medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2021, Número 1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2021; 24 (1)


Exposición al plomo: Conocimientos sobre los efectos en ovarios y el impacto a la salud reproductora femenina

Trujillo-Vázquez SK, Bonilla-González E, Valencia-Quintana R, Sánchez-Alarcon J, López-Durán RM, Gómez-Olivares JL
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 91
Paginas:
Archivo PDF: 289.17 Kb.


PALABRAS CLAVE

Pb, gónadas, hormonas, exposición, balance REDOX, folículos ováricos, atresia, plomo.

RESUMEN

El plomo (Pb) es un metal pesado altamente tóxico de importancia industrial cuya presencia continúa siendo un riesgo en el ambiente. Las concentraciones de este metal sobrepasan los límites establecidos por las agencias gubernamentales, amenazando la salud de la población, principalmente en los países en desarrollo. El Pb afecta a varios sistemas del organismo, incluyendo al reproductor. En este trabajo se revisan las investigaciones sobre sus efectos tóxicos en los ovarios, abordando estudios realizados in vivo e in vitro en mamíferos, principalmente rata, ratón y humanos, desde el año 2000 al 2020. Entre los principales hallazgos se encuentran las modificaciones del balance óxido-reducción (REDOX) celular, la separación de las células de la granulosa que conforman al folículo y el aumento de la atresia folicular, entre otros, que alteran los procesos reproductores. La realización de más estudios interdisciplinarios ayudará a mejorar la comprensión de los mecanismos de acción del Pb en el ovario y el riesgo a la salud reproductora femenina.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Agarwal, A., Gupta, S. & Sharma, R. K. (2015). Role of oxidative stress in female reproduction. Reproductive Biology and Endocrinology, 3(28), 1-21. https://doi.org/10.1186/1477- 7827-3-28

  2. Aglan, H. S., Gebremedhn, S., Salilew-Wondim, D., Neuhof, C., Tholen, E., Holker, M., Schellander, K. & Tesfayem, D. (2020). Regulation of Nrf2 and NF-kB during lead toxicity in bovine granulosa cells. Cell and Tissue Research, 380, 643-655. https://doi.org/10.1007/s00441-020-03177-x

  3. Ahamed, M. & Siddiqui, M. K. (2007). Low level lead exposure and oxidative stress: current opinions. Clinica Chimica Acta, 383 (1-2), 57-64. https://doi.org/10.1016/j. cca.2007.04.024

  4. ATSDR (Agency for Toxicy Substances and Disease Registry) (2011).Toxicological Profile of Lead. Disponible en: https:// www.atsdr.cdc.gov/toxprofiles/tp13.pdf. Acceso el 28/ Agosto/2017

  5. Balasch, J. & Fabregues, F. (2006). LH in the follicular phase: neither too high nor too low. Reproductive Biomedicine Online, 12, 406-415. https://doi.org/10.1016/s1472- 6483(10)61991-8

  6. Bedaiwy, M. A. & Falcone, T. (2003). Peritoneal fluid environment in endometriosis. Clinicopathological implications. Minerva Ginecolgica, 55, 333-345. https:// clevelandclinic.org/reproductiveresearchcenter/docs/ faltdoc049.pdf

  7. Behrman, H. R., Kodaman, P. H., Preston, S. L. & Gao, S. (2001). Oxidative stress and the ovary. Reproductive Sciences, 8, 40-41. https://doi.org/10.1177%2F1071557601008001S13

  8. Beyersmann, D., & Hartwig, A. (2008). Carcinogenic metal compounds: recent insight into molecular and celular mechanisms. Archives of Toxicology, 82 (8), 493-512. https://doi.org/10.1007/s00204-008-0313-y

  9. Bindler, R. (2011). Contaminated lead environments of man: Reviewing the lead isotopic evidence in sediments, peat, and soils for the temporal and spatial patterns of atmospheric lead pollution in Sweden. Environmental Geochemistry and Health, 33, 311–329. https://doi.org/10.1007/s10653- 011-9381-7

  10. Bires, J., Maracek, I., Bartko, P., Biresova, M. & Weissova, T. (1995). Accumulation of trace elements in sheep and the effects upon qualitative and quantitative ovarian changes. Veterinary and Human Toxicology, 37, 349 –356. https:// pubmed.ncbi.nlm.nih.gov/8540227/

