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III) Cocaína-metanfetamina. Existe una larga his-
toria de estudios sobre las drogas que alteran el meca-
nismo del reloj biológico. Por ejemplo, el tratamiento
agudo o crónico con inhibidores de la monoamina oxi-
dasa y otros antidepresivos altera el periodo y/o la fase
del ritmo de actividad locomotora. Se ha reportado
repetidamente que los efectos farmacológicos, fisioló-
gicos y conductuales generados por las drogas de abu-
so dependen del tiempo de administración de éstas en
un ciclo de 24 horas. De tal forma, los efectos de dro-
gas de abuso como la anfetamina, el metilfenidato, la
nicotina, el etanol, la morfina y la cocaína dependen de
la fase circadiana en la que se administran (26). De he-
cho, en humanos se ha reportado que el consumo y la
búsqueda de cocaína muestran un ritmo estacional y
circadiano, ya que la mayoría de los sujetos la consume
hacia el final del día. En sujetos experimentales, los
efectos conductuales y neurofisiológicos generados por
piscoestimulantes como la cocaína y la anfetamina -
como la inhibición de la ingestión de alimento y el au-
mento en la actividad locomotora (sensibilización con-
ductual)-, muestran perfiles circadianos en roedores (2,
34, 35). Por ejemplo, el desarrollo de la sensibilización
conductual a la cocaína muestra una marcada altera-
ción circadiana, ya que varias inyecciones de cocaína
durante el día producen una fuerte sensibilización con-
ductual. En cambio, varias administraciones durante la
noche no desarrollan esta sensibilización conductual,
lo que sugiere que el reloj biológico regula la sensibili-
dad del sujeto a la cocaína por medio de un mecanis-
mo aún no determinado. Se ha reportado que la admi-
nistración de psicoestimulantes como la metanfetami-
na (44), los opioides (54), el alcohol (20, 102, 103) y la
cocaína (1), afectan la expresión de los genes reloj, Per1
y Per2, fuera del NSQ, principalmente en el estriado
de la rata (87, 111). Esto sugiere que los genes reloj
participan en la regulación de las respuestas inducidas
por drogas de abuso (129, 130).

Andretic y cols. (5) reportaron que las moscas silves-
tres mostraban un patrón de sensibilización conductual
después de una exposición inicial a la cocaína. En cam-
bio, las moscas mutantes nulas de los genes Per, Clock o
Cycle no mostraban un patrón de sensibilización con-
ductual similar al de las moscas silvestres a dosis norma-
les o aumentadas de cocaína. En cambio, la mutación de
los genes Tim y Dbt alteraba las respuestas generadas
por la cocaína, tanto en su respuesta inicial como en la
fuerza de la respuesta de sensibilización a la misma. En
mamíferos, la administración repetida de cocaína indu-
ce la expresión del RNAm de los genes reloj Per1 y Per2
en el estriado y en el núcleo accumbens, regiones del SNC
importantes para la regulación de los efectos conduc-
tuales inducidos por la administración de cocaína. En el
ratón mutante de los genes Per1 o Per2, la respuesta
observada después de una simple administración de co-
caína no difiere de la de los ratones normales. En cam-
bio, en el ratón mutante de Per1, la administración repe-
tida de cocaína no induce sensibilización conductual. Por
otro lado, en los ratones mutantes de los genes Per2 o
Clock, administraciones repetidas de cocaína inducen un
aumento en la respuesta conductual generada por la dro-
ga, es decir, estos ratones muestran una hipersensibili-
dad a la cocaína (1, 63). Además, los ratones mutantes
del gen Per1 no mostraron una preferencia por el lado
pareado con la cocaína en un paradigma de condiciona-
miento preferencial de lugar (CCP) en comparación con
los ratones normales. En cambio, los ratones mutantes
de los genes Per2 o Clock mostraron una pronunciada
preferencia al lado pareado con la cocaína. Esto sugiere
que la sensibilización conductual y las propiedades de
recompensa de la cocaína están moduladas de manera
opuesta por los genes reloj Per1 y Per2/Clock (1, 63).

