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ABSTRACT

Introduction. Stress during puberty exerts long-term effects on endocrine systems and brain structures, such 
as the prefrontal cortex (PFC) and basolateral amygdala (BLA), two cerebral areas that participate in modu-
lating sexual behavior and whose functioning is regulated by androgenic hormones. Objective. To evaluate 
the effect of pubertal stress due to social isolation on the sexual motivation, serum testosterone levels, and 
electroencephalographic activity (EEG) of the PFC and BLA in male rats. Method. Sixty sexually-experienced 
male rats were used. Thirty were stressed by social isolation during puberty (SG, housed 1 per cage, postnatal 
days 25-50); the other 30 formed the control group (CG, 5 per cage). All rats were implanted bilaterally with 
stainless steel electrodes in the PFC and BLA. EEGs were recorded during the awake-quiet state in two con-
ditions: without sexual motivation (WSM), and with sexual motivation (SM). After EEG recording, the rats were 
sacrificed by decapitation to measure their testosterone levels. Results. SG showed lower sexual motivation 
and testosterone levels, but higher amygdaline EEG activation in the presence of a receptive female, while 
CG showed higher prefrontal EEG activation. Discussion and conclusion. It is probable that the decreased 
testosterone levels resulting from pubertal stress affected prefrontal and amygdaline functionality and, hence, 
sexual motivation. These data could explain some of the hormonal and cerebral changes associated with 
stress-induced sexual alterations, though this suggestion requires additional clinical and animal research.
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RESUMEN

Introducción. El estrés durante la pubertad ejerce efectos a largo plazo sobre sistemas endocrinos y 
estructuras cerebrales como corteza prefrontal (CPF) y amígdala basolateral (ABL). Ambas estructuras 
participan en la modulación de la conducta sexual y su funcionamiento es regulado por andrógenos. 
Objetivo. Evaluar los efectos del estrés puberal por aislamiento social sobre la motivación sexual, los 
niveles séricos de testosterona y la actividad electroencefalográfica (EEG) de la CPF y ABL en ratas 
macho. Método. Se utilizaron sesenta ratas macho sexualmente expertas, 30 fueron estresadas por 
aislamiento social durante la pubertad (GE, hospedados 1 por caja, días 25 al 50 postnatal), y el resto 
conformó el grupo control (GC, hospedados 5 por caja). Las ratas fueron implantadas bilateralmente en 
la CPF y ABL y el EEG fue registrado durante estado vigilia-quieto en dos condiciones: sin motivación 
sexual (SMS) y con motivación sexual (MS). Finalmente, las ratas se sacrificaron por decapitación para 
medir los niveles de testosterona. Resultados. El GE presentó menor motivación sexual, menores ni-
veles de testosterona y, en presencia de una hembra receptiva, presentaron una mayor activación EEG 
amigdalina, mientras que el GC mostró una mayor activación EEG prefrontal. Discusión y conclusión. 
Es probable que la disminución de los niveles de testosterona como resultado del estrés puberal haya 
afectado la funcionalidad prefrontal y amigdalina y, por ende, la motivación sexual. Estos datos pudieran 
explicar algunos de los cambios hormonales y cerebrales asociados con alteraciones sexuales produci-
das por estrés. Esta propuesta deberá explorarse en futuras investigaciones animales y clínicas.

Palabras clave: Estrés, aislamiento social, EEG, testosterona, motivación sexual, ratas.
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INTRODUCTION

Stress is a biological mechanism through which the body 
attempts to regain homeostasis when affected by stressors 
(Stratakis & Chrousos, 1995). Research on mental health 
and sexual therapy describes that the stresses of daily life 
can drastically affect the quality of sexual activity by de-
creasing sexual satisfaction (Bodenmann, Ledermann, 
Blattner, & Galluzo, 2006; Bodenmann, Ledermann, & 
Bradbury, 2007). Moreover, the psychological symptoms 
associated with chronic stress (e.g., depression, anxiety) are 
directly related to lower sexual desire, erectile problems, 
premature ejaculation, and hypoactive sexual disorders 
(Bodenmann et al., 2007).

