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I11) Cocaina-metanfetamina. Existe una larga his-
toria de estudios sobre las drogas que alteran el meca-
nismo del reloj biolégico. Por ejemplo, el tratamiento
agudo o crénico con inhibidores de la monoamina oxi-
dasa y otros antidepresivos altera el periodo y/o la fase
del ritmo de actividad locomotora. Se ha reportado
repetidamente que los efectos farmacoldgicos, fisiolo-
gicos y conductuales generados por las drogas de abu-
so dependen del tiempo de administracion de éstas en
un ciclo de 24 horas. De tal forma, los efectos de dro-
gas de abuso como la anfetamina, el metilfenidato, la
nicotina, el etanol, la morfinay la cocaina dependen de
la fase circadiana en la que se administran (26). De he-
cho, en humanos se ha reportado que el consumoy la
busqueda de cocaina muestran un ritmo estacional y
circadiano, ya que la mayoria de los sujetos la consume
hacia el final del dia. En sujetos experimentales, los
efectos conductuales y neurofisioldgicos generados por
piscoestimulantes como la cocaina y la anfetamina -
como la inhibicion de la ingestion de alimento y el au-
mento en la actividad locomotora (sensibilizacion con-
ductual)-, muestran perfiles circadianos en roedores (2,
34, 35). Por ejemplo, el desarrollo de la sensibilizacion
conductual a la cocaina muestra una marcada altera-
cion circadiana, ya que varias inyecciones de cocaina
durante el dia producen una fuerte sensibilizacion con-
ductual. En cambio, varias administraciones durante la
noche no desarrollan esta sensibilizacion conductual,
lo que sugiere que el reloj bioldgico regula la sensibili-
dad del sujeto a la cocaina por medio de un mecanis-
mo aln no determinado. Se ha reportado que la admi-
nistracion de psicoestimulantes como la metanfetami-
na (44), los opioides (54), el alcohol (20, 102, 103) y la
cocaina (1), afectan la expresion de los genes reloj, Perl
y Per2, fuera del NSQ, principalmente en el estriado
de la rata (87, 111). Esto sugiere que los genes reloj
participan en la regulacion de las respuestas inducidas
por drogas de abuso (129, 130).

Andretic y cols. (5) reportaron que las moscas silves-
tres mostraban un patrén de sensibilizacion conductual
después de una exposicion inicial a la cocaina. En cam-
bio, las moscas mutantes nulas de los genes Per, Clock o
Cycle no mostraban un patrén de sensibilizacién con-
ductual similar al de las moscas silvestres a dosis norma-
les 0 aumentadas de cocaina. En cambio, la mutacion de
los genes Tim y Dbt alteraba las respuestas generadas
por la cocaina, tanto en su respuesta inicial como en la
fuerza de la respuesta de sensibilizacién a la misma. En
mamiferos, la administracion repetida de cocaina indu-
ce laexpresion del RNAm de los genes reloj Perly Per2
en el estriado y en el ndcleo accumbens, regiones del SNC
importantes para la regulacion de los efectos conduc-
tuales inducidos por la administracion de cocaina. En el
raton mutante de los genes Perl o Per2, la respuesta
observada después de una simple administracion de co-
caina no difiere de la de los ratones normales. En cam-
bio, en el ratdn mutante de Perl, laadministracion repe-
tida de cocaina no induce sensibilizacion conductual. Por
otro lado, en los ratones mutantes de los genes Per2 o
Clock, administraciones repetidas de cocaina inducen un
aumento en la respuesta conductual generada por la dro-
ga, es decir, estos ratones muestran una hipersensibili-
dad a la cocaina (1, 63). Ademas, los ratones mutantes
del gen Perl no mostraron una preferencia por el lado
pareado con la cocaina en un paradigma de condiciona-
miento preferencial de lugar (CCP) en comparacion con
los ratones normales. En cambio, los ratones mutantes
de los genes Per2 o Clock mostraron una pronunciada
preferencia al lado pareado con la cocaina. Esto sugiere
que la sensibilizacién conductual y las propiedades de
recompensa de la cocaina estdn moduladas de manera
opuesta por los genes reloj Perly Per2/Clock (1, 63).

