medigraphic.com
ENGLISH

Archivos de Neurociencias

Instituto Nacional de Neurología y Neurocirugía
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2021, Número 1

<< Anterior Siguiente >>

Arch Neurocien 2021; 26 (1)


Intervención no farmacológica sobre el control inhibitorio en adolescentes con trastorno por déficit de atención/hiperactividad

Hernández-Torres D, Licona-Oliver A
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 50
Paginas: 24-31
Archivo PDF: 256.49 Kb.


PALABRAS CLAVE

control inhibitorio, funciones ejecutivas, intervención no farmacológica, TDAH.

RESUMEN

Una de las principales características neuropsicológicas del Trastorno por Déficit de Atención/ Hiperactividad (TDAH) son las fallas en las funciones ejecutivas, principalmente en el Control Inhibitorio (CI), la cual es importante para la detención de una respuesta en marcha, permite una demora en la decisión para responder y protege este período de tiempo. Derivado de estas fallas, la población adolescente con TDAH es la más susceptible a presentar conductas como el abuso de sustancias, la conducta sexual de riesgo y la presencia de comorbilidades. El objetivo del presente trabajo fue revisar la literatura de los últimos 10 años acerca de las intervenciones no farmacológicas sobre el CI en adolescentes con TDAH. Se realizó una búsqueda electrónica en las bases de datos: Scopus, PubMed y Web of Science, combinando las siguientes palabras clave: “intervention”, “inhibitory control”, “adolescents”, “teenagers” y “ADHD”. Se seleccionaron artículos publicados desde el 2010 hasta el 2020. La estimulación magnética transcraneal es la intervención no farmacológica más reportada para mejorar el CI en adolescentes con TDAH, seguida del ejercicio físico y el neurofeedback. La literatura es escasa al abordar el tema, por lo que resulta de importancia generar futuras líneas de investigación sobre el tratamiento de las funciones ejecutivas en adolescentes con TDAH.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. APA. Diagnostic and statistical manual of mental disorders: DSM-5. Fifth Edit. Washington, D. C.: American Psychiatric Publishing; 2013.

  2. Willcutt EG. The Prevalence of DSM-IV Attention-Deficit/Hyperactivity Disorder: A Meta-Analytic Review. Neurotherapeutics. 2012; 9(3):490–9. https://doi.org/10.1007/s13311-012-0135-8

  3. Bandeira ID, Guimarães RSQ, Jagersbacher JG, Barretto TL, De Jesus-Silva JR, Santos SN, et al. Transcranial Direct Current Stimulation in Children and Adolescents with Attention-Deficit/Hyperactivity Disorder (ADHD). J Child Neurol. 2016; 31(7):918–24. https://doi. org/10.1177/0883073816630083

  4. Chmielewski WX, Tiedt A, Bluschke A, Dippel G, Roessner V, Beste C. Effects of multisensory stimuli on inhibitory control in adolescent ADHD: It is the content of information that matters. NeuroImage Clin. 2018;19: 527–37. https://doi.org/10.1016/j.nicl.2018.05.019

  5. Sonuga-Barke E, Brandeis D, Holtmann M, Cortese S. Computer-based Cognitive Training for ADHD. A Review of Current Evidence. Child Adolesc Psychiatr Clin N Am. 2014; 23(4):807–24. https://doi.org/10.1016/j. chc.2014.05.009

  6. Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135–68. https://doi.org/10.1146/annurev-psych-113011-143750

  7. Cybele Raver C, Blair C. Neuroscientific insights: Attention, working memory, and inhibitory control. Futur Child. 2016; 26(2):95–118. https://files.eric.ed.gov/fulltext/EJ1118545.pdf

  8. Chevrier A, Schachar RJ. BOLD differences normally attributed to inhibitory control predict symptoms, not task-directed inhibitory control in ADHD. J Neurodev Disord. 2020;12(1):1–12. https://doi.org/10.1186/ s11689-020-09311-8

  9. Barkley RA. Behavioral Inhibition, Sustained Attention, and Executive Functions: Constructing a Unifying Theory of ADHD. Psychol Bull. 1997; 121(1):65–94. https://doi.org/10.1037/0033-2909.121.1.65.

