myelia Gastroesophageal reflux

Goiter

Hypotonia Polio Fetal alcohol syndrome

Head injury

SUMMARY

- Obesity is epidemic and OSA is under diagnosed
- Higher risk groups concentrated in surgical population
- Perioperative period can turn a non-OSA patient into an

- OSA patient
- Acute and chronic effects of OSA are under appreciated, Rx effect is dramatic
- Pediatric population unique considerations Surgery more likely to be in the airway Many comorbid conditions that may prone to OSA
 - Neuromuscular disorders
 - CNS conditions

Well defined airway and analgesic plan, pre and post operatively

- Airway versus non-airway surgery
- Outpatient settings are very high risk areas
- Avoid "creep" in sedation cases