  11. Bloom, M. M., Louis, G. M., Sundaram, R., Kostyniak, P. J. & Jain, J. (2011). Associations between blood metals and fecundity among women residing in New York State. Reproductive Toxicology, 31 (2), 158-163. https://www.sciencedirect.com/science/article/abs/ pii/S0890623810003102?via%3Dihub, https://doi. org/10.1016/j.reprotox.2010.09.013

  12. Bruno-Nascimento, C. R., Ezequiel-Risso, W. & Reis- Martinez, C. B. (2016). Lead accumulation and metallothionein contente in female rats of different ages and generations after daily intake of Pb-contaminated food. Environmental Toxicology and Pharmacology, 48, 272-277. https://www.sciencedirect.com/science/article/ pii/S138266891630285X, https://doi.org/10.1016/j. etap.2016.11.001

  13. Canaz, E., Kilinc, M., Sayar, H., Kiran, G. & Osyurek, E. (2017). Lead, selenium and nickel concentrations in epitelial ovarian cancer, borderline ovarian tumor and healthy ovarian tissues. Journal of Trace Elements in Medicine and Biology, 43, 217-223. https://doi.org/10.1016/j.jtemb.2017.05.003

  14. Caravanos, J., Dowling, R., Téllez-Rojo, M., Cantoral, A., Kobrosly, R., Estrada, D., Orjuela, M., Gualtero, S., Ericson, B., Rivera, A. & Fuller, R. (2014). Blood lead levels in Mexico and pediatric burden of disease implications. Annals of Global Health, 80 (4), 269-277. https://pubmed. ncbi.nlm.nih.gov/25459328/, https://doi.org/10.1016/j. aogh.2014.08.002

  15. CDC (Center for Disease Control and Prevention) (2010). Guidelines for the identification and management of lead exposure in pregnant and lactating women. US Department of Health and Human Services.

  16. Cerna, M., Krskova, A., Ceichanova, M. & Snevackova, V. (2012). Human biomonitoring in the Czech Republic: an overview. International Journal of Hygiene and Environmental Health, 215 (2), 109-119. https://sciarium. com/file/212486/, DOI 10.1016/j.ijheh.2011.09.007

  17. Chang, S. H., Cheng, B. H., Lee, S. L., Chuang, H. Y., Yang, C. Y., Sung, F. C. & Wu, T. N. (2006). Low blood lead concentration in association with infertility in women. Environmental Research, 101, 380-386. https://www.sciencedirect.com/ science/article/abs/pii/S0013935105001490?via%3Dihub, https://doi.org/10.1016/j.envres.2005.10.004

  18. Chiu, T. T & Yang, D. M. (2012). Intracellular Pb2+ content monitoring using a protein-based Pb2+ indicator. Toxicological Sciences, 126 (2), 436-445. https://academic. oup.com/toxsci/article/126/2/436/1690529, https://doi. org/10.1093/toxsci/kfs007

  19. Corsetti, G., Romano, C., Stacchiotti, A., Pasini, E. & Dioguardi F.S. (2017). Endoplasmic reticulum stress and apoptosis triggered by sub-chronic lead exposure in mice spleen: a Histopathological Study. Biological Trace Element Research, 178, 86-97. https://doi.org/10.1007/s12011- 016-0912-z

  20. Dennery, P. A. (2004). Role of Redox in fetal development and neonatal diseases. Antioxidants & Redox Signaling, 6 (1), 147-153. https://doi.org/10.1089/152308604771978453

  21. Dhir, V. & Dhand, P. (2010). Toxicological approach in chronic exposure to lead on reproductive functions in female rats. Toxicology International, 17, 1-7. https://europepmc. org/article/PMC/2964744, https://doi.org/10.4103/0971- 6580.68340

  22. Doumouchtsis, K. K., Doumouchtsis, S. K., Doumouchtsis, E. K. & Perrea, D. N. (2009). The effect of lead intoxication on endocrine functions. Journal of Endocrinological Investigation, 32, 175-183. https://pubmed.ncbi.nlm.nih. gov/19411819/, https://doi.org/10.1007/bf03345710

  23. Dumitrescu, E., Triff, A., Argherie, D. & Romeo-Teodor, C. (2009). The consequences in utero exposure to lead acetate on exposure and integrity biomarkers of reproductive system in female rats. Medicina veterinara, 2, 295- 300.