  10. Menon V, Adleman N, White C, Glover G, Reiss A. Error-related brain activation during a Go/NoGo response inhibition task. Hum Brain Mapp. 2001; 12(3):131–43. DOI: 10.1002/1097-0193(200103)12:3<131::aidhbm1010> 3.0.co;2-c

  11. Nee DE, Wager TD, Jonides J. Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cogn Affect Behav Neurosci. 2007;7(1):1–17. https://doi.org/10.3758/cabn.7.1.1

  12. Swick D, Ashley V, Turken U. Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks. Neuroimage. 2011; 56(3):1655–65. http://dx.doi.org/10.1016/j. neuroimage.2011.02.070

  13. Anderson P. Towards a developmental model of executive function. In: Anderson P, Anderson V, Jacobs R, editors. Executive Functions and the Frontal Lobes: a Lifespan Perspective. New York: Psychology Press; 2008, 3–21.

  14. Uebel H, Albrecht B, Asherson P, Börger NA, Butler L, Chen W, et al. Performance variability, impulsivity errors and the impact of incentives as gender-independent endophenotypes for ADHD. J Child Psychol Psychiatry Allied Discip. 2010; 51(2):210–8. https://doi.org/10.1111/j.1469- 7610.2009.02139.x

  15. Geurts HM, Van Der Oord S, Crone EA. Hot and cool aspects of cognitive control in children with ADHD: Decision-making and inhibition. J Abnorm Child Psychol. 2006; 34(6):813–24. https://doi.org/10.1007/s10802- 006-9059-2

  16. Abad-Mas L, Ruiz-Andrés R, Moreno-Madrid F, M. Angeles S-C, Marcel C, Ivan D D-M, et al. Entrenamiento de funciones ejecutivas en el trastorno por déficit de atención/hiperactividad. Rev Neurol. 2011; 52(S01): S077-83

  17. Thapar A, Cooper M. Attention deficit hyperactivity disorder. Lancet. 2016; 387(10024):1240–50. https://doi.org/10.1016/S0140-6736(15)00238-X

  18. Faraone S V., Asherson P, Banaschewski T, Biederman J, Buitelaar JK, Ramos-Quiroga JA, et al. Attention-deficit/hyperactivity disorder. Nat Rev Dis Prim. 2015;1. DOI: 10.1038/nrdp.2015.20

  19. Barbaresi WJ, Katusic SK, Colligan RC, Weaver AL, Jacobsen SJ. Modifiers of long-term school outcomes for children with attention-deficit/ hyperactivity disorder: Does treatment with stimulant medication make a difference? Results from a population-based study. J Dev Behav Pediatr. 2007; 28(4):274–87.DOI: 10.1097/DBP.0b013e3180cabc28

  20. Wolraich M, Brown L, Brown RT, DuPaul G, Earls M, Feldman HM, et al. ADHD: Clinical practice guideline for the diagnosis, evaluation, and treatment of attention-deficit/ hyperactivity disorder in children and adolescents. Pediatrics. 2011;128(5):1007–22. https://doi. org/10.1542/peds.2011-2654

  21. Gerber WD, Gerber-Von Müller G, Andrasik F, Niederberger U, Siniatchkin M, Kowalski JT, et al. The impact of a multimodal Summer Camp Training on neuropsychological functioning in children and adolescents with ADHD: An exploratory study. Child Neuropsychol. 2012; 18(3):242–55. 10.1080/09297049.2011.599115

  22. Bluschke A, Friedrich J, Schreiter ML, Roessner V, Beste C. A comparative study on the neurophysiological mechanisms underlying effects of methylphenidate and neurofeedback on inhibitory control in attention deficit hyperactivity disorder. NeuroImage Clin. 2018; 20:1191–203. doi: 10.1016/j.nicl.2018.10.027

