medigraphic.com
ENGLISH

Ginecología y Obstetricia de México

Federación Mexicana de Ginecología y Obstetricia, A.C.
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2021, Número 10

<< Anterior Siguiente >>

Ginecol Obstet Mex 2021; 89 (10)


Validación de la calculadora de la Fundación de Medicina Fetal para tamiz de preeclampsia adaptada a población mexicana

Oviedo-Cruz H, Carrasco-Blancas ER, Valenzuela-Muhech YL, Cervantes-Ricaud AJ, Cortes-Martínez MA
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 35
Paginas: 779-789
Archivo PDF: 213.31 Kb.


PALABRAS CLAVE

Fundación de Medicina Fetal, Proteína plasmática A asociada al embarazo, arteria uterina, preeclampsia, distribución normal, estudios de cohorte, incidencia, presión arterial, perinatología, México.

RESUMEN

Objetivo: Validar el rendimiento de la calculadora de la Fundación de Medicina Fetal 4.0 adaptada a población mexicana.
Materiales y Métodos: Estudio de cohorte efectuado en embarazos con feto único, según el modelo de riesgos en competencia para preeclampsia en un centro de medicina fetal de la Ciudad de México. El riesgo a priori se calculó de acuerdo con la historia clínica. La presión arterial media, el índice de pulsatilidad medio de la arteria uterina y la proteína plasmática A asociada al embarazo se midieron a las 11 a 14 semanas de gestación con metodología estandarizada. El valor de cada marcador se transformó en múltiplos de la mediana adaptados a la población local. Se aplicaron la distribución normal multivariante y el teorema de Bayes para obtener las probabilidades posprueba individuales, que se utilizaron como clasificadores para el área bajo la curva de característica receptor-operador.
Resultados: La incidencia de preeclampsia fue del 5.0% (54/1078). El área bajo la curva de característica receptor-operador fue de 0.784 (0.712; 0.856) para preeclampsia a menos de 37 semanas y de 0.807 (0.762; 0.852) para preeclampsia global.
Conclusiones: La calculadora FMF 4.0 adaptada a población mexicana resultó válida. Si bien tuvo menor rendimiento al esperado para preeclampsia a menos de 37 semanas, el rendimiento para preeclampsia global fue satisfactorio. Se justifica desarrollar la calculadora local.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Duley L. The global impact of pre-eclampsia and eclampsia. Semin Perinatol 2009; 33: 130-7. https://doi.org/10.1053/j. semperi.2009.02.010

  2. Evaluación Estratégica sobre Mortalidad Materna en México 2010: características sociodemográficas que obstaculizan a las mujeres embarazadas su acceso efectivo a instituciones de salud. Ciudad de México: CONEVAL, 2012. http://www.coneval.org.mx/Informes/Evaluacion/ Mortalidad%20materna%202010/INFORME_MORTALIDAD_ MATERNA.pdf

  3. Bujold E, Roberge S, Lacasse Y, Bureau M, Audibert F, et al. Prevention of preeclampsia and intrauterine growth restriction with aspirin started in early pregnancy: a metaanalysis. Obstet Gynecol 2010; 116: 402-14. https://doi. org/10.1097/AOG.0b013e3181e9322a

  4. Al-Rubaie ZTA, Askie LM, Hudson HM, Ray JG, Jenkins G, et al. Assessment of NICE and USPSTF guidelines for identifying women at high risk of pre-eclampsia for tailoring aspirin prophylaxis in pregnancy: An individual participant data meta-analysis. Eur J Obstet Gynecol Reprod Biol 2018; 229: 159-66. https://doi.org/10.1016/j. ejogrb.2018.08.587

  5. Poon LC, Kametas NA, Maiz N, Akolekar R and Nicolaides KH. First-trimester prediction of hypertensive disorders in pregnancy. Hypertension 2009; 53: 812-8. https://doi. org/10.1161/hypertensionaha.108.127977

  6. Akolekar R, Syngelaki A, Poon L, Wright D and Nicolaides KH. Competing risks model in early screening for preeclampsia by biophysical and biochemical markers. Fetal Diagn Ther 2013;33:8-15. https://doi.org/10.1159/000341264