Animal models have also shown the deleterious ef-
fects of stress on sexual behavior (Retana-Márquez, 
Bonilla-Jaime, Vázquez-Palacios, Martínez-García, & 
Velázquez-Moctezuma, 2003; Hernández-González, Gue-
vara, Ramírez-Rentería, & Hernández-Arteaga, 2015; 
Hernández-González et al., 2017), which can vary with 
stressor type, duration, and the period when it occurs (Lapiz 
et al., 2003; Vetulani, 2013; Hernández-Arteaga et al., 2016; 
Hernández-González et al., 2017). Puberty is a critical period 
for sexual maturation as important hormonal changes occur 
to allow adequate manifestations of sexual behavior during 
adulthood (Duffy & Hendricks, 1973; Cooke, Chowanadi-
sai, & Breedlove, 2000; Hernández-González, 2000; Artea-
ga-Silva et al., 2013). Gonadal hormones like testosterone 
(T) and its metabolites (Bonilla-Jaime, Vázquez-Palacios, 
Arteaga-Silva, & Retana-Márquez, 2006) are crucial to sex-
ual behavior. However, some studies of adult male rats have 
found that after a period of stress glucocorticoid levels in-
crease but T levels decrease, leading to the proposal that the 
hypothalamus-pituitary-adrenal (HPA) axis directly affects 
the hypothalamus-pituitary-gonad (HPG) axis to produce 
an antagonistic effect between the glucocorticoids and go-
nadal hormones (Retana-Márquez et al., 2003). Studies in 
men with stress-induced erectile dysfunction have similarly 
found lower T levels (Byun et al., 2013).

Pubertal stress in rats induced on postnatal days 25-
50 by social isolation is known to increase corticosterone 
concentrations (Serra, Pisu, Floris, & Biggio, 2005; Perelló, 
Chacon, Cardinali, Esquifino, & Spinedi, 2006), but reduce 
T secretion during a sexually-motivated state in adulthood 
(Amistislavskaya, Bulygina, Tikhonova, & Maslova, 2013). 
Those rats also presented alterations in aromatase activity (Di 
Prisco, Lucarini, & Dessi-Fulgheri, 1978), which aromatizes 
T into estradiol (Moralí, Larsson, & Beyer, 1977; Muller, 
Van Den Beld, Van Der Schouw, Grobbe, & Lamberts, 2006) 
and activates sexual motivation. These hormones produce 
non-genomic effects in the neuronal membrane that modu-
lates the electrical activity of neurons in several brain areas 
(del Río-Portilla, Ugalde, Juárez, Roldán, & Corsi-Cabrera, 
1997; Joëls, 1997; Poblano et al., 2004; Balthazart, Baillien, 

Cornil, & Ball, 2004), including the medial prefrontal cortex 
(mPFC) and the basolateral amygdala (BLA), two cerebral 
structures that have androgen (Naghdi, Oryan, & Etemadi, 
2003; Nuñez, Huppenbauer, McAbee, Juraska, & DonCar-
los, 2003), estrogen (Montague et al., 2009; Lonc, 2012), 
and glucocorticoid (Pryce, 2008) receptors. The BLA has 
strong connections with the mPFC, especially layers II and 
V, in rodents (Cunningham, Bhattacharyya, & Benes, 2002). 
This connectivity participates in various complex processes, 
including emotional memory on inhibitory avoidance tasks 
(Cahill & McGaugh, 1991), aversive Pavlovian conditioning 
(Fanselow & LeDoux, 1999), and goal-oriented behaviors 
using motivational odors as reinforcers (Schoenbaum, Chi-
ba, & Gallagher, 2000). Thus, they have been implicated in 
the processing of sexually-relevant stimuli and the regula-
tion of sexual motivation (Fernández-Guasti, Omaña-Zapa-
ta, Luján, & Condés-Lara, 1994; Ågmo, Villalpando, Pick-
er, & Fernández, 1995; Hernández-González, Guevara, & 
Ågmo, 2014a; Hernández-González, Robles Aguirre, Gue-
vara, Quirarte, & Haro-Magallanes, 2014b). The processing 
of sexual stimuli and sexual motivation have been associated 
with electroencephalographic (EEG) activity characterized 
by a prevalence of slow frequencies in the 4-13 Hz (Hernán-
dez-González, Guevara, Cervantes, Moralí, & Corsi-Cabre-
ra, 1998; Hernández-González, Prieto-Beracoechea, Ar-
teaga-Silva, & Guevara, 2007; Hernández-González et al., 
2014a) and 14-30 Hz bands (Hernández-González et al., 
2017) in both the BLA and the mPFC.

