medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2021, Número 1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2021; 24 (1)


Actividad antimicrobiana, contenido de compuestos fenólicos y capacidad antioxidante de cuatro hongos macromicetos comestibles de Chihuahua, México

Martínez-Escobedo NA, Vázquez-González FJ, Valero-Galván J, Álvarez-Parrilla E, Garza-Ocañas F, Najera-Medellin JA, Quiñónez-Martínez M
Texto completo Cómo citar este artículo Artículos similares

Idioma: Ingles.
Referencias bibliográficas: 54
Paginas:
Archivo PDF: 313.28 Kb.


PALABRAS CLAVE

compuestos bioactivos, microorganismos, hongos comestibles.

RESUMEN

En el presente estudio se determinó el contenido de compuestos fenólicos y la actividad antimicrobiana y antioxidante en cuatro especies de hongos comestibles (Amanita rubescens, Astraeus hygrometricus, Laccaria laccata y Lycoperdon perlatum). Las actividades antimicrobianas se probaron en Staphylococcus aureus, Streptococcus agalactiae y Candida albicans. Los compuestos fenólicos y la actividad antioxidante se midieron mediante métodos espectrofotométricos. Todos los hongos presentan una alta actividad en comparación con S. agalactiae. El contenido de compuestos fenólicos se ubicó entre 1.54 - 20.93 mg GAE/gDW y la actividad antioxidante entre 0.0034 - 0.0854 mmol TE / g DW, siendo A. rubescens la especie con el valor más alto encontrado. Los resultados obtenidos de la actividad antimicrobiana utilizando el método de difusión en disco indicaron que los extractos exhibieron una actividad moderada. Sin embargo, la Concentración Mínima Inhibitoria (CMI) con ambos disolventes muestra que todas las especies de macromicetos registraron inhibición de los microorganismos en diferentes concentraciones. En general, los extractos etanólicos ejercieron una actividad antimicrobiana mayor a los obtenidos con metanol. La bacteria S. agalactiae fue el microorganismo más susceptible y S. aureus la más resistente. La mejor actividad antimicrobiana se encontró en los extractos etanólicos de A. hygrometricus y L. perlatum, principalmente en S. agalactiae, con un valor de CMI de 3.75 mg/mL. En conclusión, se sugiere que estas especies de macromicetos se pueden utilizar como fuente natural de componentes antimicrobianos y antioxidantes.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Acharya, K., Khatua, S. & Ray, S. (2017). Quality assessment and antioxidant study of Pleurotus djamor (Rumph. ex Fr.) Boedijn. Journal of Applied Pharmaceutical Science, 7(6), 105–110. https://doi.org/10.7324/JAPS.2017.70614

  2. Adhikari, P., Pandey, A., Agnihotri, V. & Pande, V. (2018). Selection of solvent and extraction method for determination of antimicrobial potential of Taxus wallichiana Zucc . Research in Pharmacy, 8, 1–9.

  3. Akpi, U., Odoh, C., Ideh, E. & Adobu, U. (2017). Antimicrobial Activity of Lycoperdon perlatum Whole Fruit Body on Common Pathogenic Bacteria and Fungi. Journal of Clinical and Experimental Microbiology, 18(2), 79–85. https://dx.doi.org/10.4314/ajcem.v18i2.4

  4. Alispahić, A., Šapčanin, A., Salihović, M., Ramić, E., Dedić, A. & Pazalja, M. (2015). Phenolic content and antioxidant activity of mushroom extracts from Bosnian market. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, 44, 5-8.

  5. Alothman, M., Bhat, R. & Karim, A. A. (2009). Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chemistry, 115(3), 785–788. https://doi.org/10.1016/j. foodchem.2008.12.005

  6. Álvarez-Parrilla, E., de La Rosa, L. A., Martínez, N. R. & González Aguilar, G. A. (2007). Total phenols and antioxidant activity of commercial and wild mushrooms from Chihuahua, Mexico. Ciencia y Tecnologia Alimentaria, 5(5), 329–334. https://doi.org/10.1080/11358120709487708

  7. Álvarez-Parrilla, E., de la Rosa, L., Amarowicz, R. & Shahidi, F. (2011). Antioxidant Activity of Fresh and Processed Jalapen Serrano Peppers. Journal of Agricultural and Food Chemistry, 59, 163–173. https://doi.org/10.1021/jf103434u

  8. Álvarez-Parrilla, E., Mercado-Mercado, G., de la Rosa, L. A., López.Díaz, J.. A., Wall-Medrano, A. & González-Aguilar, G. (2014), Antioxidant activity and prevention of pork meat lipid oxidation using traditional Mexican condiments (pasilla dry pepper, achiote, and mole sauce). Food Science and Technology Campinas, 34(2), 371-378. http://dx.doi. org/10.1590/fst.2014.0052