  7. Crovetto F, Figueras F, Triunfo S, Crispi F, Rodriguez-Sureda V, et al. Added value of angiogenic factors for the prediction of early and late preeclampsia in the first trimester of pregnancy. Fetal Diagn Ther 2014; 35: 258-66. https://doi. org/10.1159/000358302

  8. O'Gorman N, Wright D, Poon LC, Rolnik DL, Syngelaki A, et al. Multicenter screening for pre-eclampsia by maternal factors and biomarkers at 11-13 weeks' gestation: comparison with NICE guidelines and ACOG recommendations. Ultrasound Obstet Gynecol 2017; 49: 756-60. https://doi. org/10.1002/uog.17455

  9. Rolnik DL, Wright D, Poon LC, O'Gorman N, Syngelaki A, et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med 2017; 377: 613-22. https://doi.org/10.1056/NEJMoa1704559

  10. Poon LC, Shennan A, Hyett JA, Kapur A, Hadar E, et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int J Gynecol Obstet 2019; 145: 1-33. https://doi.org/10.1002/ijgo.12802

  11. Oliveira N, Magder LS, Blitzer MG, Baschat AA. Firsttrimester prediction of pre-eclampsia: external validity of algorithms in a prospectively enrolled cohort. Ultrasound Obstet Gynecol 2014; 44: 279-85. https://doi.org/10.1002/ uog.13435

  12. Chaemsaithong P, Pooh RK, Zheng M, Ma R, Chaiyasit N, et al. Prospective evaluation of screening performance of first-trimester prediction models for preterm preeclampsia in an Asian population. Am J Obst Gynecol 2019; 221: 650. e1-650.e16. https://doi.org/10.1016/j.ajog.2019.09.041

  13. O’Gorman N, Wright D, Syngelaki A, Akolekar R, Wright A, et al. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11-13 weeks gestation. Am J Obst Gynecol 2016; 214: 103.e1-103.e12. https://doi. org/10.1016/j.ajog.2015.08.034

  14. Tan MY, Syngelaki A, Poon LC, Rolnik DL, O'Gorman N, et al. Screening for pre-eclampsia by maternal factors and biomarkers at 11-13 weeks' gestation. Ultrasound Obstet Gynecol 2018; 52: 186-95. https://doi.org/10.1002/ uog.19112

  15. Acosta-Alfaro L, Ramos-Martínez M, Osuna-Ramírez I, Galaviz-Hernández C, Sosa-Macías M, et al. Predictive model for pregnancy-induced hypertension in mexican women. Ginecol Obstet Mex 2021; 89: 299-308. https:// doi.org/10.24245/gom.v89i4.5106

  16. Oviedo-Cruz H, Hernández-Paredez J and Ruiz-Ramírez AV. Tamiz prenatal de aneuploidías en el primer trimestre: auditoria a un centro de medicina fetal con laboratorio especializado en Mexico. Ginecol Obstet Mex 2015; 83: 259-76.

  17. Wright D, Syngelaki A, Akolekar R, Poon LC and Nicolaides KH. Competing risks model in screening for preeclampsia by maternal characteristics and medical history. Am J Obstet Gynecol 2015; 213: 62 e1-62 e10. https://doi. org/10.1016/j.ajog.2015.02.018

  18. Loughna P, Chitty L, Evans T and Chudleigh T. Fetal size and sating: charts recommended for clinical obstetric practice. Ultrasound 2009; 17: 160-66. https://doi. org/10.1179/174313409X448543

  19. Poon LCY, Zymeri NA, Zamprakou A, Syngelaki A and Nicolaides KH. Protocol for measurement of mean arterial pressure at 11-13 weeks' gestation. Fetal Diagn Ther 2012; 31: 42-48. https://doi.org/10.1159/000335366

  20. Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 2020; 75: 1334-57. https://doi.org/10.1161/HYPERTENSIONAHA. 120.15026