Ågmo (1999) defines sexual motivation as the process 
that leads an individual to search for sexual contact with an-
other. It is measured by approaching behaviors towards the 
potential sexual partner (Ventura-Aquino & Paredes, 2017). 
These behaviors during rats’ sexual interaction satisfy the 
criteria of correlation and homology with human sexual 
motivation (Ågmo, 2017).

While many studies have reported the deleterious ef-
fects that stress exerts on sexual behavior in animals and 
humans (Retana-Márquez et al., 2003; Byun et al., 2013; 
Hernández-González et al., 2015; 2017), few have exam-
ined hormonal and cerebral changes associated with sexu-
al motivation in male rats that are stressed during puberty 
(Cooke et al., 2000; Amistislavskaya et al., 2013). Thus, 
the aim of this study was to determine the effects of stress 
experienced during puberty on sexual motivation, serum T 
levels and mPFC, and BLA functionality in adult male rats.

METHOD

Animals

At age 22 days, 60 male rats were weaned and housed in 
groups of five per cage. On day 25, they were randomly 
classified into two groups (n = 30/group) called stressed 
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(SG) and control (CG). The SG rats were housed only one 
per cage and remained socially-isolated until day 51, when 
they were re-socialized with their former mates. CG, mean-
while, remained undisturbed on all days. Figure 1 presents 
a timeline of the general procedure.

Sexual interaction tests

At age three months (weight = 250-350 g), the rats were 
subjected to three copulatory tests (every second day) be-
tween 10:00 and 13:00 h. All 60 rats presented intromission 
on the three tests and reached ejaculation on at least two.

Stereotaxic surgery

The rats were injected subcutaneously with atropine sulfate 
(.1 mg/kg) and anesthetized with sodium pentobarbital (47 
mg/kg i.p.). Stainless steel electrodes (.2 mm in diameter) 
were implanted bilaterally into the prelimbic area of the 
mPFC (3.2 mm anterior to bregma, 1 mm lateral to mid-
line, and 4.0 mm below the duramater), and the basolateral 
amygdala (BLA) (2.8 mm posterior to bregma, 5 mm later-
al to midline, and 8.4 mm below the duramater), with the 
incisor bar set at -3.3 mm, following the stereotaxic atlas 
of Paxinos and Watson (2007). Two stainless steel screws 
were placed in the posterior area of the skull as reference 
and ground electrodes, respectively. All electrodes were at-
tached to a miniature connector fixed to the skull with stain-
less steel hooks and acrylic cement. After surgery, all rats 
were housed in individual cages with food and water ad 
libitum. The post-surgical recovery period was seven days.

Experimental design

Sexual incentive motivation box

The sexual incentive motivation box was a transparent 
plexiglas testing chamber (64 cm × 40 cm × 34 cm) divided 
in two equal compartments by a transparent acrylic partition 
with several 7-mm diameter holes. A male rat was placed in 
one compartment, and a stimulus female in the other such 
that they could see, hear, and smell each other, but no direct 
contact was possible. In the male’s compartment, a line was 
drawn dividing it in two sections. The section closest to the 
female’s compartment was considered the incentive zone.

Recording conditions

On the day of the experiment, each male was placed in the 
sexual incentive motivation box and connected to the poly-
graph to record EEG activity under two behavioral condi-
tions: without (WSM) and with sexual motivation (SM). In 
the WSM condition, they were stimulated for five minutes 
with an ovariectomized (non-receptive) female in the other 
compartment, while in the SM condition they were allowed 
one intromission with a receptive female to induce a sex-
ually-motivated state. Immediately afterwards, the female 
was transferred to the other compartment for five minutes 
to stimulate the male. The time in seconds that the males in 
both groups spent in the incentive zone was recorded.

Testosterone sample

Half of the males from CG and SG were decapitated imme-
diately after EEG-recording in each condition (WSM and 
SM). Blood samples measuring 8.5 ml per subject were col-
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Figure 1. Timeline of the general procedure for each group.
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lected in test tubes (BD Vacutainer, ref 367988) containing 
gel to separate the blood serum. The samples were centri-
fuged at 3000 rpm for 15 minutes and then the supernatant 
was recovered and stored in Eppendorf tubes at -4°C for 
further analysis.