  24. Dumitrescu, E., Cristina, R. T. & Muselin, F. (2014). Reproductive biology study of dynamics of female sexual hormones: a 12-month exposure to lead acetate rat model. Turkish Journal of Biology,38, 581–585. https://www.researchgate. net/publication/265058040_Reproductive_biology_ study_of_dynamics_of_female_sexual_hormones_A_12- month_exposure_to_lead_acetate_rat_model, http://dx.doi. org/10.3906/biy-1402-50

  25. Dumitrescu, E., Chiurciu, V., Florin, M., Popescu, R., Brezovan, D. & Cristina, R. T. (2015). Effects of long-term exposure of female rats to low levels of lead: ovary and uterus histological architecture changes. Turkish Journal of Biology, 39, 284- 289. https://www.semanticscholar.org/paper/Effects-oflong- term-exposure-of-female-rats-to-low-Dumitrescu- Chiurciu/d8cab36dc3067f3dd25cbf156b2f450a0b040c89, https://doi.org/10.3906/BIY-1407-6

  26. Dursun, A., Yurdakok, K., Yalcin, S. S., Tekinalp, G., Aykut, O., Orhan, G. & Morgil, G. K. (2016). Maternal risk factors associated with lead, mercury and cadmiun levels in umbilical cord blood, breast milk and newborn hair. The Journal of Maternal-Fetal & Neonatal Medicine, 29, 954-961. https://doi.org/10.3109/14767058.2015.1026255

  27. Fitamo, D., Itana, F. & Olsson, M. (2007). Total contents and sequential extraction of heavy metals in soils irrigated with wastewater, Akaki, Ethiopia. Environmental Management, 39 (2), 178–193. https://doi.org/10.1007/s00267-006- 0074-4

  28. Flora, G., Gupta, D. & Tiwari, A. (2012). Toxicity of lead: A review with recent updates. Interdisciplinary Toxicology, 5 (2), 47-58. https://doi.org/10.2478/v10102-012-0009-2

  29. Fortune, J.E. (2003). The early stages of follicular development: activation of primordial follicles and growth of preantral follicles. Animal Reproduction Science, 78, 135–163. https://pubmed.ncbi.nlm.nih.gov/12818642/, https://doi. org/10.1016/s0378-4320(03)00088-5

  30. Fuentes-Gandara, F., Pinedo-Hernández, J., Marrugo-Negrete, J. & Díez, S. (2016). Human health impacts of exposure to metals through extreme consumption of fish from the Colombian Caribbean Sea. Environmental Geochemistry and Health, 40, 229-242. https://doi.org/10.1007/s10653- 016-9896-z

  31. Gadhia, S. R., Calabro, A. R. & Barile, F. A. (2012). Trace metals alter DNA repair and histone modification pathways concurrently in mouse embryonic stem cells. Toxicology Letters, 212 (2), 169-179. https://www.sciencedirect.com/ science/article/abs/pii/S0378427412011290, https://doi. org/10.1016/j.toxlet.2012.05.013

  32. Godwin, H. A. (2001). The biological chemistry of lead. Elsevier Science, 5 (2), 223-227. https://www.sciencedirect.com/ science/article/abs/pii/S1367593100001940, https://doi. org/10.1016/S1367-5931(00)00194-0

  33. Gonick, H. C. (2011). Lead-Binding Proteins: A Review. Journal of Toxicology, 1, 1-10. https://doi.org/10.1155/2011/686050

  34. Gulson, B. L., Mizon, K. J., Korsch, M. J., Palmer, J. M. & Donnelly, J.B. (2003). Mobilization of lead from human bone tissue during pregnancy and lactation: a summary of long-term research. Science of the Total Environment, 303, 79-104. https://www.sciencedirect.com/science/article/abs/ pii/S0048969702003558, https://doi.org/10.1016/S0048- 9697(02)00355-8

  35. Gupta N., Singh, G., Singh S. M. & Reddy, K. R. (2010). Histological changes in ovaries of mice exposed to Butea monosperma preliminary study. International Journal of Morphology, 28 (4),1309-1314. https://www. semanticscholar.org/paper/Histological-Changes-in- Ovaries-of-Mice-Exposed-to-Gupta-Singh/26758cf06f4f0 16a2088a74729bd438db824e153, https://doi.org/10.4067/ S0717-95022010000400051

  36. Hayashi, K., Miyamoto, A., Konari, A., Ohtani, M. & Fukui, Y. (2003). Effect of local interaction of reactive oxygen species with prostanglandin F2α on the release of progesterone in ovine corpora lutea in vivo. Theriogenology, 59, 1335- 1344. https://www.sciencedirect.com/science/article/abs/ pii/S0093691X02011731, https://doi.org/10.1016/S0093- 691X(02)01173-1

  37. Hobi, M. H. (2014). The Pollution of lead (Pb) in the Soil of Baghdad City after 2003. International Journal of Engineering and Technical Research. 3 (4), 201-206.