El principal efecto de la cocaína recae sobre el siste-
ma dopaminérgico. Se han reportado algunas interac-
ciones entre el sistema dopaminérgico y el sistema cir-
cadiano, principalmente en la etapa prenatal del NSQ,
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en la cual el receptor D1 participa de modo importante
en la sincronización del reloj biológico fetal durante el
desarrollo. Recientemente se reportó que, en las mos-
cas, la sensibilidad del receptor dopaminérgico D2 al
quimpirole, un agonista del receptor D2, muestra un
patrón circadiano. Este agonista es menos efectivo en
inducir actividad locomotora en la porción de luz de
un ciclo luz-oscuridad. En cambio, en la fase de oscu-
ridad induce un gran aumento en la actividad locomo-
tora. Un patrón similar se observa en condiciones cons-
tantes. Por el contrario, moscas mutantes del gen Per
muestran una respuesta al quimpirole muy similar a las
moscas control bajo un ciclo luz-oscuridad. Sin em-
bargo, cuando se colocan estos sujetos en condicio-
nes constantes, la respuesta al agonista desaparece.
Lo anterior sugiere que los receptores dopaminérgi-
cos podrían estar bajo el control del reloj circadiano
y depender de la presencia de gen Per (6). Por otro
lado, se ha reportado que los ratones mutantes del

gen Clock muestran un incremento en los niveles
del RNAm y de la proteína de la enzima tirosina hi-
droxilasa (TH), la cual es la enzima limitante en la
síntesis de dopamina. Muestran también un aumen-
to en la capacidad de excitabilidad de las neuronas
dopaminérgicas en comparación con los ratones
control (63). Esto sugiere que los genes reloj regu-
lan la neurotransmisión dopaminérgica y que, por
medio de este mecanismo, modulan las respuestas
del sistema dopaminérgico a la cocaína (figura 1-A).

Mecanismos fisiológicos. Como se mencionó ante-
riormente, los estímulos no luminosos alteran la fase
y/o el periodo endógeno de los ritmos controlados por
el NSQ -como el ritmo de actividad locomotora- los
cuales a su vez son sincronizados comúnmente por la
luz. Pero, ¿cómo afectan los estímulos no luminosos al
NSQ? Esto puede ser simplemente a través de una pro-
yección aferente al NSQ que traduce la información

Fig.1. 1-A. La administración continua de una droga de abuso (cocaína) durante el día induce la expresión de los genes reloj
en células dopaminérgicas del VTA, los cuales modulan a los genes involucrados en la síntesis y liberación de dopamina (A).
Cuando se induce la mutación en alguno de éstos, la modulación se pierde y se observan alteraciones en la liberación de
dopamina (B), lo cual modifica la respuesta del sujeto a la droga. Es probable que la mutación de alguno de los genes reloj
altere la liberación de otro transmisor o de un péptido modulador (C), el cual tal vez sea el encargado de modular la libera-
ción de dopamina en respuesta a una droga. 1-B. Representación esquemática del mecanismo a través del cual los estímulos
no luminosos afectan el NSQ. Esto puede ser simplemente a través de una proyección aferente al NSQ que traduce la informa-
ción no luminosa y es capaz de inducir respuestas de fase, o bien, puede ser a través de la acción de osciladores periféricos,
los cuales son sensibles a este tipo de señales. Estos osciladores periféricos traducen la información no luminosa y la comuni-
can al NSQ a través de mecanismos sinápticos y no sinápticos.
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no luminosa y es capaz de inducir respuestas de fase, o
bien, puede ser a través de la acción de un oscilador
periférico, el cual es sensible a este tipo de señales. Este
oscilador periférico traduce la información no lumino-
sa y se comunica con el NSQ a través de mecanismos
sinápticos y no sinápticos, es decir, debe estar acopla-
do (acoplamiento mutuo) con el NSQ (figura 1-B). Con
respecto a los mecanismos fisiológicos que intervie-
nen en este proceso, se ha sugerido que participan cua-
tro sistemas de neurotransmisión involucrados en el
sistema circadiano: a) el sistema serotoninérgico pro-
veniente del núcleo del rafé, b) el sistema inmurreacti-
vo a NPY proveniente de la hojuela intergeniculada
(HIG), c) el sistema GABAérgico, el cual se encuentra
presente en la mayoría de las neuronas del NSQ y de la
HIG (las proyecciones aferentes del núcleo del rafé y
de la HIG hacen sinápsis con neuronas GABAérgicas
en el NSQ), y 4) finalmente un sistema que implica
señales dopaminérgicas y de melatonina, las cuales se
han implicado importantemente en sujetos en la vida
fetal y neonatal. La posibilidad de que cada uno de ellos
o en conjunto participe en la sincronización a estímu-
los no luminosos no se ha determinado con exactitud.
A continuación se muestran algunas de las evidencias
que sustentan la participación de cada uno de estos
sistemas de neurotransmisión en la sincronización a
estímulos no luminosos (figura 2-A).