  9. Alves, M. J., Ferreira, I. C. F. R., Dias, J., Teixeira, V., Martins, A. & Pintado, M. (2013). A Review on antifungal activity of mushroom (basidiomycetes) extracts and isolated compounds. Current Topics in Medicinal Chemistry, 13(21), 2648-2659. https://doi.org/10.2174/1568026611 3136660191

  10. Barros, L., Baptista, P., Estevinho, L. M. & Ferreira, I. C. F. R. (2007). Effect of fruiting body maturity stage on chemical composition and antimicrobial activity of Lactarius sp. mushrooms. Journal of Agricultural and Food Chemistry, 55(21), 8766–8771. https://doi.org/10.1021/jf071435

  11. Barros, L., Venturini, B. A., Baptista, P., Estevinho, L. M. & Ferreira, I. C. F. R. (2008). Chemical composition and biological properties of Portuguese wild mushrooms: A comprehensive study. Journal of Agricultural and Food Chemistry, 56(10), 3856–3862. https://doi.org/10.1021/ jf8003114

  12. Canli, K., Akata, I. & Altuner, E. M. (2016). In VitroAntimicrobial Activity Screening of Xylaria hypoxylon. African Journal of Traditional, Complementary and Alternative Medicines, 13(4), 42–46. https://doi.org/10.21010/ajtcam.v13i4.7

  13. Chelela, B. L., Chacha, M. & Matemu, A. (2014). Antibacterial and antifungal activities of selected wild mushrooms from Southern Highlands of Tanzania. American Journal of Research Communication, 2(9), 58–68.

  14. Dai, J. & Mumper, R. J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313–7352. https://doi.org/10.3390/ molecules15107313

  15. Do, Q. D., Angkawijaya, E., Tran-Nguyen, P., Huynh, L., Soetaredjo, F., Ismadji, S. & Ju, Y.-H. (2014). Effect of extraction solvent on total phenol content , total flavonoid content , and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22, 296–302. https:// doi.org/10.1016/j.jfda.2013.11.001

  16. Doǧan, H. H., Duman, R., Özkalp, B. & Aydin, S. (2013). Antimicrobial activities of some mushrooms in Turkey. Pharmaceutical Biology, 51(6), 707–711. https://doi.org /10.3109/13880209.2013.764327

  17. Dulger, B. (2005). Antimicrobial activity of ten Lycoperdaceae. Fitoterapia, 76(3–4), 352–354. https://doi.org/10.1016/j. fitote.2005.02.004

  18. Elmastas, M., Isildak, O., Turkekul, I. & Temur, N. (2007). Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. Journal of Food Composition and Analysis, 20(3–4), 337–345. https://doi. org/10.1016/j.jfca.2006.07.003

  19. Ferreira, I., Barros, L. & Abreu, R. (2009). Antioxidants in Wild Mushrooms. Current Medicinal Chemistry, 16(12), 1543–1560. https://doi.org/10.2174/092986709787909587

  20. Giri, S., Biswas, G., Pradhan, P., Mandal, S. C. & Acharya, K. (2012). Antimicrobial activities of basidiocarps of wild edible mushrooms of West Bengal, India. International Journal of PharmTech Research, 4(4), 1554–1560.

  21. Gómez-Flores, L. D. J., Martínez-Ruiz, N. D. R., Enríquez- Anchondo, I. D., Garza-Ocañas, F., Nájera-Medellín, J. A. & Quiñónez-Martínez, M. (2019). Análisis proximal y de composición mineral de cuatro especies de hongos ectomicorrízicos silvestres de la Sierra Tarahumara de Chihuahua. TIP Revista Especializada En Ciencias Químico-Biológicas, Vol. 22, 1–10. https://doi. org/10.22201/fesz.23958723e.2019.0.184

  22. González Barranco, P., Garza Ocañas, L., Salinas Carmona, M., Vera Cabrera, L., Garza Ocañas, F., Ramírez Gómez, X. & Torres Alanis, O. (2009). Actividad antioxidadnte, antimicrobiana y citotoxicidad de dos espcies mexicanas de Suillus spp. CIENCIA UANL, XII(1), 62–70.