El principal efecto de la cocaina recae sobre el siste-
ma dopaminérgico. Se han reportado algunas interac-
ciones entre el sistema dopaminérgico y el sistema cir-
cadiano, principalmente en la etapa prenatal del NSQ,
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Fig.1. 1-A. La administracion continua de una droga de abuso (cocaina) durante el dia induce la expresidon de los genes reloj
en células dopaminérgicas del VTA, los cuales modulan a los genes involucrados en la sintesis y liberacién de dopamina (A).
Cuando se induce la mutacion en alguno de éstos, la modulacion se pierde y se observan alteraciones en la liberacion de
dopamina (B), lo cual modifica la respuesta del sujeto a la droga. Es probable que la mutacién de alguno de los genes reloj
altere la liberaciéon de otro transmisor o de un péptido modulador (C), el cual tal vez sea el encargado de modular la libera-
cion de dopamina enrespuesta a una droga. 1-B. Representacion esquematica del mecanismo a través del cual los estimulos
no luminosos afectan el NSQ. Esto puede ser simplemente a través de una proyeccion aferente al NSQ que traduce lainforma-

cion no luminosa y es capaz de inducir respuestas de fase, o bien, puede ser a través de la accién de osciladores periféricos
los cuales son sensibles a este tipo de sefales. Estos osciladores periféricos traducen la informacién no luminosa y la comuni-

can al NSQ a través de mecanismos sinapticos y no sinapticos.

gen Clock muestran un incremento en los niveles
del RNAm y de la proteina de la enzima tirosina hi-
droxilasa (TH), la cual es la enzima limitante en la
sintesis de dopamina. Muestran también un aumen-
to en la capacidad de excitabilidad de las neuronas
dopaminérgicas en comparacién con los ratones
control (63). Esto sugiere que los genes reloj regu-
lan la neurotransmision dopaminérgica y que, por
medio de este mecanismo, modulan las respuestas
del sistema dopaminérgico a la cocaina (figura 1-A).

en la cual el receptor D, participa de modo importante
en la sincronizacion del reloj bioldgico fetal durante el
desarrollo. Recientemente se reportd que, en las mos-
cas, la sensibilidad del receptor dopaminérgico D, al
quimpirole, un agonista del receptor D,, muestra un
patrén circadiano. Este agonista es menos efectivo en
inducir actividad locomotora en la porcion de luz de
un ciclo luz-oscuridad. En cambio, en la fase de oscu-
ridad induce un gran aumento en la actividad locomo-
tora. Un patron similar se observa en condiciones cons-
tantes. Por el contrario, moscas mutantes del gen Per
muestran una respuesta al quimpirole muy similar a las
moscas control bajo un ciclo luz-oscuridad. Sin em-
bargo, cuando se colocan estos sujetos en condicio-
nes constantes, la respuesta al agonista desaparece.
Lo anterior sugiere que los receptores dopaminérgi-
cos podrian estar bajo el control del reloj circadiano
y depender de la presencia de gen Per (6). Por otro
lado, se ha reportado que los ratones mutantes del

Mecanismos fisioldgicos. Como se menciond ante-
riormente, los estimulos no luminosos alteran la fase
y/0 el periodo enddgeno de los ritmos controlados por
el NSQ -como el ritmo de actividad locomotora- los
cuales a su vez son sincronizados cominmente por la
luz. Pero, ;como afectan los estimulos no luminosos al
NSQ? Esto puede ser simplemente a través de una pro-
yeccion aferente al NSQ que traduce la informacion
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no luminosay es capaz de inducir respuestas de fase, 0
bien, puede ser a través de la accion de un oscilador
periférico, el cual es sensible a este tipo de sefiales. Este
oscilador periférico traduce la informacion no lumino-
sa 'y se comunica con el NSQ a través de mecanismos
sindpticos y no sinapticos, es decir, debe estar acopla-
do (acoplamiento mutuo) con el NSQ (figura 1-B). Con
respecto a los mecanismos fisiolGgicos que intervie-
nen en este proceso, se ha sugerido que participan cua-
tro sistemas de neurotransmision involucrados en el
sistema circadiano: a) el sistema serotoninérgico pro-
veniente del nucleo del rafé, b) el sistema inmurreacti-
vo a NPY proveniente de la hojuela intergeniculada
(HIG), c) el sistema GABAérgico, el cual se encuentra
presente en la mayoria de las neuronas del NSQ y de la
HIG (las proyecciones aferentes del nucleo del rafé y
de la HIG hacen sinapsis con neuronas GABAérgicas
en el NSQ), y 4) finalmente un sistema que implica
sefiales dopaminérgicas y de melatonina, las cuales se
han implicado importantemente en sujetos en la vida
fetal y neonatal. La posibilidad de que cada uno de ellos
0 en conjunto participe en la sincronizacién a estimu-
los no luminosos no se ha determinado con exactitud.
A continuacion se muestran algunas de las evidencias
que sustentan la participacion de cada uno de estos
sistemas de neurotransmision en la sincronizacion a
estimulos no luminosos (figura 2-A).