EEG recording

The bilateral mPFC and BLA electrodes were connected to 
a Model 7B GRASS polygraph with a recording window of 
1-75 Hz to record EEGs during the awake-quiet state in the 
WSM and SM conditions. The polygraph was attached to 
an analogue-digital converter (CAD, Advantech Co., Mod. 
PCL-812). The sample rate was 1024 Hz. All EEGs were 
stored on a PC for offline analysis.

EEG analysis

Only the EEG recordings that were free of noise or move-
ment artifacts were included in data analysis. The Absolute 
Power (AP, defined as the power density of each frequency 
expressed in microvolts2) of four EEG bands (4-7, 8-13, 14-
30, 31-50 Hz) was calculated using Fast Fourier Transfor-
mation (FFT). To approximate a normal distribution, the AP 
values were transformed into natural logarithms.

Testosterone analysis

Serum T concentrations were obtained using the ELISA 
technique with the commercial preparation called the “Tes-
tosterone enzyme immunoassay” kit (catalog # 611CH; es-
timated sensitivity = .05 ng/mL). With all reagents and sam-
ples at room temperature, 10 μL of the standards, the target 
and one sample were pipetted into each well of the kit and 
50 μL of rabbit anti-T reagent were added. This mixture was 
then homogenized for 30 seconds. Next, 100 μL of HRP T 
conjugate reagent were added and the mixture was incubat-
ed for 90 minutes at 37°C. The microplate was washed and 
rinsed five times with wash solution; then 100 μL of TMB 
reagent were added to each well and mixed for 10 seconds. 
This mixture was incubated at room temperature for 20 min-
utes, before adding 100 μL of stop solution. This was mixed 
for 30 seconds and read at an optical density of 450 nm. 
Finally, the data obtained from the standards were used to 
build a calibration curve that was applied to calculate the T 
concentration of each sample (ng/ml).

Histology

The rats’ brains were fixed by an intracardial infusion of 
isotonic saline (.9%) followed by a 5.0% buffered parafor-
maldehyde solution. They were then removed and stored in 
formyl for at least two weeks. Sections 50 µ-thick were cut 
with a microtome and stained with cresyl violet. Inspection 
under a stereoscopic microscope to trace the stereotaxic co-
ordinates allowed us to reconstruct the path followed by the 
recording electrode.

Statistical analyses

The serum T concentrations from the four sub-groups (SG-
WSM, SG-SM, CG-WSM, and CG-SM) were compared by 
a two-way ANOVA. The time spent in the incentive zone 
was compared between CG-SM and SG-SM using a Stu-
dent T test, followed by a Cohen d test to calculate effect 
size. For the EEG data, a two-way ANOVA (groups × con-
dition) was used to compare the AP of each frequency band 
recorded in the control and stressed sub-groups (n = 15/sub-
group) under the WSM and SM conditions. A Tukey HDS 
test was performed for a posteriori comparisons, followed 
by a Cohen d test to calculate effect size. We calculated the 
effect size, η2, for the effect of experimental condition and 
interaction. If only one or two factors were significant in 
the ANOVA, an exploratory analysis was performed using 
a Student-t test with Bonferroni correction in all compar-
isons, followed by a Cohen d test to calculate effect size.

Ethical considerations

Adequate care was taken to minimize the animals’ pain and 
discomfort throughout the experiment. All procedures were 
carried out following a protocol approved by the local Ani-
mal Ethics Committee (ET062017-250) in compliance with 
national (NOM-062-ZOO-1999) and international (NIH) 
regulations on the care and use of laboratory animals.

RESULTS

Testosterone levels

The ANOVA showed only a significant difference for the 
factor groups, with a medium effect size [F(A) = 4.07, p(FA) 
= .0485; η2 = .065]. SG had lower serum T levels than 
CG (between-groups comparison with both conditions as 
a factor in the ANOVA; Figure 2). No differences were 
found in any of the comparisons in the exploratory anal-
ysis (mean ± 2 S.E. of serum T levels (ng/mL) measured 
in CG-WSM: 4.12 ± 1.12; CG-SM: 4.44 ± .87; SG-WSM: 
2.74 ± .87; SG-SM: 3.67 ± .86).