  23. Cairncross M, Miller CJ. The Effectiveness of Mindfulness-Based Therapies for ADHD: A Meta-Analytic Review. J Atten Disord. 2020;24(5):627–43. Doi: 10.1177/1087054715625301

  24. Vysniauske R, Verburgh L, Oosterlaan J, Molendijk ML. The Effects of Physical Exercise on Functional Outcomes in the Treatment of ADHD: A Meta-Analysis. J Atten Disord. 2020;24(5):644–54. https://doi.org/ 10.1177/1087054715627489

  25. D’Agati E, Hoegl T, Dippel G, Curatolo P, Bender S, Kratz O, et al. Motor cortical inhibition in ADHD: Modulation of the transcranial magnetic stimulation-evoked N100 in a response control task. J Neural Transm. 2014;121(3):315–25. https://doi.org/ 10.1007/s00702-013-1097-7

  26. Breitling C, Zaehle T, Dannhauer M, Bonath B, Tegelbeckers J, Flechtner HH, et al. Improving interference control in ADHD patients with transcranial direct current stimulation (tDCS). Front Cell Neurosci. 2016;10:1–10. https://doi.org/ 10.3389/fncel.2016.00072

  27. Bruckmann S, Hauk D, Roessner V, Resch F, Freitag CM, Kammer T, et al. Cortical inhibition in attention deficit hyperactivity disorder: New insights from the electroencephalographic response to transcranial magnetic stimulation. Brain. 2012;135(7):2215–30. https://doi.org/10.1111/jcpp.12312

  28. Piepmeier AT, Shih CH, Whedon M, Williams LM, Davis ME, Henning DA, et al. The effect of acute exercise on cognitive performance in children with and without ADHD. J Sport Heal Sci. 2015; 4(1):97–104. https:// doi.org/10.1016/j.jshs.2014.11.004

  29. Ludyga S, Brand S, Gerber M, Weber P, Brotzmann M, Habibifar F, et al. An event-related potential investigation of the acute effects of aerobic and coordinative exercise on inhibitory control in children with ADHD. Dev Cogn Neurosci. 2017; 28:21–8. https://doi.org/10.1016/j. dcn.2017.10.007

  30. Kadri A, Slimani M, Bragazzi NL, Tod D, Azaiez F. Effect of taekwondo practice on cognitive function in adolescents with attention deficit hyperactivity disorder. Int J Environ Res Public Health. 2019;16(2):1–10. https://doi.org/10.3390/ijerph16020204

  31. Baumeister S, Wolf I, Holz N, Boecker-Schlier R, Adamo N, Holtmann M, et al. Neurofeedback Training Effects on Inhibitory Brain Activation in ADHD: A Matter of Learning? Neuroscience. 2018; 378:89–99. https:// doi.org/10.1016/j.neuroscience.2016.09.025

  32. Spieser L, van den Wildenberg W, Hasbroucq T, Richard Ridderinkhof K, Burle B. Controlling your impulses: Electrical stimulation of the human supplementary motor complex prevents impulsive errors. J Neurosci. 2015; 35(7):3010–5. https://doi.org/10.1523/JNEUROSCI.1642-14.2015

  33. Loftus AM, Yalcin O, Baughman FD, Vanman EJ, Hagger MS. The impact of transcranial direct current stimulation on inhibitory control in young adults. Brain Behav. 2015;5(5):1–9. https://doi.org/ 10.1002/brb3.332

  34. Demirtas-Tatlidede A, Vahabzadeh-Hagh AM, Pascual-Leone A. Can noninvasive brain stimulation enhance cognition in neuropsychiatric disorders? Neuropharmacology [Internet]. 2013;64:566–78. http:// dx.doi.org/10.1016/j.neuropharm.2012.06.020

  35. Krause B, Cohen Kadosh R. Can transcranial electrical stimulation improve learning difficulties in atypical brain development? A future possibility for cognitive training. Dev Cogn Neurosci. 2013; 6:176–94. http://dx.doi.org/10.1016/j.dcn.2013.04.001