a) Sistema serotoningrgico. Los niveles de serotonina en el
NSQ de roedores muestran sus niveles mas altos du-
rante el periodo de oscuridad (36), por lo que no es
muy evidente su participacion en la sincronizacion no
luminosa. Sin embargo, la participacion de la serotoni-
na en las respuestas de fase del reloj biol6gico induci-
das por los estimulos no luminosos se sustenta en evi-
dencia basada a su vez en tratamientos farmacoldgicos
mediante la administracion de agonistas serotoninérgi-
cos en el NSQ durante el dia subjetivo, los cuales indu-
cen respuestas de fase del ritmo de actividad locomo-
tora o de actividad eléctrica en corrimiento libre y la
expresion de la proteina FOS en el NQ de larata y el
hamster (10, 30). La administracion de quipazina, un
agonista serotoninérgico no especifico del receptor 5-
HT,,, a rebanadas cerebrales que contienen el NSQ
induce una CRF muy similar a la generada por los even-
tos no luminosos (90). La inyeccion intraperitoneal de
quipazina y la administracion intracerebroventricular
(ICV) de 8-OH-DPAT (8-hidroxy-dipropylaminotetra-
tlin, un agonista del receptor 5-HT,4,7) en el dia subjeti-
vo inducen avances de fase en el ritmo de actividad lo-
comotora, pero no generan retrasos de fase cuando se
administran en la noche subjetiva temprana (22, 43).
Ademas, la administracion de 8-OH-DPAT o diaze-
pam atenUa las respuestas de fase inducidas por la luz,
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asi como la expresion de la proteina FOS en el NSQ
en la noche subjetiva. Como se menciond anteriormen-
te, los estimulos no luminosos inducen un aumento en
la actividad locomotora, por lo que se podria pensar
que, al igual que con la administracién de benzodiaze-
pinas, el efecto de los agonistas serotoninérgicos po-
dria relacionarse con un aumento en la actividad loco-
motora. Sin embargo, la administracion intraperitoneal
de 8-OH-DPAT a hamsters inmovilizados induce avan-
ces de fase de cerca de 1 hr. en CT8-CT10; estos avan-
ces de fase son similares en direccion y magnitud a los
observados en sujetos no inmovilizados (15). Esto su-
giere que los efectos inducidos por los agonistas sero-
toninérgicos no dependen del aumento de la actividad
locomotora, sino que son el resultado de un efecto
sobre el reloj bioldgico.