Time spent in the incentive zone

The SG-SM subjects remained in the incentive zone (i.e., 
in the presence of a receptive female) for less time (99.067 
± 17.825 seconds) than the CG-SM rats (155.867 ± 18.616 
seconds). This produced a medium effect size of (t[28] = 
2.20, p[t] = .0359; d = .756).

Histological analysis

The electrode tips in the mPFC were placed between 3.7-
3.2 mm anterior to bregma, .5-1.5 mm lateral to midline, 
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and 3.8-4.2 below the dura mater (in the prelimbic region of 
the PFC), while in the BLA they were placed between 2.6-
2.7 posterior to bregma, 4.2-5.0 mm lateral to midline, and 
8.0-9.0 mm below the dura mater (Figure 3).

Absolute power

Left medial prefrontal cortex (mPFC)

The ANOVA only showed significant differences for the 
factor condition for all frequency bands [4-7 Hz F(B) = 6.68, 
p(FB) = .01455; η2 = .040 (small effect size); 8-13 Hz:F(B) = 
15.75, p(FB) = .00072; η2 = .076 (medium effect size); 14-30 
Hz: F(B) = 17.79, p(FB) = .00044; η2 = .076 (medium effect 
size); 31-50 Hz: F(B) = 18.29, p(FB) = .00039; η2 = .040 
(small effect size)]. In all bands, the rats (between-condi-
tions comparison with both groups as a factor in the ANO-
VA) presented higher AP under the SM condition than 
WSM (Table 1).

In the exploratory analysis (Student’s t-test comparing 
both conditions in each group separately), CG showed a high-
er AP of the 8-13 Hz [t(28) = 2.887, p(t) = .01194; d = .634 
(medium effect size)]; 14-30 Hz [t(28) = 2.956, p(t) = .01042; 
d = .572 (medium effect size)]; and 31-50 Hz [t(28) = 4.249, 

p(t) = .00081; d = .398 (small effect size)] during SM com-
pared to WSM (Figure 4A). SG only showed a higher AP of 
the 8-13 Hz [t(28) = 2.965, p(t) = .01024; d = .448 (small ef-
fect size)], and 14-30 Hz bands [t(28) = 3.105, p(t) = .0076; 
d = .529 (medium effect size)] (Figure 4B).

Right medial prefrontal cortex (mPFC)

The ANOVA showed only significant differences for the 
factor condition for all frequency bands [4-7 Hz F(B) = 8.64, 
p(FB) = .00656; η2 = .030 (small effect size)]; [8-13 Hz F(B) 
= 19.84, p(FB) = .00028; η2 = .062 (medium effect size); 14-
30 Hz F(B) = 17.92, p(FB) = .00042; η2 = .053 (small effect 
size); 31-50 Hz F(B) = 9.28, p(FB) = .00516; η2 = .025 (small 
effect size)]. In all cases, the rats (between-conditions com-
parison with both groups as a factor in the ANOVA) pre-
sented higher AP during SM than WSM (Table 1).

In the exploratory analysis (Student’s t-test comparing 
both conditions in each group separately), CG showed a 
higher AP of frequency bands 8-13 Hz [t(28) = 4.043, p(t) = 
.00121; d = .498 (small effect size)]; 14-30 Hz [t(28) = 3.793, 

Figure 2. Mean ± 2 S.E. of serum testosterone levels (ng/mL) mea-
sured in the control (CG, white bar, n = 30) and stressed groups 
(SG, gray bar, n = 30). *p(F) ≤ .05 SG compared to CG.
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Figure 3. Schematic representation of electrode tip placement in 
the mPFC (A-B) and BLA (C-D). Anterior-posterior coordinates are 
given with respect to bregma following the stereotaxic atlas of Pax-
inos & Watson (2007). Dots represent the electrode tips implanted 
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Table 1
Means of the absolute power (transformed into logarithms) of the EEG bands recorded in the left and right medial prefron-
tal cortex (mPFC) and basolateral amygdale (BLA) during the conditions without (WSM) and with sexual motivation (SM)