a) Sistema serotoninérgico. Los niveles de serotonina en el
NSQ de roedores muestran sus niveles más altos du-
rante el periodo de oscuridad (36), por lo que no es
muy evidente su participación en la sincronización no
luminosa. Sin embargo, la participación de la serotoni-
na en las respuestas de fase del reloj biológico induci-
das por los estímulos no luminosos se sustenta en evi-
dencia basada a su vez en tratamientos farmacológicos
mediante la administración de agonistas serotoninérgi-
cos en el NSQ durante el día subjetivo, los cuales indu-
cen respuestas de fase del ritmo de actividad locomo-
tora o de actividad eléctrica en corrimiento libre y la
expresión de la proteína FOS en el NQ de la rata y el
hamster (10, 30). La administración de quipazina, un
agonista serotoninérgico no específico del receptor 5-
HT1/2, a rebanadas cerebrales que contienen el NSQ
induce una CRF muy similar a la generada por los even-
tos no luminosos (90). La inyección intraperitoneal de
quipazina y la administración intracerebroventricular
(ICV) de 8-OH-DPAT (8-hidroxy-dipropylaminotetra-
tlin, un agonista del receptor 5-HT1A/7) en el día subjeti-
vo inducen avances de fase en el ritmo de actividad lo-
comotora, pero no generan retrasos de fase cuando se
administran en la noche subjetiva temprana (22, 43).

Además, la administración de 8-OH-DPAT o diaze-
pam atenúa las respuestas de fase inducidas por la luz,

así como la expresión de la proteína FOS en el NSQ
en la noche subjetiva. Como se mencionó anteriormen-
te, los estímulos no luminosos inducen un aumento en
la actividad locomotora, por lo que se podría pensar
que, al igual que con la administración de benzodiaze-
pinas, el efecto de los agonistas serotoninérgicos po-
dría relacionarse con un aumento en la actividad loco-
motora. Sin embargo, la administración intraperitoneal
de 8-OH-DPAT a hamsters inmovilizados induce avan-
ces de fase de cerca de 1 hr. en CT8-CT10; estos avan-
ces de fase son similares en dirección y magnitud a los
observados en sujetos no inmovilizados (15). Esto su-
giere que los efectos inducidos por los agonistas sero-
toninérgicos no dependen del aumento de la actividad
locomotora, sino que son el resultado de un efecto
sobre el reloj biológico.