  38. Hoyer, P. B. (2014). Ovarian toxicology. Editorial CRC Press. 2ª Edición. Nueva York, Estados Unidos. 371pp

  39. Hsiao-Ling, L., Hsiao-Jui, W., Hsin-Yi, H., Kai-Wei, L. & Ling-Chu, C. (2015). Relationship between risk factors for infertility in women and lead, cadmium and arsenic blood levels: a cross-sectional study from Taiwan. BMC Public Health, 15, 1220. https://doi.org/10.1186/s12889- 015-2564-x

  40. Iqbal, M. P. (2012). Lead pollution: a risk factor for cardiovascular disease in Asian developing countries. Cardiovascular Diseases Commons, 25, 289-94.

  41. Jarvis, P., Quy, K., Macadam, J., Edwards, M. & Smith, M. (2018). Intake of lead (Pb) from tap water of homes with leaded and low lead plumbing systems. Science of the Total Environment, 644 (10), 1346-1356. https://pubmed. ncbi.nlm.nih.gov/30743847/, https://doi.org/10.1016/j. scitotenv.2018.07.064

  42. Jasim-Sodani, I. (2017). Study the adverse effects of exposure to lead acetate on mice ovarian tissue. International Journal of Advanced Research, 5 (5), 727-735.

  43. Jomova, K. & Valko, M. (2011). Advances in metal-induced oxidative stress and human disease. Toxicology, 283 (2-3), 65-87. https://doi.org/10.1016/j.tox.2011.03.001

  44. Junaid, M., Chowdhury, D.K., Narayan, R., Shanke, R. & Saxena, D.K. (2010). Lead induced changes in ovarian folicular development and maturation in mice. Journal of Toxicology and Environmental Health, 50, 31-40. https:// doi.org/10.1080/009841097160582

  45. Kaur, G., Singh, H.P., Batish, D.R. & Kohli, R.K. (2012). Lead (Pb)-induced biochemical and ultrastructural changes in wheat (Triticum aestivum) roots. Protoplasma, 250, 53-62. https://doi.org/10.1007/s00709-011-0372-4

  46. Kirberger, M., Wong, H.C., Jiang, J. & Yang, Y. (2013). Metal toxicity and opportunistic binding of Pb2+ in proteins. Journal of Inorganic Chemistry, 1, 1-44. https://academic. oup.com/endo/article/151/1/7/2456018, https://doi. org/10.1210/en.2009-0916

  47. Kovacs, C. S. (2001). Calcium and bone metabolism in pregnancy and lactation. The Journal of Clinical Endocrinology and Metabolism, 86 (6), 2344-2348. https://pubmed.ncbi.nlm. nih.gov/11397820/, https://doi.org/10.1210/jcem.86.6.7575

  48. Krieg Jr, E. F. (2007). The relationships between blood lead levels and serum follicle stimulating hormone and luteinizing hormone in the third National Health and Nutrition Examination Survey. Environmental Research, 104 (3), 374–382. https://doi.org/10.1016/j.envres.2006.09.009

  49. Lefevre B. (2001). Lead accumulation in the mouse ovary after treatment-induced follicular atresia. Reproductive Toxicology, 15, 385-439. https://www.sciencedirect.com/ science/article/abs/pii/S0890623801001393, https://doi. org/10.1016/S0890-6238(01)00139-3

  50. Liu, Y., Huo, X., Xu, L., Wei, X., Wu, W., Wu, X. & Xu. (2018). Hearing loss in children with e-waste lead and cadmium exposure. Science of the Total Environment, 624, 621-627. https://doi.org/10.1016/j.scitotenv.2017.12.091

  51. Luo, J., Meng, J, Ye, Y., Wang, Y. & Bai, L. (2016). Population health risk via dietary exposure to trace elements (Cu, Zn, Pb, Cd, Hg, and As) in Qiqihar, Northeastern China. Environmental Geochemistry and Health, 40, 217-227. https://doi.org/10.1007/s10653-016-9895-0