  21. Ng CM, Badon SE, Dhivyalosini M, Hamid JJM, Rohana AJ, et al. Associations of pre-pregnancy body mass index, middle-upper arm circumference, and gestational weight gain. Sex Reprod Healthc 2019; 20: 60-65. https://doi. org/10.1016/j.srhc.2019.03.002

  22. Oviedo-Cruz H, Cortes-Martínez MA. Presión arterial en embarazos normales de la Ciudad de México. Arch Cardiol Mex 2021; 91: 289-98. https://doi.org/10.24875/ ACM.20000206

  23. Gómez O, Figueras F, Fernández S, Bennasar M, Martínez JM, et al. Reference ranges for uterine artery mean pulsatility index at 11-41 weeks of gestation. Ultrasound Obstet Gynecol 2008; 32: 128-32. https://doi.org/10.1002/ uog.5315

  24. Cruz J, Cruz G, Minekawa R, Maiz N and Nicolaides KH. Effect of temperature on free beta-human chorionic gonadotropin and pregnancy-associated plasma protein-A concentration. Ultrasound Obstet Gynecol 2010; 36: 141-6. https://doi.org/10.1002/uog.7688

  25. Wright D, Spencer K, Kagan KK, Torring N, Petersen OB, et al. First-trimester combined screening for trisomy 21 at 7-14 weeks' gestation. Ultrasound Obstet Gynecol 2010; 36: 404-11. https://doi.org/10.1002/uog.7755

  26. Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, et al. The hypertensive disorders of pregnancy: ISSHP classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens 2018; 13: 291-310. https://doi.org/10.1016/j.preghy.2018.05.004

  27. Kalbfleisch JD and Prentice RL. Competing Risks and Multistate Models. En: Kalbfleisch JD and Prentice RL, editors. The Statistical Analysis of Failure Time Data. John Wiley & Sons, Inc. 2a. ed New Jersey: Hoboken, 2002; 247-277. https://doi.org/10.1002/9781118032985.ch8

  28. Oviedo-Cruz H, Reyes-Mendoza M and Mestizo-Reyes V. Corrección de medianas de la fracción beta libre de gonadotrofina coriónica humana y proteína plasmática A del embarazo del primer trimestre para una muestra de población mexicana. Ginecol Obstet Mex 2017; 85: 787- 798. https://doi.org/10.24245/gom.v85i12.994

  29. Wright D, Wright A and Nicolaides KH. The competing risk approach for prediction of preeclampsia. Am J Obstet Gynecol 2020; 223: 12-23.e7. https://doi.org/10.1016/j. ajog.2019.11.1247

  30. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 2010; 21: 128-38. https://doi.org/10.1097/ EDE.0b013e3181c30fb2

  31. Andrade JM and Estevez-Perez MG. Statistical comparison of the slopes of two regression lines: A tutorial. Anal Chim Acta 2014; 838: 1-12. https://doi.org/10.1016/j. aca.2014.04.057

  32. Wright D, Tan MY, O'Gorman N, Poon LC, Syngelaki A, et al. Predictive performance of the competing risk model in screening for preeclampsia. Am J Obstet Gynecol 2019;220:199 e1-199 e13. https://doi.org/10.1016/j.ajog.2018.11.1087

  33. Ceron M, Harlow, Sanchez C and Nunez. Risk factors for pre-eclampsia/eclampsia among working women in Mexico City. Paediatr Perinat Epidemiol 2001;15:40-46. https://doi. org/10.1046/j.1365-3016.2001.00315.x

  34. Hajian-Tilaki K. Sample size estimation in diagnostic test studies of biomedical informatics. J Biomed Inform 2014;48:193-204. https://doi.org/10.1016/j. jbi.2014.02.013

  35. Zvanca ME, Bot M, Radu D, Radu N and Petca A. Impact of early supplementation with low-dose aspirin on functional first trimester parameters in low-risk pregnancies. J Matern Fetal Neonatal Med 2019;32:604-609. https://doi.org/10. 1080/14767058.2017.1387532




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Ginecol Obstet Mex. 2021;89

ARTíCULOS SIMILARES

CARGANDO ...