Recientemente se reportó que la administración de
MKC-242, una droga que potencia las respuestas a la
luz, atenúa las respuestas de fase inducidas por la in-
yección de triazolam (128). Tratamientos sistémicos con
antagonistas serotoninérgicos, ketanserina, metergoli-
na, NAN-190 o ritanserina atenúan las respuestas de
fase inducidas por un paradigma de alertamiento en el
hamster (7,106). Sin embargo, la administración de un
antagonista contra el autorreceptor 5-HT(1A),
WAY100635, durante el día subjetivo -el cual incremen-
ta los niveles de serotonina en el NSQ-, no induce res-
puestas de fase, lo cual sugiere que el aumento en la
liberación de serotonina en el NSQ no es suficiente
para inducir respuestas de fase en el día subjetivo (8).
Por otro lado, la depleción de las vías serotoninérgicas
mediante la administración de las neurotoxinas p-clo-
rampfetamina (PCA) y 5,7-DHT causa diversos efec-
tos sobre la sincronización no luminosa. La adminis-
tración de PCA bloquea los avances de fase inducidos
por las inyecciones de triazolam (88). Asimismo, la le-
sión local y específica de las proyecciones serotoninér-
gicas al NSQ por la infusión directa de 5,7-DHT blo-
quea los avances de fase generados por la administra-
ción de triazolam (23). No obstante, estas lesiones no
afectan las respuestas de fase inducidas mediante un
protocolo de locomoción forzada (16). En cambio, le-
siones extensas causadas por la administración ICV de
la 5-7-DHT no tienen efecto sobre la capacidad del
triazolam para alterar la velocidad de resincronización
debido a un avance en el inicio del ciclo luz-oscuridad
en el hamster pero sí  alteran el valor del periodo endó-
geno (72). Estas evidencias sugieren que que aún no es
muy clara la relación anatomofuncional entre las vías
serotoninérgicas que inervan al NSQ con las benzo-
diazepinas y otras señales no luminosas, pero es pro-
bable que la serotonina actúe sobre alguno o algunos
de los osciladores periféricos que traducen la informa-
ción no luminosa que a su vez proyectan al reloj bioló-
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gico e induce respuestas de fase. La administración de
3,4-metilenedioxymetanfetamina (MDA), una droga de
abuso que actúa como una neurotoxina que destruye
células serotoninérgicas, disminuye significativamente
las respuestas de fase inducidas por la administración

de triazolam al 8-OH-DPAT y la velocidad de resin-
cronización a un cambio en el inicio del ciclo L:O
(21,33), lo cual sugiere que el sistema serotoninérgico
modula las respuestas de fase del reloj biológico a estí-
mulos no luminosos y luminosos.

Fig.2. 2-A Vías involucradas en la sincronización a estímulos no luminosos. Tanto la HIG, a través de la participación del NPY y
del GABA, y el núcleo del rafé, a través de la serotonina, pudieran participar en concierto en transmitir la información concer-
niente a señales no luminosas al reloj biológico (NSQ). 2-B Representación gráfica del posible mecanismo a través del cual el
sistema circadiano de la madre sincroniza el sistema circadiano del feto a través de dos señales rítmicas: la melatonina y la
dopamina.
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b) Sistema NPYérgico. La HIG ocupa una posición muy
importante en el sistema circadiano de los mamíferos; su
participación en la sincronización no luminosa se sus-
tenta en las siguientes evidencias: a) La lesión electrolíti-
ca de la HIG bloquea la sincronización no luminosa a
señales farmacológicas y conductuales (47, 53). b) La es-
timulación eléctrica y química de la HIG induce respues-
tas de fase similares a las inducidas por señales no lumi-
nosas (50). c) La administración de NPY dentro del NSQ
induce una CRF similar a la inducida por la inyección de
triazolam o a la inducida por la actividad locomotora for-
zada (3, 12), presumiblemente a través de la activación
del receptor NPYérgico Y2 o del receptor Y1/Y5. d) La
administración de un antisuero contra NPY en el NSQ
bloquea los avances de fase inducidos por estímulos no
luminosos (13). e) Los estímulos no luminosos inducen
la expresión de la proteína FOS en células inmunorreac-
tivas a NPY en la HIG y una inhibición en la expresión
de la proteína FOS en el NSQ (27, 45, 48). En conjunto,
estas evidencias sugieren que el NPY media las respues-
tas de fase a estímulos no luminosos. Sin embargo, la
lesión electrolítica y la estimulación eléctrica de la HIG
inducen, respectivamente, una disminución y un aumen-
to en la actividad locomotora, por lo que estos resultados
no son aún concluyentes. No obstante, la evidencia de
que la lesión de la HIG no elimine las respuestas de fase
inducidas por pulsos de luz, aun cuando sí evita la sin-
cronización a estímulos no luminosos, sustenta la parti-
cipación de la HIG en la sincronización no luminosa.