4-7 Hz 8-13 Hz 14-30 Hz 31-50 Hz
WSM SM MD WSM SM MD WSM SM MD WSM SM MD

Left mPFC 12.4 12.7  .3 ± .2* 12.1 12.4  .4 ± .2* 11.5 12.0  .4 ± .2* 10.0 10.3  1.1 ± .3*
Right mPFC 12.6 12.9  .3 ± .2* 12.2 12.5  .3 ± .1* 11.7 12.0  .3 ± .1* 10.2 10.4  .2 ± .1*
Left BLA 12.7 13.0  .3 ± .2* 12.5 12.8  .2 ± .1* 12.5 12.4  .2 ± .1* 10.2 10.4  .2 ± .1*
Right BLA 12.7 12.8  .1 ± .1 12.5 12.6  .2 ± .1* 12.2 12.3  .2 ± .1* 10.6 10.5  .1 ± .2

Note: The mean difference between conditions (MD) ± 2 S.E. is also indicated. It represents the factor ‘conditions’, so comparisons were performed with 
n = 30 for both groups and in each condition. *p(FB) ≤ .05, SM as compared to WSM.
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p(t) = .00198; d = .411 (small effect size)]; and 31-50 Hz 
[t(28) = 2.958, p(t) = .01038; d = .294 (small effect size)] 
during SM compared to WSM (Figure 4C). SG showed no 
significant differences between conditions (Figure 4D).

Left basolateral amygdala

The ANOVA only showed significant differences for the fac-
tor condition for all frequency bands. All analyses reached 
only a small effect size: 4-7 Hz [F(B) = 7.84, p(FB) = .00897; 
η2 = .013. 8-13 Hz F(B) = 14.07, p(FB) = .00112; η2 = .013]; 
14-30 [Hz F(B) = 11.56, p(FB) = .00236; η2 = .010]; and 31-
50 Hz [F(B) = 9.88, p(FB) = .00415; η2 = .010]. In all cases, 

the rats (between-conditions comparison with both groups 
as a factor in the ANOVA) presented a higher AP during SM 
than WSM (Table 1).

In the exploratory analysis (Student’s t-test comparing 
both conditions in each group separately), CG showed no 
significant differences in the AP of the EEG bands between 
conditions (Figure 5A). SG had higher AP during SM than 
WSM in the 8-13 [t(28) = 2.873, p(t) = .001228; d = .303] 
and 14-30 Hz [t(28) = 3.038, p(t) = .00887; d = .322] bands, 
both with a small effect size (Figure 5B).
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group). *p(T) ≤ .0125 SM compared to WSM.
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Right basolateral amygdala

The ANOVA showed only significant differences for the 
factor condition for the 8-13 [F(B) = 5.62, p(FB) = .02352; 
η2 = .010] and 14-30 Hz [F(B) = 4.17, p(FB) = .04813; η2 = 
.010] bands, both with a small effect size. In both cases, the 
rats (between-conditions comparison with both groups as a 
factor in the ANOVA) had higher AP during SM than WSM 
(Table 1).

In the exploratory analysis (Student’s t-test compar-
ing both conditions in each group separately), CG showed 
no significant differences between conditions (Figure 5C), 
while SG had higher AP during SM than WSM in the 14-30 
Hz band, with a small effect size [t(28) = 3.001, p(t) = .00508; 
d = .283] (Figure 5D).

DISCUSSION AND CONCLUSION

By taking advantage of the benefits of the rat as a model of 
sexual behavior, and using an ad hoc experimental stress 
paradigm, this study found that the effects of pubertal stress 
prevail into adulthood by altering brain functionality, serum 
T levels, and sexual motivation in male rats. The experi-
ment evaluated the time spent in the sexual incentive zone 
to measure sexual motivation, finding that the stressed rats 
spent significantly less time there, which demonstrates that 
sexual motivation was affected by the stress induced during 
puberty, as other studies have reported (Gerall, Ward, & 
Gerall, 1967; Duffy & Hendricks, 1973; Cooke et al., 2000; 
Hernández-González et al., 2015). Also, the rats presented 
lower serum T levels, which confirm the deleterious effects 
of stress during puberty on the activation of the HPG axis in 
male rats (Amistislavskaya et al., 2013).

Other studies have shown that sexual motivation in male 
rats is related to increased serum T levels (Bonilla-Jaime et 
al., 2006). During puberty, this hormone plays an organi-
zational role that facilitates the morphological and behav-
ioral changes associated with sexual maturation (Hernán-
dez-González, 2000; Schulz et al., 2004; Arteaga-Silva et 
al., 2013; Hernández-González et al., 2015). As mentioned 
previously, corticosterone exerts a negative effect on T lev-
els (Retana-Márquez et al., 2003), so it is likely that the 
stress paradigm used herein increased corticosterone levels 
(Serra et al., 2005; Perelló et al., 2006; Amistislavskaya et 
al., 2013) during puberty and so exerted a long-term nega-
tive effect on T levels that led the stressed rats to manifest 
lower levels than controls in adulthood.