Recientemente se reportd que la administracion de
MKC-242, una droga que potencia las respuestas a la
luz, atenta las respuestas de fase inducidas por la in-
yeccion de triazolam (128). Tratamientos sistémicos con
antagonistas serotoninérgicos, ketanserina, metergoli-
na, NAN-190 o ritanserina atentan las respuestas de
fase inducidas por un paradigma de alertamiento en el
hamster (7,106). Sin embargo, la administracion de un
antagonista contra el autorreceptor 5-HT(1A),
WAY 100635, durante el dia subjetivo -el cual incremen-
ta los niveles de serotonina en el NSQ-, no induce res-
puestas de fase, lo cual sugiere que el aumento en la
liberacion de serotonina en el NSQ no es suficiente
para inducir respuestas de fase en el dia subjetivo (8).
Por otro lado, la deplecion de las vias serotoninérgicas
mediante la administracion de las neurotoxinas p-clo-
rampfetamina (PCA) y 5,7-DHT causa diversos efec-
tos sobre la sincronizacion no luminosa. La adminis-
tracion de PCA bloquea los avances de fase inducidos
por las inyecciones de triazolam (88). Asimismo, la le-
sion local y especifica de las proyecciones serotoninér-
gicas al NSQ por la infusién directa de 5,7-DHT blo-
quea los avances de fase generados por la administra-
cion de triazolam (23). No obstante, estas lesiones no
afectan las respuestas de fase inducidas mediante un
protocolo de locomocion forzada (16). En cambio, le-
siones extensas causadas por la administracion ICV de
la 5-7-DHT no tienen efecto sobre la capacidad del
triazolam para alterar la velocidad de resincronizacion
debido a un avance en el inicio del ciclo luz-oscuridad
en el hamster pero si alteran el valor del periodo end6-
geno (72). Estas evidencias sugieren que que aun no es
muy clara la relacion anatomofuncional entre las vias
serotoninérgicas que inervan al NSQ con las benzo-
diazepinas y otras sefiales no luminosas, pero es pro-
bable que la serotonina actle sobre alguno o algunos
de los osciladores periféricos que traducen la informa-
cion no luminosa que a su vez proyectan al reloj biol6-
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Fig.2. 2-A Vias involucradas en la sincronizacion a estimulos no luminosos. Tanto la HIG, a través de la participacion del NPY y
del GABA, y el nicleo del rafé, a través de la serotonina, pudieran participar en concierto en transmitir la informacién concer-
niente a sefiales no luminosas al reloj biolégico (NSQ). 2-B Representacion grafica del posible mecanismo a través del cual el
sistema circadiano de la madre sincroniza el sistema circadiano del feto a través de dos sefales ritmicas: la melatonina y la
dopamina.

gico e induce respuestas de fase. La administracién de de triazolam al 8-OH-DPAT vy la velocidad de resin-
3,4-metilenedioxymetanfetamina (MDA), una droga de cronizaciéon a un cambio en el inicio del ciclo L:O
abuso que actlla como una neurotoxina que destruye (21,33), lo cual sugiere que el sistema serotoninérgico
células serotoninérgicas, disminuye significativamente modula las respuestas de fase del reloj bioldgico a esti-
las respuestas de fase inducidas por la administracion mulos no luminosos y luminosos.

72 Salud Mental, Vol. 30, No. 4, julio-agosto 2007



b) Sistema NPYérgico. La HIG ocupa una posicion muy
importante en el sistema circadiano de los mamiferos; su
participacion en la sincronizacion no luminosa se sus-
tenta en las siguientes evidencias: a) La lesion electroliti-
ca de la HIG bloguea la sincronizacion no luminosa a
sefiales farmacoldgicas y conductuales (47, 53). b) La es-
timulacion eléctrica y quimica de la HIG induce respues-
tas de fase similares a las inducidas por sefiales no lumi-
nosas (50). ¢) La administracién de NPY dentro del NSQ
induce una CRF similar a la inducida por la inyeccion de
triazolam o a lainducida por la actividad locomotora for-
zada (3, 12), presumiblemente a través de la activacion
del receptor NPYérgico Y2 o del receptor Y1/Y5. d) La
administracion de un antisuero contra NPY en el NSQ
bloquea los avances de fase inducidos por estimulos no
luminosos (13). e) Los estimulos no luminosos inducen
la expresion de la proteina FOS en células inmunorreac-
tivas a NPY en la HIG y una inhibicion en la expresion
de la proteina FOS en el NSQ (27, 45, 48). En conjunto,
estas evidencias sugieren que el NPY media las respues-
tas de fase a estimulos no luminosos. Sin embargo, la
lesién electrolitica y la estimulacion eléctrica de la HIG
inducen, respectivamente, una disminucién y un aumen-
to en laactividad locomotora, por lo que estos resultados
no son aln concluyentes. No obstante, la evidencia de
que la lesion de la HIG no elimine las respuestas de fase
inducidas por pulsos de luz, aun cuando si evita la sin-
cronizacion a estimulos no luminosos, sustenta la parti-
cipacion de la HIG en la sincronizacion no luminosa.