El tracto genículo-hipotalámico (TGH) se origina de
células de la HIG inmunorreactivas a NPY y a GABA,
y proyecta al NSQ. Si la HIG fuese el transductor de la
información no luminosa, entonces el TGH sería el
obvio candidato para ser la proyección a través de la
cual se transmitiría la información no luminosa al reloj
biológico. Como un gran porcentaje de las células que
originan el TGH son GABAérgicas, es muy probable
que el GABA participe activamente en la sincroniza-
ción a estímulos no luminosos. La administración local
de muscimol, un agonista GABAérgico, durante el día
subjetivo, induce en el NSQ avances de fase similares a
los generados por estímulos no luminosos in vivo e in
vitro (109). Estas respuestas de fase no van acompaña-
das por un incremento en la actividad locomotora del
sujeto; esto sugiere que a través de la liberación GABA
en el NSQ, el TGH participa importantemente en la
sincronización no luminosa del reloj biológico.

La administración de NMDA durante el día subjeti-
vo inhibe las respuestas de fase inducidas por el musci-
mol. Sin embargo, la administración de TTX bloquea
el efecto del NMDA en esta fracción del ciclo, lo cual
sugiere que las respuestas de fase inducidas durante el
día subjetivo requieren mecanismos sinápticos depen-
dientes de sodio (32). Si la HIG y el TGH conforman

una vía que transmite la información no luminosa al
reloj circadiano, la pregunta es cómo llega a la HIG la
información acerca de los eventos no luminosos. Aho-
ra se sabe que la HIG recibe una variedad de proyec-
ciones aferentes de tipo límbico y sensorial a través de
las cuales los eventos no luminosos serían capaces de
inducir respuestas de fase. Esto implica que el alerta-
miento, las interacciones sociales, la actividad locomo-
tora forzada, la administración de benzodiazepinas y
de agonistas serotoninérgicos inducen respuestas de
fase del reloj biológico a través de un mismo canal sen-
sorial (HIG/TGH/NSQ) (57). En alguna etapa de un
ciclo, dentro del reloj, la información de cada tipo de
estímulo no luminoso puede divergir ampliamente y
generar respuestas específicas para cada estímulo. Sin
embargo, es probable que la actividad coordinada de
las proyecciones del rafé dorsal a la HIG y del rafe
medio al NSQ, en combinación con la activación del
sistema HIG-TGH, sean necesarias para generar las
respuestas de fase a estímulos no luminosos. Esto su-
giere que la generación de una respuesta de fase por
parte del reloj biológico a un estímulo no luminoso
requiere la participación de varios sistemas de neuro-
transmisión.

c) Melatonina/Dopamina. La melatonina se ha relaciona-
do también con la transmisión de la información rela-
cionada con estímulos no luminosos, debido a que la
administración aguda de melatonina, in vivo e in vitro
durante el día subjetivo, induce avances de fase y dis-
minuye significativamente el tiempo necesario para
generar un patrón de resincronización a cambios en la
fase de inicio de un ciclo luz-oscuridad (L:O)(91).

Aunque en el hamster siberiano los paradigmas de
alertamiento no generan respuestas de fase, la admi-
nistración diaria de melatonina sincroniza el ritmo de
actividad locomotora en corrimiento libre. Lo anterior
sugiere que algunas especies son más sensibles a las
señales desencadenadas por la melatonina (40). Sin
embargo, se ha reportado que la participación más re-
levante de la melatonina como señal no luminosa ocu-
rre durante la vida fetal de los organismos. Ritmos cir-
cadianos en variables metabólicas, endocrinas y fisio-
lógicas pueden observarse en el NSQ fetal a la mitad
de la gestación, tanto en roedores como en primates
(70). Esto sugiere que el reloj biológico muestra activi-
dad rítmica previa al nacimiento y es sensible a las se-
ñales ambientales periódicas (93, 94). ¿Pero cómo se
sincroniza el reloj biológico fetal al ambiente externo?
La capacidad del NSQ fetal para generar ritmos circa-
dianos es una propiedad espontánea independiente del
sistema circadiano de la madre. Sin embargo, su sin-
cronización se efectúa a través de señales no lumino-
sas endocrinas y conductuales transmitidas por el reloj
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de la madre. Estas señales actúan previo al estableci-
miento de las proyecciones retinales funcionales al re-
loj biológico en desarrollo. La ausencia de señales no
luminosas del NSQ materno al reloj biológico de las
crías induce una desincronización interna en los rit-
mos circadianos del feto, es decir, cada feto expresa un
ritmo en corrimiento libre independiente, cada uno de
los cuales tiene un periodo endógeno diferente (25, 95,
97). El reloj biológico en desarrollo puede ser sincro-
nizado por varias señales derivadas del sistema circa-
diano materno (92, 98). Así, si se lesiona el NSQ ma-
terno, el reloj in utero puede sincronizarse mediante la
imposición de ciclos periódicos conductuales a la ma-
dre; por ejemplo a través de patrones de restricción de
alimento (119). No obstante, no se ha podido determi-
nar la señal endocrina responsable de la sincronización
materna al NSQ fetal en estas condiciones (96). Algu-
nos agentes son capaces de sincronizar el reloj circa-
diano fetal in utero cuando se administran a madres pre-
ñadas con lesión del NSQ. Dosis farmacológicas de
melatonina administradas diariamente en la misma fase
a madres preñadas con lesión del NSQ sincronizan el
reloj biológico de los fetos a una fase predecible (la
hora de administración de melatonina). Esto sugiere que
la acción de la melatonina sobre el NSQ fetal pudiera ser
directa (24), ya que el NSQ fetal expresa una alta densidad
de receptores a melatonina. Sin embargo, la melatonina
no es el único factor que media la sincronización mater-
no-fetal, ya que la remoción de la glándula pineal (pinea-
lectomía) no impide la sincronización de los fetos a los
ciclos ambientales externos.