  36. Bush G. Attention-deficit/hyperactivity disorder and attention networks. Neuropsychopharmacology. 2010; 35(1):278–300. http://dx.doi. org/10.1038/npp.2009.120

  37. Chang YK, Chu IH, Chen FT, Wang CC. Dose-response effect of acute resistance exercise on tower of London in middle-aged adults. J Sport Exerc Psychol. 2011;33(6):866–83. https://doi.org/ 10.1123/jsep.33.6.866

  38. Chang YK, Tsai CL, Hung TM, So EC, Chen FT, Etnier JL. Effects of acute exercise on executive function: A study with a Tower of London task. J Sport Exerc Psychol. 2011; 33(6):847–65. https://doi.org/10.1123/ jsep.33.6.847

  39. Chang YK, Liu S, Yu HH, Lee YH. Effect of acute exercise on executive function in children with attention deficit hyperactivity disorder. Arch Clin Neuropsychol. 2012; 27(2):225–37. https://doi.org/10.1093/arclin/ acr094

  40. Van Dijk GP, Huijts M, Lodder J. Cognition improvement in Taekwondo novices over 40. Results from the SEKWONDO Study. Front Aging Neurosci. 2013; 5, 1–5. https://doi.org/10.3389/fnagi.2013.00074

  41. Cho SY, Kim Y Il, Roh HT. Effects of taekwondo intervention on cognitive function and academic self-efficacy in children. J Phys Ther Sci. 2017;29(4):713–5. https://doi.org/10.1589/jpts.29.713

  42. Lakes KD, Hoyt WT. Promoting self-regulation through school-based martial arts training. J Appl Dev Psychol. 2004;25(3):283–302. https:// doi.org/10.1016/j.appdev.2004.04.002

  43. Kim YJ, Cha EJ, Kim SM, Kang KD, Han DH. The effects of taekwondo training on brain connectivity and body intelligence. Psychiatry Investig. 2015;12(3):335–40. https://doi.org/10.4306/pi.2015.12.3.335

  44. Lakes KD, Bryars T, Sirisinahal S, Salim N, Arastoo S, Emmerson N, et al. The Healthy for Life Taekwondo pilot study: A preliminary evaluation of effects on executive function and BMI, feasibility, and acceptability. Ment Health Phys Act. 2013; 6(3):181–8. http://dx.doi.org/10.1016/j. mhpa.2013.07.002

  45. Hernandez-Reif M, Field TM, Thimas E. Attention deficit hyperactivity disorder: Benefits from Tai Chi. J Bodyw Mov Ther. 2001; 5(2):120–3. https://doi.org/10.1054/jbmt.2000.0219

  46. Hammond DC. Neurofeedback Around the World. J Neurother. 2008;10(4):25–36.

  47. Alegria AA, Wulff M, Brinson H, Barker GJ, Norman LJ, Brandeis D, et al. Real-time fMRI neurofeedback in adolescents with attention deficit hyperactivity disorder. Hum Brain Mapp. 2017; 38(6):3190–209. https:// doi.org/10.1002/hbm.23584

  48. Sonuga-Barke EJS, Fairchild G. Neuroeconomics of attention-deficit/ hyperactivity disorder: Differential influences of medial, dorsal, and ventral prefrontal brain networks on suboptimal decision making? Biol Psychiatry. 2012; 72(2):126–33. http://dx.doi.org/10.1016/j. biopsych.2012.04.004

  49. McGuire JT, Nassar MR, Gold JI, Kable JW. Functionally Dissociable Influences on Learning Rate in a Dynamic Environment. Neuron. 2014; 84(4):870–81. http://dx.doi.org/10.1016/j.neuron.2014.10.013

  50. Plichta MM, Scheres A. Ventral-striatal responsiveness during reward anticipation in ADHD and its relation to trait impulsivity in the healthy population: A meta-analytic review of the fMRI literature. Neurosci Biobehav Rev. 2014; 38:125–34. http://dx.doi.org/10.1016/j. neubiorev.2013.07.012




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Arch Neurocien. 2021;26

ARTíCULOS SIMILARES

CARGANDO ...