  23. Hay, R. J., Johns, N. E., Williams, H. C., Bolliger, I. W., Dellavalle, R. P., Margolis, D. J., Marks, R., Naldi, L., Weinstock, M. A., Wulf, S. K., Michaud, C., Murray, C. & Naghavi, M. (2014). The Global Burden of Skin Disease in 2010: An Analysis of the Prevalence and Impact of Skin Conditions. Journal of Investigative Dermatology, 134(6), 1527–1534. https://doi.org/10.1038/jid.2013.446

  24. Heleno, S. A., Barros, L., Sousa, M. J., Martins, A. & Ferreira, I. C. F. R. (2010). Tocopherols composition of Portuguese wild mushrooms with antioxidant capacity. Food Chemistry, 119(4), 1443–1450. https://doi.org/10.1016/j. foodchem.2009.09.025

  25. Hleba, L., Kompas, M., Hutková, J., Rajtar, M., Petrová, J., Čuboň, J., Kántor, A. & Kačániová, M. (2016). Antimicrobial activity of crude ethanolic extracts from some medicinal mushrooms. Journal of Microbiology, Biotechnology and Food Sciences, 05(Speciall), 60-63. https://doi.org/10.15414/jmbfs.2016.5.speciall.60-63

  26. Iwalokun, B. A., Usen, U. A., Otunba, A. A. & Olukoya, K. (2007). Comparative phytochemical evaluation, antimicrobial and antioxidant properties of Pleurotus ostreatus. African Journal of Biotechnology, 6(15), 1732–1739. https://doi. org/10.5897/ajb2007.000-2254

  27. Kalač, P. (2013). A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. Journal of the Science of Food and Agriculture, 93(2), 209–218.

  28. Kalyoncu, F., Oskay, M., Sağlam, H., Erdoğan, T. F. & Tamer, A. Ü. (2010). Antimicrobial and Antioxidant Activities of Mycelia of 10 Wild Mushroom Species. Journal of Medicinal Food, 13(2), 415–419.

  29. Kaewnarin, K., Suwannarach, N., Kumla, J. & Lumyong, S. (2016). Phenolic profile of various wild edible mushroom extracts from Thailand and their antioxidant properties, anti-tyrosinase and hyperglycaemic inhibitory activities. Journal of Functional Foods, 27, 352–364. https://doi. org/10.1016/j.jff.2016.09.008

  30. Keleş, A., Koca, İ. & Gençcelep, H. (2011). Antioxidant Properties of Wild Edible Mushrooms. Journal of Food Processing & Technology, 2(6), 1-6. https://doi. org/10.4172/2157-7110.1000130

  31. Kosanić, M., Ranković, B., Rančić, A. & Stanojković, T. (2016). Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. Journal of Food and Drug Analysis, 24(3), 477–484. https:// doi.org/10.1016/j.jfda.2016.01.008

  32. Lai, T., Biswas, G., Chatterjee, S., Dutta, A., Pal, C., Banerji, J., Bhuvanesh, N., Reibenspies, J. & Acharya, K. (2012). Leishmanicidal and anticandidal activity of constituents of Indian edible mushroom Astraeus hygrometricus. Chemistry and Biodiversity, 9(April), 1517–1524.

  33. Leyva, J. M., Pérez-Carlón, J. J., González-aguilar, G. A., Esqueda, M. & Ayala-zavala, J. F. (2013). Funcionalidad antibacteriana y antioxidante de extractos hidroalcohólicos de Phellinus merrillii. Revista Mexicana de Micología, 37, 11–17. Retrieved from http://revistamexicanademicologia. org/wp-content/uploads/2013/06/RMM-Tr-273-versionpaginada- 11-17.pdf

  34. Li, C., & Oberlies, N. H. (2005). The most widely recognized mushroom: Chemistry of the genus Amanita. Life Sciences, 78, 532–538. https://doi.org/10.1016/j.lfs.2005.09.003

  35. Liu, J., Jia, L., Kan, J. & Jin, C. (2013). In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus). Food and Chemical Toxicology, 51(1), 310–316. https://doi.org/10.1016/j. fct.2012.10.014

  36. Lund, R. G., Del Pino, F. A. B., Serpa, R., do Nascimento, J. S., Da Silva, V. M. I., Ribeiro, G. A. & Rosalen, P. L. (2009). Antimicrobial activity of ethanol extracts of Agaricus brasiliensis against mutans streptococci. Pharmaceutical Biology, 47(9), 910–915. https://doi. org/10.1080/13880200902950801

  37. Mujić, I., Zeković, Z., Lepojević, Ž., Vidović, S. & Živković, J. (2010). Antioxidant properties of selected edible mushroom species. Journal of Central European Agriculture, 11(4), 387-391.