We decided to evaluate prefrontal and amygdaline 
functionality because these two areas are interconnected in 
rodents (Cunningham et al., 2002) and participate in vari-
ous complex processes, including goal-oriented behaviors 
using motivational odors as reinforcers (Schoenbaum et al., 
2000). This means that they are implicated, as well, in the 
processing of sexually-relevant stimuli (Fernández-Guasti 

et al., 1994; Ågmo et al., 1995; Hernández-González et al., 
2014a; 2014b). In addition, both regions contain androgen 
receptors (Naghdi et al., 2003; Nuñez et al., 2003). In this 
context, the study evidenced that the CG and SG rats had 
distinct activations of these structures during the percep-
tion and processing of the stimuli emitted by the receptive 
and non-receptive females. In male rats, the 4-7 and 8-13 
Hz EEG bands are associated with approach behaviors to 
incentive stimuli, attention (Vanderwolf, 1969; Bland & 
Whishaw, 1976; Hernández-González et al., 1998), and 
motivated states (Hernández-González et al., 2014a), while 
the fast frequencies (14-50 Hz) – in both animal and human 
models – have been related to the higher processing that 
underlies stimuli selection (Başar, Başar-Eroğlu, Karakaş, 
& Schürmann, 2000; Engel & Singer, 2001).

Only CG showed a higher AP in almost all bands in the 
left and right mPFC when a receptive female was present, 
compared to a non-receptive one. The mPFC is involved 
in attention, the processing of sensory stimuli emitted by a 
potential partner, and the assigning of incentive value, three 
processes that are necessary for the onset of sexual behav-
ior (Ågmo et al., 1995; Hernández-González et al., 2014a; 
Hernández-González et al., 2017). Thus, it is probable that 
the higher activation of the mPFC in CG is associated with 
a greater degree of attention given to the sexually-receptive 
female and, hence, greater sexual motivation, as evidenced 
by the longer time they spent near the receptive female.

SG only showed EEG changes in the left mPFC in the 
presence of the receptive female, but with lower sexual mo-
tivation. Thus, it is likely that their lower T levels altered 
the mPFC activity, leading to inadequate processing of the 
sexually-relevant stimuli. Moreover, the stressed males had 
a higher AP of the EEG bands in the left and right BLA. 
Pubertally-stressed rats exhibit higher amygdaline activity 
(Wang, Ho, Ko, Liao, & Lee, 2012) associated with anxi-
ety-like behaviors (Zhang & Rosenkranz, 2012), together 
with higher concentrations of dopaminergic receptors (D2) 
in the BLA (Djouma, Card, Lodge, & Lawrence, 2006). It 
is well-known that D2 activation inhibits sexual behavior 
(Balthazart, Castagna, & Ball, 1997). Higher amygdaline 
activity has also been observed in patients with social anxi-
ety disorder in response to socially-aversive stimuli (Kraus 
et al., 2018), so it may be that as a result of greater amyg-
daline activation our pubertally-stressed male rats had dif-
ficulty in processing and assigning incentive value to the 
stimuli emitted by the female.

Lower sexual motivation in non-human animals can be 
operationalized as a feature of hypoactive sexual desire dis-
order in humans. Patients with this disorder report that sex-
ual partners can seem aversive (for a discussion, see Ågmo, 
Turi, Ellingsen, & Karpersen, 2004). Leussis and Andersen 
(2008) demonstrated that rats stressed by social isolation 
during puberty show depression-like behaviors, so it may 
be that the generation of depression-like effects in these rats 
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means they process the female’s stimuli as socially-aversive 
instead of sexually-relevant. However this affirmation will 
require further analyses with rats.

It is likely that pubertal stress decreased T levels and 
exerted long-term effects on the functionality of prefrontal 
and amygdaline areas. Hence, the stressed males failed to 
perceive the receptive female as a pleasant, rewarding stim-
uli. However, this hypothesis also needs to be explored in 
future clinical and animal research.
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