Se ha estudiado la participación de otro sistema de
neurotransmisión en este tipo de sincronización, don-
de las vías dopaminérgicas parecen cumplir un papel
relevante en la transmisión de la información temporal
de la madre a la cría. La administración diaria de ago-
nistas específicos del receptor dopaminérgico D1 a
madres preñadas con lesión del NSQ sincroniza el re-
loj biológico fetal en una fase opuesta a la generada
por la administración diaria de melatonina (117, 118) e
induce la expresión de la proteína FOS en el NSQ fetal
(120, 121). Lo anterior sugiere que, como sucede con
la melatonina, la dopamina puede actuar directamente
sobre el NSQ fetal a través de la activación del recep-
tor dopaminérgico D1, el cual expresa en el NSQ fetal
(117, 120). Esto sugiere que la melatonina y las señales
que activan el sistema dopaminérgico en el NSQ fetal
tienen acciones opuestas pero complementarias en la
noche y en el día, respectivamente. La sincronización
maternal continúa después del nacimiento de las crías a
través del patrón de alimentación de las mismas, donde
la camada adopta la fase circadiana de la madre lactante;
este fenómeno ocurre sólo durante las primeras sema-
nas de vida. Otra forma en que la madre sincroniza la

camada es a través del contacto social entre las crías y
ella misma (99, 116). Sin embargo, la eficiencia de estos
procesos declina con la madurez de las crías y se asocia
con el desarrollo y la madurez de las diferentes proyeccio-
nes aferentes y eferentes del reloj biológico (figura 2-B).

Vías intracelulares. En comparación con la cascada
de señales intracelulares ocasionadas por la estimulación
glutamatérgica  asociada con la sincronización lumino-
sa, la cual excita a las células del NSQ, los transmisores
implicados en la sincronización no luminosa inhiben tí-
picamente a las neuronas del NSQ. Por ejemplo, la prin-
cipal acción de la melatonina sobre las neuronas del NSQ
consiste en inhibir la adenilato ciclasa y la traducción de
señales mediadas por el AMPc. Como consecuencia, se
inhibe también la proteína quinasa dependiente de AMPc
(PKA) y bloquea obviamente la fosforilación del factor
de trascripción CREB. De este modo, las respuestas de
fase inducidas por estímulos no luminosos no se aso-
cian con la fosforilación de factores de trascripción que
se unen a elementos de respuesta al AMPcíclico (CREB)
ni con la transcripción de genes de expresión temprana
en el NSQ (64, 105, 131), eventos de señalización carac-
terísticos de la sincronización luminosa.