El tracto geniculo-hipotalamico (TGH) se origina de
células de la HIG inmunorreactivas a NPY y a GABA,
y proyecta al NSQ. Si la HIG fuese el transductor de la
informacién no luminosa, entonces el TGH seria el
obvio candidato para ser la proyeccién a través de la
cual se transmitiria la informacién no luminosa al reloj
bioldgico. Como un gran porcentaje de las células que
originan el TGH son GABAérgicas, es muy probable
que el GABA participe activamente en la sincroniza-
cién a estimulos no luminosos. La administracion local
de muscimol, un agonista GABAérgico, durante el dia
subjetivo, induce en el NSQ avances de fase similares a
los generados por estimulos no luminosos in vivo e in
vitro (109). Estas respuestas de fase no van acompafia-
das por un incremento en la actividad locomotora del
sujeto; esto sugiere que a través de la liberacion GABA
en el NSQ, el TGH participa importantemente en la
sincronizacion no luminosa del reloj bioldgico.

La administracion de NMDA durante el dia subjeti-
vo inhibe las respuestas de fase inducidas por el musci-
mol. Sin embargo, la administracion de TTX bloquea
el efecto del NMDA en esta fraccion del ciclo, lo cual
sugiere que las respuestas de fase inducidas durante el
dia subjetivo requieren mecanismos sinapticos depen-
dientes de sodio (32). Si la HIG y el TGH conforman
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una via que transmite la informacioén no luminosa al
reloj circadiano, la pregunta es como llega a la HIG la
informacion acerca de los eventos no luminosos. Aho-
ra se sabe que la HIG recibe una variedad de proyec-
ciones aferentes de tipo limbico y sensorial a través de
las cuales los eventos no luminosos serian capaces de
inducir respuestas de fase. Esto implica que el alerta-
miento, las interacciones sociales, la actividad locomo-
tora forzada, la administracion de benzodiazepinas y
de agonistas serotoninérgicos inducen respuestas de
fase del reloj bioldgico a través de un mismo canal sen-
sorial (HIG/TGH/NSQ) (57). En alguna etapa de un
ciclo, dentro del reloj, la informacion de cada tipo de
estimulo no luminoso puede divergir ampliamente y
generar respuestas especificas para cada estimulo. Sin
embargo, es probable que la actividad coordinada de
las proyecciones del rafé dorsal a la HIG y del rafe
medio al NSQ, en combinacion con la activacion del
sistema HIG-TGH, sean necesarias para generar las
respuestas de fase a estimulos no luminosos. Esto su-
giere que la generacion de una respuesta de fase por
parte del reloj biolégico a un estimulo no luminoso
requiere la participacion de varios sistemas de neuro-
transmision.

¢) Melatonina/Dopamina. La melatonina se ha relaciona-
do también con la transmision de la informacion rela-
cionada con estimulos no luminosos, debido a que la
administracion aguda de melatonina, in vivo e in vitro
durante el dia subjetivo, induce avances de fase y dis-
minuye significativamente el tiempo necesario para
generar un patrén de resincronizacion a cambios en la
fase de inicio de un ciclo luz-oscuridad (L:O)(91).
Aungue en el hamster siberiano los paradigmas de
alertamiento no generan respuestas de fase, la admi-
nistracion diaria de melatonina sincroniza el ritmo de
actividad locomotora en corrimiento libre. Lo anterior
sugiere que algunas especies son mas sensibles a las
sefiales desencadenadas por la melatonina (40). Sin
embargo, se ha reportado que la participacion mas re-
levante de la melatonina como sefial no luminosa ocu-
rre durante la vida fetal de los organismos. Ritmos cir-
cadianos en variables metabdlicas, endocrinas y fisio-
I6gicas pueden observarse en el NSQ fetal a la mitad
de la gestacion, tanto en roedores como en primates
(70). Esto sugiere que el reloj bioldgico muestra activi-
dad ritmica previa al nacimiento y es sensible a las se-
fiales ambientales periddicas (93, 94). ;Pero como se
sincroniza el reloj bioldgico fetal al ambiente externo?
La capacidad del NSQ fetal para generar ritmos circa-
dianos es una propiedad espontanea independiente del
sistema circadiano de la madre. Sin embargo, su sin-
cronizacion se efectla a través de sefiales no lumino-
sas endocrinas y conductuales transmitidas por el reloj
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de la madre. Estas sefiales actGan previo al estableci-
miento de las proyecciones retinales funcionales al re-
loj bioldgico en desarrollo. La ausencia de sefiales no
luminosas del NSQ materno al reloj biol6gico de las
crias induce una desincronizacion interna en los rit-
mos circadianos del feto, es decir, cada feto expresa un
ritmo en corrimiento libre independiente, cada uno de
los cuales tiene un periodo enddgeno diferente (25, 95,
97). El reloj bioldgico en desarrollo puede ser sincro-
nizado por varias sefiales derivadas del sistema circa-
diano materno (92, 98). Asi, si se lesiona el NSQ ma-
terno, el reloj in utero puede sincronizarse mediante la
imposicion de ciclos periddicos conductuales a la ma-
dre; por ejemplo a través de patrones de restriccion de
alimento (119). No obstante, no se ha podido determi-
nar la sefial endocrina responsable de la sincronizacion
materna al NSQ fetal en estas condiciones (96). Algu-
nos agentes son capaces de sincronizar el reloj circa-
diano fetal in utero cuando se administran a madres pre-
fiadas con lesion del NSQ. Dosis farmacolégicas de
melatonina administradas diariamente en la misma fase
a madres prefiadas con lesién del NSQ sincronizan el
reloj bioldgico de los fetos a una fase predecible (la
hora de administracion de melatonina). Esto sugiere que
la accién de la melatonina sobre el NSQ fetal pudiera ser
directa (24), ya que el NSQ fetal expresa una alta densidad
de receptores a melatonina. Sin embargo, la melatonina
no es el tnico factor que media la sincronizacion mater-
no-fetal, ya que la remocion de la glandula pineal (pinea-
lectomia) no impide la sincronizacion de los fetos a los
ciclos ambientales externos.