  52. Ma, Y., Shi, Y. S., Wu, Q. J., Wang, Y. Q., Wang, J. P. & Liu, Z. H. (2020). Effects of varying dietary intoxication with lead on the performance and ovaries of laying hens. Poultry Science, 99 (9): 4505-4513. https://www.sciencedirect. com/science/article/pii/S0032579120303771, https://doi. org/10.1016/j.psj.2020.06.015

  53. Mah, V. & Jalilehvand, F. (2013). Lead (II) Complex Formation with Glutathione. Inorganic Chemistry,51(11), 6285-6298. https://doi.org/10.1021/ic300496t

  54. Maloney B., Bayon B.L., Zaqia H.N. & Lahiri, D.L. (2018). Latent consequences of early-life lead (Pb) exposure and the future: Addressing the Pb Crisis. Neurotoxicology, 68 (1), 126-132. https://doi.org/10.1016/j.neuro.2018.06.016

  55. Martínez-Riera, N., Sant-Yacumo, R. A., Riera de Martínez- Villa, N. (2001). Efectos de la exposición a bajas concentraciones de plomo en ratones sobre diferentes parámetros bioquímicos. Revista de Toxicología, 18, 82-86.

  56. Masudul-Hoque, M. S. A., Umehara, T., Kawai, T. & Shimada, M. (2021). Adverse effect of superoxide-induced mitochondrial damage in granulosa cells on follicular development in mouse ovaries. Free radical biology and Medicine, 163, 344- 355. https://doi.org/10.1016/j.freeradbiomed.2020.12.434

  57. Matthews, S.G. & Phillips, D.I.W. (2010). Transgenerational inheritance of the stress response: A new frontier in stress research. Endocrinology, 151, 7-13. https://academic. oup.com/endo/article/151/1/7/2456018, https://doi. org/10.1210/en.2009-0916

  58. Nampoothiri, L.P. & Gupta, S. (2005). Simultaneous effect of lead and cadmium on granulosa cells: A cellular model for ovarian toxicity. Reproductive Toxicology, 21(2), 179-185. https://doi.org/10.1016/j.reprotox.2005.07.010

  59. Nampoothiri, L.P. & Gupta, S. (2008). Biochemical Effects of Gestational Coexposure to Lead and Cadmium on reproductive performance, placenta, and ovary. Journal of Biochemical and Molecular Toxicology, 22 (5), 337-344. https://doi.org/10.1002/jbt.20246

  60. Nampoothiri, L.P., Agarwal, A. & Gupta, S. (2007). Effect of coexposure to lead and cadmium on antioxidant status in rat ovarian granulose cells. Archives of Toxicology, 81, 145–150. https://doi.org/10.1007/s00204-006-0133-x

  61. Nazarpour, A., Watts, M.J., Madhani, A. & Elahi, S. (2019). Source, spatial distribution and pollution assessment of Pb, Zn, and Pb isotopes in urban soils of Ahvaz City, a semi-arid metropolis in southwest Iran. Science Reports, 9, 5349-5359. https://doi.org/10.1038/s41598-019-41787-w

  62. Ngole-Jeme, V.M., Ekosse, G.I. & Songca, S.P. (2018). An analysis of human exposure to trace elements from deliberate soil ingestion and associated health risks. Journal of Exposure Science & Environmental Epidemiology, 28, 55-63. https://doi.org/10.1038/jes.2016.67

  63. Oben-Gyasi, E. (2019). Sources of lead exposure in various countries. Reviews on Environmental Health, 34 (1), 25-34. https://doi.org/10.1515/reveh-2018-0037

  64. Ospina, I.D. (2015). Ficha Técnica: Acetato de Plomo Tri Hidratado. Distribuidora de Químicos Industriales 5pp: https://dqisa.com/wp-content/uploads/2015/10/ ACETATO-DE-PLOMO.pdf revisado el 08/Febrero/2019).