Los agentes que inducen una disminución de la acti-
vidad metabólica de las células del NSQ pueden ser los
más efectivos en inducir también respuestas de fase
cuando los estímulos no luminosos se aplican en el día
subjetivo, ya que es justo en la fracción de un ciclo
cuando la actividad metabólica de las células del NSQ
es muy alta, por lo que al disminuirla podrían producir-
se los avances de fase conductuales. En cambio, en la
noche subjetiva, cuando los niveles de actividad meta-
bólica son bajos, los factores que la inhiben no reini-
ciarían la fase del NSQ y esto correspondería a la zona
muerta de la CRF para estímulos no luminosos, pero
muy sensible a la luz, lo cual activaría a las células del
NSQ e induciría respuestas de fase. Es muy probable
que la sincronización no luminosa implique la partici-
pación de osciladores periféricos, lo cual sugiere otra
posibilidad. Así, los transmisores asociados con las se-
ñales no luminosas generan la activación de otras áreas
cerebrales (osciladores periféricos), los cuales traduci-
rían la señal y, a través de sus proyecciones al NSQ,
podrían inducir el reinicio de la fase del reloj biológico.
Esto implica que los osciladores periféricos reciben
proyecciones aferentes de los receptores que traducen
la información no luminosa.

Maquinaría molecular. Dada esta sensibilidad del NSQ a
los estímulos no luminosos, se puede predecir que los
genes reloj (mPer 1-3, Clock, Bmal1 y Cry 1-3), que
componen la maquinaria molecular que genera los rit-
mos circadianos y que codifican variables de estado
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del reloj biológico, sufren alteraciones en sus niveles
de expresión en respuesta a una señal no luminosa. Las
respuestas de fase generadas por las señales no lumi-
nosas ocurren durante el día subjetivo, tiempo en el
cual la expresión espontánea de estos genes es alta en
animales diurnos y nocturnos, por lo que el reinicio de
fase del reloj biológico a señales no luminosas puede
ser generado por una supresión rápida en los niveles
de expresión de los genes reloj (figura 3).

Algunos estudios han reportado una relación entre
la supresión del gen Per1 y la generación de respuestas
de fase a estímulos no luminosos (39), estos estudios

refieren una disminución en la expresión del gen Per1
de cerca de 60% cuando se somete un hamster a un
paradigma de locomoción forzada o a administracio-
nes de NPY, de agonistas serotoninérgicos (8-OH-
DPAT), de brotizolam o de melatonina, o de pulso de
oscuridad (31, 42, 125). En resumen, todos estos estí-
mulos inducen respuestas de fase durante el día subje-
tivo. A nivel molecular, estos paradigmas conductuales
producen una aguda disminución de la expresión rít-
mica de los genes Per1 y Per2 en el NSQ (60). La dis-
minución de los niveles de expresión del RNAm de
Per1 y Per2 en el NSQ, generada por los estímulos no

Fig.3. Las respuestas de fase inducidas por las señales luminosas son el resultado de la activación de una cascada de eventos
de señalización basada en el incremento de calcio intracelular y la activación del factor de trascripción CREB, que da como
resultado una rápida expresión de los genes reloj en el NSQ (1). La sincronización a eventos no luminosos es mediada por vías
intracelulares dependientes de la activación del sistema NPYérgico proveniente de la HIG y del serotoninérgico proveniente
del núcleo del rafé medial durante el día subjetivo, tiempo en el cual la expresión espontánea de los genes reloj es alta en
animales diurnos y nocturnos. El reinicio de fase del reloj biológico a señales no luminosas es generado por una supresión
rápida en los niveles de expresión de los genes reloj (2). La mutación en alguno de los genes reloj altera las respuestas del reloj
biológico a las señales no luminosas (3).
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luminosos, ocurre sólo durante la mitad del día subje-
tivo y no durante la noche subjetiva, lo cual sugiere que
estos genes participan importantemente en el reinicio
de fase durante el día subjetivo (61, 127). La adminis-
tración de oligonucleótidos antisense contra el gen Per1
genera una disminución en los niveles de expresión del
gen Per1 en el NSQ. Las respuestas de fase inducidas
en estas condiciones son similares a las observadas en
la CRF a estímulos no luminosos. Esto sugiere, por un
lado, que la disminución observada en los niveles de
expresión del gen Per1 después de la estimulación con
señales no luminosas es la causa y no una consecuen-
cia de la respuesta de fase inducida por el estímulo (39).
Por otro, indica que las señales luminosas y no lumino-
sas convergen dentro del reloj biológico, de tal manera
que los efectos generados por las señales luminosas
pueden ser modulados por los efectos generados por
las señales no luminosas y viceversa: la luz aumenta los
niveles de los genes reloj y, a su vez, los eventos no
luminosos disminuyen los niveles de los genes Per.