Se ha estudiado la participacion de otro sistema de
neurotransmision en este tipo de sincronizacion, don-
de las vias dopaminérgicas parecen cumplir un papel
relevante en la transmisidn de la informacion temporal
de la madre a la cria. La administracion diaria de ago-
nistas especificos del receptor dopaminérgico D; a
madres prefiadas con lesion del NSQ sincroniza el re-
loj bioldgico fetal en una fase opuesta a la generada
por la administracion diaria de melatonina (117, 118) e
induce la expresion de la proteina FOS en el NSQ fetal
(120, 121). Lo anterior sugiere que, como sucede con
la melatonina, la dopamina puede actuar directamente
sobre el NSQ fetal a través de la activacion del recep-
tor dopaminérgico Dy, el cual expresa en el NSQ fetal
(117, 120). Esto sugiere que la melatoninay las sefiales
que activan el sistema dopaminérgico en el NSQ fetal
tienen acciones opuestas pero complementarias en la
noche y en el dia, respectivamente. La sincronizacion
maternal continta después del nacimiento de las crias a
través del patron de alimentacion de las mismas, donde
la camada adopta la fase circadiana de la madre lactante;
este fendmeno ocurre sélo durante las primeras sema-
nas de vida. Otra forma en que la madre sincroniza la
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camada es a través del contacto social entre las crias y
ella misma (99, 116). Sin embargo, la eficiencia de estos
procesos declina con la madurez de las crias y se asocia
con el desarrolloy la madurez de las diferentes proyeccio-
nes aferentes y eferentes del reloj biol6gico (figura 2-B).

Vias intracelulares. En comparacion con la cascada
de sefiales intracelulares ocasionadas por la estimulacién
glutamatérgica asociada con la sincronizacion lumino-
sa, la cual excita a las células del NSQ, los transmisores
implicados en la sincronizacion no luminosa inhiben ti-
picamente a las neuronas del NSQ. Por ejemplo, la prin-
cipal accion de la melatonina sobre las neuronas del NSQ
consiste en inhibir la adenilato ciclasa y la traduccion de
sefiales mediadas por el AMPc. Como consecuencia, se
inhibe también la proteina quinasa dependiente de AMPc
(PKA) y bloquea obviamente la fosforilacion del factor
de trascripcién CREB. De este modo, las respuestas de
fase inducidas por estimulos no luminosos no se aso-
cian con la fosforilacién de factores de trascripcion que
se unen a elementos de respuesta al AMPciclico (CREB)
ni con la transcripcion de genes de expresion temprana
en el NSQ (64, 105, 131), eventos de sefializacion carac-
teristicos de la sincronizacion luminosa.