  65. Paksy, K., Gati, I., Naray, M. & Rajczy, K. (2001). Lead accumulation in human ovarian follicular fluid, and in vitro effect of lead on progesterone production by cultured human ovarian granulosa cells. Journal of Toxicology and Environmental Health, Part A, 62, 359- 366. https://pubmed.ncbi.nlm.nih.gov/11261898/, https:// doi.org/10.1080/152873901300018093

  66. Panwar, K., Sharma, R., Mogra, S., Qureshi, N. & Barber I. (2011). Effect of lead exposure during gestation and lactation on developing ovary in Swiss mice. Reproductive Toxicology, 6 (1), 14-20. https://www.sciencedirect.com/ science/article/abs/pii/S0890623802000370?via%3Dihub, https://doi.org/10.1016/S0890-6238(02)00037-0

  67. Patocka, J. & Cerny K. (2003). Inorganic lead toxicology. Acta Medica. 46 (2), 65-72. https://www.semanticscholar.org/ paper/Inorganic-lead-toxicology.-Patocka-Cerny/04b5 4f81e1285494be384e04a840013a4abf4392, https://doi. org/10.14712/18059694.2019.8

  68. Pelfrene, A. & Douay, F. (2017). Assessment of oral and lung bioaccessibility of Cd and Pb from smelter-impacted dust. Environmental Science and Pollution Research, 25 (4), 3718-3730. https://doi.org/10.1007/s11356-017-0760-1

  69. Priya, P.L., Pillai, A. & Gupta, S. (2004). Effect of simultaneous exposure to lead and cadmium on gonadotropin binding and steroidogenesis on granulosa cells: An in vitro study. Indian Journal of Experimental Biology, 42, 143-148.

  70. Qureshi, N. & Sharma, R. (2012). Lead toxicity and infertility in female Swiss mice: A review. Journal of Chemical, Biological and Physical Sciences, 2 (4), 1849-61.

  71. Qureshi, N., Sharma, R. & Mogra, S. (2010). The microscopically examination of the ovary reveals that there was apparent damage and reduction in number of primordial follicles while number of atretic follicles increases markedly. Asian Journal of Environmental Sciences, 5, 44-48.

  72. Rabanni-Chadegani, A., Abdosamadi, S., Fani, N. & Mohammadian, S. A. (2009). Comparison of the effect of lead nitrate on rat liver chromatin, DNA and histone proteins in solution. Archives of Toxicology, 83 (6), 565-570. https:// doi.org/10.1007/s00204-008-0362-2

  73. Richards, J. S. & Pangas, S. A. (2010). The ovary: basic biology and clinical implications. Journal of Clinical Investigation, 120 (4), 963-972. http://doi.org/10.1172/JCI41350

  74. Roy S. & Edwards, M.A. (2019). Preventing another lead (Pb) in drinking water crisis: Lessons from the Washington, D.C. and Flint MI contamination Events. Current Opinion in Environmental Science & Health, 7, 34-44. https://www.sciencedirect.com/science/article/ abs/pii/S2468584418300424, https://doi.org/10.1016/j. coesh.2018.10.002

  75. Schell, L. M., Burnitz, K. K. & Lathrop, P. W. (2010). Pollution and human biology. Annals of Human Biology, 37, 347–366. https://doi.org/10.3109/03014461003705511

  76. Shah, A. S., Shariff, M. M., Khan, S. A., Tayyab, M., Chaudary, N. A. & Ahmed, N. (2008). Correlation of blood lead levels with atresia of ovarian follicles of albino mice. Annals of Pakistan Institute of Medical Sciences, 4, 188–192.

  77. Sharma, R., Garu, U. & Panwar, K. (2012a). Developing Gonads and Lead Exposure. World Journal of Environmental Biosciences, 1, 30-37.

  78. Sharma, D. N. & Bhattacharya, L. (2014). Effects of maternal lead acetate exposure during lactation on postnatal development of ovaries in offspring of swiss albino mice. International Journal of Plant, Animal and Environmental Sciences, 4 (2), 419-424.

  79. Sharma, R., Qureshi, N., Mogra, S. & Panwar, K. (2012b). Lead induced infertility in Swiss Mice and Role of Antioxidants. International Journal of Environmental Research, 2 (2), 72-82. https://web.archive.org/web/20180420230138id_/ http://environmentaljournal.org/2-2/ujert-2-2-8.pdf

  80. Shirota, M., Soda, S., Katoh, C., Asai, S., Sato, M., Ohta, R., Watanabe, G., Taya, K. & Shirota, K. (2003). Effects of reduction of the number of primordial follicles on follicular development to achieve puberty in female rats. Reproduction, 125, 85-94. https://rep.bioscientifica.com/ view/journals/rep/125/1/85.xml, https://doi.org/10.1530/ rep.0.1250085