Han sido descritas previamente interacciones entre
las respuestas de fase inducidas por la luz y las induci-
das por estímulos no luminosos (62). Cuando un estí-
mulo luminoso se aplica después de una señal no lumi-
nosa durante el día subjetivo -con el fin de estudiar la
interacción entre los estímulos luminosos y los no lu-
minosos-, el estímulo luminoso bloquea o atenúa los
avances de fase que se generan en respuesta a distintos
estímulos no luminosos (12, 82), como la actividad lo-
comotora forzada, la privación de sueño, la adminis-
tración de NPY o la administración de agonistas sero-
toninérgicos (8-OH-DPAT) (52, 71). Los avances de
fase inducidos durante la noche subjetiva tardía por la
luz son atenuados por la administración de NPY, de
agonistas serotoninérgicos (TFMPP, CGS 12066a y 8-
OH-DPAT) y por la actividad locomotora forzada (89,
122). Sin embargo, el estímulo no luminoso no afecta
la expresión de la proteína FOS ni del RNAm del gen
Per1 en el NSQ inducido por la luz (28). Si los genes
reloj responden a los estímulos no luminosos, enton-
ces la falta de alguno de ellos deberá generar alteracio-
nes en las respuestas a las señales no luminosas. En los
ratones knockout del gen Clock, las respuestas del reloj
biológico a las señales no luminosas se modifican. Pa-
radigmas de actividad locomotora forzada aplicados al
ratón mutante Clock, durante el día subjetivo, generan
respuestas de fase en dirección opuesta a las produci-
das por sujetos intactos (19, 83). Lo anterior sugiere
que los distintos genes reloj participan en la génesis de
las respuestas de fase a estímulos no luminosos. Mu-
chas señales no luminosas generan respuestas de fase
del reloj biológico al momento de presentarse durante
la mitad del día subjetivo, que es cuando la expresión de
los genes reloj es alta. Esta correlación abre la posibili-

dad de que las señales no luminosas sean capaces de
modular en esta etapa del asa de retroalimentación trans-
cripcional del reloj biológico la expresión y/o los efec-
tos de los genes reloj. Con base en la evidencia anterior,
la sincronización no luminosa complementa al parecer
la sincronización luminosa, permitiéndole al organismo
una mayor oportunidad de supervivencia en su nicho
temporal. La identificación de los genes Per como blan-
cos de señales que reinician la fase del reloj (luminosas y
no luminosas) abre la posibilidad de caracterizar la bio-
actividad de nuevos agentes terapéuticos generados para
la manipulación de las alteraciones relacionadas con el
reloj biológico. La bioactividad puede identificarse al exa-
minar su acción sobre la expresión de estos genes en el
NSQ. Es así que la sincronización no luminosa del sis-
tema circadiano adquiere una importancia biológica y/
o social en varios contextos. En la vida temprana, la
comunicación de la información circadiana de la madre
es importante para regular el reloj biológico del feto o
del neonato antes de que sea sensible a la luz (97). En
circunstancias en que las rutinas sociales y laborables
son alteradas por cambios de turno de trabajo constan-
tes (shift work), el reloj biológico recibe señales lumino-
sas y no luminosas a destiempo, lo cual genera una dis-
función y una pobre eficiencia. La ausencia de señales
no luminosas, seguida de una abstinencia social, puede
inducir alteraciones en la salud mental como depresión
(112). Los trastornos del sueño experimentados por su-
jetos ciegos pueden surgir de una pérdida de la sincroni-
zación social, así como de una disminución en la efi-
ciencia del mecanismo de reloj. Para estas alteraciones
del reloj es posible desarrollar nuevas formas de trata-
mientos farmacológicos y conductuales (figura 3).
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