Los agentes que inducen una disminucion de la acti-
vidad metabdlica de las células del NSQ pueden ser los
mas efectivos en inducir también respuestas de fase
cuando los estimulos no luminosos se aplican en el dia
subjetivo, ya que es justo en la fraccion de un ciclo
cuando la actividad metabdlica de las células del NSQ
es muy alta, por lo que al disminuirla podrian producir-
se los avances de fase conductuales. En cambio, en la
noche subjetiva, cuando los niveles de actividad meta-
bélica son bajos, los factores que la inhiben no reini-
ciarian la fase del NSQ y esto corresponderia a la zona
muerta de la CRF para estimulos no luminosos, pero
muy sensible a la luz, lo cual activaria a las células del
NSQ e induciria respuestas de fase. Es muy probable
que la sincronizacion no luminosa implique la partici-
pacion de osciladores periféricos, lo cual sugiere otra
posibilidad. Asi, los transmisores asociados con las se-
fiales no luminosas generan la activacion de otras areas
cerebrales (osciladores periféricos), los cuales traduci-
rian la sefial y, a través de sus proyecciones al NSQ,
podrian inducir el reinicio de la fase del reloj bioldgico.
Esto implica que los osciladores periféricos reciben
proyecciones aferentes de los receptores que traducen
la informacion no luminosa.

Magquinaria molecular. Dada esta sensibilidad del NSQ a
los estimulos no luminosos, se puede predecir que los
genes reloj (mPer 1-3, Clock, Bmall y Cry 1-3), que
componen la maquinaria molecular que genera los rit-
mos circadianos y que codifican variables de estado
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Fig.3. Las respuestas de fase inducidas por las sefiales luminosas son el resultado de la activacion de una cascada de eventos
de sefalizacion basada en el incremento de calcio intracelular y la activacion del factor de trascripcion CREB, que da como
resultado una rapida expresion de los genes reloj en el NSQ (1). La sincronizacion a eventos no luminosos es mediada por vias
intracelulares dependientes de la activacion del sistema NPYérgico proveniente de la HIG y del serotoninérgico proveniente
del nacleo del rafé medial durante el dia subjetivo, tiempo en el cual la expresidon espontanea de los genes reloj es alta en
animales diurnos y nocturnos. El reinicio de fase del reloj biolégico a sefiales no luminosas es generado por una supresion
rapida en los niveles de expresion de los genes reloj (2). La mutacion en alguno de los genes reloj altera las respuestas del reloj

biolégico a las sefiales no luminosas (3).

del reloj bioldgico, sufren alteraciones en sus niveles
de expresidn en respuesta a una sefial no luminosa. Las
respuestas de fase generadas por las sefiales no lumi-
nosas ocurren durante el dia subjetivo, tiempo en el
cual la expresion espontanea de estos genes es alta en
animales diurnos y nocturnos, por lo que el reinicio de
fase del reloj bioldgico a sefiales no luminosas puede
ser generado por una supresion rapida en los niveles
de expresion de los genes reloj (figura 3).