  81. Sousa, C. A. & Soares, E. B. (2014). Mitochondria Are the Main Source and One of the Targets of Pb (Lead)-Induced Oxidative Stress in the Yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 98 (11), 5153- 5160. https://doi.org/10.1007/s00253-014-5631-9

  82. Srivastava, V., Dearth, R. K., Hiney, J. K., Ramirez, L. M., Bratton, G. R. & Les Dees, W. (2004). The effects of lowlevel Pb on steroidogenic acute regulatory protein (StAR) in the prepubertal rat ovary. Toxicological Sciences, 77, 35-40. https://doi.org/10.1093/toxsci/kfg249

  83. Sugino, N. (2005). Reactive oxygen species in ovarian physiology. Reproductieve Medicine and Biology, 4, 31-44. https://doi.org/10.1111/j.1447-0578.2005.00086.x

  84. Tamayo y Ortiz, M., Téllez-Rojo, M. M., Hu, H., HernándezÁvila, M., Wright, R., Amarasiriwardena, C., Lupoli, N., Mercado-García, A., Pantic, I. & Lamadrid-Figueroa, H. (2016). Lead in candy consumed and blood lead levels of children living in Mexico City. Environmental Research, 147, 497-502. https://doi.org/10.1016/j.envres.2016.03.007

  85. Taupeau, C., Poupon, J., Nome, F. & Lefevre, B. (2001). Lead accumulation in the mouse ovary after treatment-induced follicular atresia. Reproductive Toxicology, 15, 385-391. https://pubmed.ncbi.nlm.nih.gov/11489594/, https://doi. org/10.1016/s0890-6238(01)00139-3

  86. Taupeau, C., Poupon, J., Treton, D., Brosse, A., Richard, Y. & Machelon, V. (2003). Lead reduces messenger RNA and protein levels of cytochrome p450 aromatase and estrogen receptor B in human ovarian granulosa cells. Biology of Reproduction, 68, 1982-1988. https://pubmed. ncbi.nlm.nih.gov/12606482/, https://doi.org/10.1095/ biolreprod.102.0098944

  87. Titus, S., Li, F., Stobezki, R., Akula, K., Unsal, E., Jeong, K., Dickler, M., Robson, M., Moy, F., Goswami, S. & Oktay, K. (2013). Impairment of BRCA1-Related DNA double-strand break repair leads to ovarian aging in mice and humans. Fertility¸ 5, 172 pp. https://europepmc. org/article/PMC/5130338, https://doi.org/10.1126/ scitranslmed.3004925

  88. Valdivia-Infantas, M. M. (2005). Intoxicación por plomo. Revista de la Sociedad Peruana de Medicina Interna. 18 (1), 22-27.

  89. Winiarska-Mieczan, A. & Kwiecien, M. (2016). The effect of exposure to Cd and Pb in the form of a drinking water or feed on the accumulation and distribution of these metals in the organs of growing Wistar rats. Biological Trace Element Research, 169, 230-236. https://europepmc.org/ article/MED/26113310, https://doi.org/10.1007/s12011- 015-0414-4 89. Wu, X., Cobbina, S.J., Mao, G., Xu, H., Zhang, Z. & Yang, L. (2016). A review of toxicity and mechanisms of individual and mixtures. Environmental Science and Pollution Research, 23 (9), 8244-8259. https://pubmed. ncbi.nlm.nih.gov/26965280/, https://link.springer.com/ article/10.1007%2Fs11356-016-6333-x, 10.1007/s11356- 016-6333-x

  90. Xu, L. H. Mu, F. F., Zhao, J. H., He, Q., Cao, C. L., Yang, H., Liu, Q., Liu, X. H. & Sun, S. J. (2015). Lead Induces Apoptosis and Histone Hyperacetylation in Rat Cardiovascular Tissues. PLoS ONE, 10 (6), e0129091. https://journals.plos. org/plosone/article?id=10.1371/journal.pone.0129091, https://doi.org/10.1371/journal.pone.0129091

  91. Zuo, P., Qu, W., Cooper, R. N., Goyer, R. A., Diwan, B. A. & Waalkes, M. P. (2009). Potential role of α-synuclein and metallothionein in lead-induced inclusion body formation. Toxicological Sciences, 111, 100-108. https:// doi.org/10.1093/toxsci/kfp132




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2021;24

ARTíCULOS SIMILARES

CARGANDO ...