  38. Naczk, M. & Shahidi, F. (2006). Phenolics in cereals , fruits and vegetables: Occurrence, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis, 41, 1523–1542. https://doi.org/10.1016/j.jpba.2006.04.002

  39. Nieto, I. J. & Cucaita, E. del P. (2007). Ácidos grasos, ésteres y esteroles del cuerpo fructífero del hongo Laccaria laccata. Revista Colombiana de Química, 36(3), 277–284. Retrieved from http://revistas.unal.edu.co/index.php/rcolquim/article/ view/1290

  40. Nowacka, N., Nowak, R., Drozd, M., Olech, M., Los, R. & Malm, A. (2015). Antibacterial, antiradical potential and phenolic compounds of thirty-one polish mushrooms. PLoS ONE, 10(10), 1–13. https://doi.org/10.1371/journal. pone.0140355

  41. Nowacka, N., Nowak, R., Drozd, M., Olech, M., Los, R. & Malm, A. (2014). Analysis of phenolic constituents, antiradical and antimicrobial activity of edible mushrooms growing wild in Poland. LWT - Food Science and Technology, 59(2P1), 689–694. https://doi.org/10.1016/j. lwt.2014.05.041

  42. Özyürek, M., Bener, M., Güçlü, K. & Apak, R. (2014). Antioxidant/antiradical properties of microwaveassisted extracts of three wild edible mushrooms. Food Chemistry, 157, 323–331. https://doi.org/10.1016/j. foodchem.2014.02.053

  43. Padilla, M. A. (2012). Inhibición in vitro del Enterococcus faecalis con hidróxido de calcio, clorexidina y ozono. Universidad Autónoma de Ciudad Juárez, Tesis de Maestría, 129.

  44. Pavithra, M., Sridhar, K. R., Greeshma, A. A. & Tomita- Yokotani, K. (2016). Bioactive potential of the wild mushroom Astraeus hygrometricus in South-west India. Mycology, 7(4), 191–202. https://doi.org/10.1080/21501 203.2016.1260663

  45. Prasad, R., Varshney V. K., Harsh, N. S. K. & Kumar, M. (2015). Antioxidant Capacity and Total Phenolics Content of the Fruiting Bodies and Submerged Cultured Mycelia of Sixteen Higher Basidiomycetes Mushrooms from India. International Journal of Medicinal Mushrooms, 17(10), 933–941.

  46. Quiñónez-Martínez, M., Ruan-Soto, F., Aguilar-Moreno, E., Garza-Ocañas, F., Lebgue-Keleng, T., Lavín-Murcio, A. & Enríquez-Anchondo, I. (2014). Knowledge and use of edible mushrooms in two municipalities of the Sierra Tarahumara, Chihuahua, Mexico. Journal of ethnobiology and ethnomedicine, 10(67), 1-13. DOI: 10. 67. 10.1186/1746-4269-10-67.

  47. Ren, L., Hemar, Y., Perera, C. O., Lewis, G., Krissansen, G. W. & Buchanan, P. K. (2014). Antibacterial and antioxidant activities of aqueous extracts of eight edible mushrooms. Bioactive Carbohydrates and Dietary Fibre, 3(2), 41–51. https://doi.org/10.1016/j.bcdf.2014.01.003

  48. Riain, N. U. (2013). Recommended management of common bacterial skin infections. Prescriber, 22(15–16), 15–25.

  49. Ruiz, M. J., Pérez-Moreno, J., Almaraz-Suárez, J. J. & Torres- Aquino, M. (2013). Hongos silvestres con potencial nutricional, medicinal y biotecnológico comercializados en Valles Centrales, Oaxaca. Revista Mexicana de Ciencias Agrícolas, 4(4), 199–213.

  50. Smolskaite, L., Venskutonis, P. R. & Talou, T. (2015). Comprehensive evaluation of antioxidant and antimicrobial properties of different mushroom species. LWT - Food Science and Technology, 60(1), 462–471. https://doi. org/10.1016/j.lwt.2014.08.007

  51. Srikram, A. & Supapvanich, S. (2016). Proximate compositions and bioactive compounds of edible wild and cultivated mushrooms from Northeast Thailand. Agriculture and Natural Resources, 50(6), 432–436. https://doi. org/10.1016/j.anres.2016.08.001

  52. Torres, C. & Cercenado, E. (2010). Lectura interpretada del antibiograma de cocos gram positivos. Enfermedades Infecciosas y Microbiologia Clínica, 28(8), 541–553. https://doi.org/10.1016/j.eimc.2010.02.003

  53. Wright, G. D. (2010). Antibiotic resistance in the environment: A link to the clinic? Current Opinion in Microbiology, 13(5), 589–594. https://doi.org/10.1016/j.mib.2010.08.005

  54. Yahia, E. M., Gutiérrez-Orozco, F. & Moreno-Pérez, M. A. (2017). Identification of phenolic compounds by liquid chromatography-mass spectrometry in seventeen species of wild mushrooms in Central Mexico and determination of their antioxidant activity and bioactive compounds. Food Chemistry, 226, 14–22. https://doi.org/10.1016/j. foodchem.2017.01.044




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2021;24

ARTíCULOS SIMILARES

CARGANDO ...