Algunos estudios han reportado una relacion entre
la supresion del gen Perly la generacién de respuestas
de fase a estimulos no luminosos (39), estos estudios
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refieren una disminucion en la expresion del gen Perl
de cerca de 60% cuando se somete un hamster a un
paradigma de locomocion forzada o a administracio-
nes de NPY, de agonistas serotoninérgicos (8-OH-
DPAT), de brotizolam o de melatonina, o de pulso de
oscuridad (31, 42, 125). En resumen, todos estos esti-
mulos inducen respuestas de fase durante el dia subje-
tivo. A nivel molecular, estos paradigmas conductuales
producen una aguda disminucién de la expresion rit-
mica de los genes Perly Per2 en el NSQ (60). La dis-
minucién de los niveles de expresién del RNAm de
Perly Per2 en el NSQ, generada por los estimulos no
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luminosos, ocurre sélo durante la mitad del dia subje-
tivo y no durante la noche subjetiva, lo cual sugiere que
estos genes participan importantemente en el reinicio
de fase durante el dia subjetivo (61, 127). La adminis-
tracion de oligonucleotidos antisense contra el gen Perl
genera una disminucidon en los niveles de expresion del
gen Perl en el NSQ. Las respuestas de fase inducidas
en estas condiciones son similares a las observadas en
la CRF a estimulos no luminosos. Esto sugiere, por un
lado, que la disminucién observada en los niveles de
expresion del gen Perl después de la estimulacién con
sefiales no luminosas es la causa y no una consecuen-
cia de la respuesta de fase inducida por el estimulo (39).
Por otro, indica que las sefiales luminosas y no lumino-
sas convergen dentro del reloj biol6gico, de tal manera
que los efectos generados por las sefiales luminosas
pueden ser modulados por los efectos generados por
las sefiales no luminosas y viceversa: la luz aumenta los
niveles de los genes reloj y, a su vez, los eventos no
luminosos disminuyen los niveles de los genes Per.
Han sido descritas previamente interacciones entre
las respuestas de fase inducidas por la luz y las induci-
das por estimulos no luminosos (62). Cuando un esti-
mulo luminoso se aplica después de una sefial no lumi-
nosa durante el dia subjetivo -con el fin de estudiar la
interaccion entre los estimulos luminosos y los no lu-
minosos-, el estimulo luminoso bloquea o atenda los
avances de fase que se generan en respuesta a distintos
estimulos no luminosos (12, 82), como la actividad lo-
comotora forzada, la privacion de suefio, la adminis-
tracion de NPY o la administracion de agonistas sero-
toninérgicos (8-OH-DPAT) (52, 71). Los avances de
fase inducidos durante la noche subjetiva tardia por la
luz son atenuados por la administracién de NPY, de
agonistas serotoninérgicos (TFMPP, CGS 12066a y 8-
OH-DPAT) y por la actividad locomotora forzada (89,
122). Sin embargo, el estimulo no luminoso no afecta
la expresion de la proteina FOS ni del RNAm del gen
Perl en el NSQ inducido por la luz (28). Si los genes
reloj responden a los estimulos no luminosos, enton-
ces la falta de alguno de ellos debera generar alteracio-
nes en las respuestas a las sefiales no luminosas. En los
ratones knockout del gen Clock, las respuestas del reloj
bioldgico a las sefiales no luminosas se modifican. Pa-
radigmas de actividad locomotora forzada aplicados al
raton mutante Clock, durante el dia subjetivo, generan
respuestas de fase en direccién opuesta a las produci-
das por sujetos intactos (19, 83). Lo anterior sugiere
que los distintos genes reloj participan en la génesis de
las respuestas de fase a estimulos no luminosos. Mu-
chas sefiales no luminosas generan respuestas de fase
del reloj bioldgico al momento de presentarse durante
la mitad del dia subjetivo, que es cuando la expresion de
los genes reloj es alta. Esta correlacion abre la posibili-
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dad de que las sefiales no luminosas sean capaces de
modular en esta etapa del asa de retroalimentacion trans-
cripcional del reloj biolégico la expresion y/o los efec-
tos de los genes reloj. Con base en la evidencia anterior,
la sincronizacion no luminosa complementa al parecer
la sincronizacion luminosa, permitiéndole al organismo
una mayor oportunidad de supervivencia en su nicho
temporal. La identificacion de los genes Per como blan-
cos de sefiales que reinician la fase del reloj (luminosas y
no luminosas) abre la posibilidad de caracterizar la bio-
actividad de nuevos agentes terapéuticos generados para
la manipulacion de las alteraciones relacionadas con el
reloj bioldgico. La bioactividad puede identificarse al exa-
minar su accion sobre la expresion de estos genes en el
NSQ. Es asi que la sincronizacion no luminosa del sis-
tema circadiano adquiere una importancia biolégica y/
0 social en varios contextos. En la vida temprana, la
comunicacion de la informacion circadiana de la madre
es importante para regular el reloj bioldgico del feto o
del neonato antes de que sea sensible a la luz (97). En
circunstancias en que las rutinas sociales y laborables
son alteradas por cambios de turno de trabajo constan-
tes (shift work), el reloj bioldgico recibe sefiales lumino-
sas y no luminosas a destiempo, lo cual genera una dis-
funcién y una pobre eficiencia. La ausencia de sefiales
no luminosas, seguida de una abstinencia social, puede
inducir alteraciones en la salud mental como depresion
(112). Los trastornos del suefio experimentados por su-
jetos ciegos pueden surgir de una pérdida de la sincroni-
zacion social, asi como de una disminucion en la efi-
ciencia del mecanismo de reloj. Para estas alteraciones
del reloj es posible desarrollar nuevas formas de trata-
mientos farmacoldgicos y conductuales (figura 3).
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