medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2021, Número 1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2021; 24 (1)


Viaje al centro de la mitocondria: importación de proteínas, sus alteraciones y enfermedades relacionadas

Avendaño-Monsalve MC, Ponce-Rojas JC, Funes S
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 207
Paginas:
Archivo PDF: 1323.12 Kb.


PALABRAS CLAVE

importación, presecuencia, translocación de proteínas, estrés, mitocondriopatías.

RESUMEN

Las mitocondrias son organelos fascinantes, no solo porque son el sitio en donde se genera la energía de las células, sino por su relevancia en procesos y patologías de interés médico. La gran mayoría de las proteínas que constituyen el proteoma mitocondrial están codificadas en el núcleo y se traducen por ribosomas citosólicos, por lo que deben ser identificadas correctamente para ser distribuidas e insertadas en cada uno de los subcompartimentos mitocondriales. En este artículo realizamos una descripción de las las maquinarias de importación mitocondrial, además de las diferentes respuestas celulares que contrarrestan las alteraciones en los procesos de transporte de las proteínas o cuando existe una disfunción mitocondrial. Finalmente, mencionamos las enfermedades causadas por mutaciones en los complejos transportadores y de distribución de las proteínas de este organelo, que se han identificado hasta la fecha.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Abou-Sleiman, P. M., Muqit, M. M. & Wood, N. W. (2006). Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nature reviews. Neuroscience, 7(3), 207–219. https://doi.org/10.1038/nrn1868

  2. Al Teneiji, A., Siriwardena, K., George, K., Mital, S. & Mercimek-Mahmutoglu, S. (2016). Progressive Cerebellar Atrophy and a Novel Homozygous Pathogenic DNAJC19 Variant as a Cause of Dilated Cardiomyopathy Ataxia Syndrome. Pediatric neurology, 62, 58–61. https://doi. org/10.1016/j.pediatrneurol.2016.03.020

  3. Albrecht, R., Rehling, P., Chacinska, A., Brix, J., Cadamuro, S. A., Volkmer, R., Guiard, B., Pfanner, N. & Zeth, K. (2006). The Tim21 binding domain connects the preprotein translocases of both mitochondrial membranes. EMBO reports, 7(12), 1233–1238. https://doi.org/10.1038/ sj.embor.7400828

  4. Aldahmesh, M. A., Khan, A. O., Mohamed, J. Y., Alghamdi, M. H. & Alkuraya, F. S. (2012). Identification of a truncation mutation of acylglycerol kinase (AGK) gene in a novel autosomal recessive cataract locus. Human mutation, 33(6), 960–962. https://doi.org/10.1002/humu.22071

  5. Araiso, Y., Tsutsumi, A., Qiu, J., Imai, K., Shiota, T., Song, J., Lindau, C., Wenz, L. S., Sakaue, H., Yunoki, K., Kawano, S., Suzuki, J., Wischnewski, M., Schutze, C., Ariyama, H., Ando, T., Becker, T., Lithgow, T., Wiedemann, N., Pfanner, N., Kikkawa, M & Endo, T. (2019). Structure of the mitochondrial import gate reveals distinct preprotein paths. Nature, 575(7782), 395–401. https://doi.org/10.1038/ s41586-019-1680-7

  6. Backes, S. & Herrmann, J. M. (2017). Protein Translocation into the Intermembrane Space and Matrix of Mitochondria: Mechanisms and Driving Forces. Frontiers in molecular biosciences, 4, 83. https://doi.org/10.3389/ fmolb.2017.00083

  7. Backes, S., Hess, S. Boos, F., Woellhaf, M. W., Godel, S., Jung, M., Muhlhaus, T. & Herrmann, J. M. (2018). Tom70 enhances mitochondrial preprotein import efficiency by binding to internal targeting sequences. The Journal of cell biology, 217(4), 1369-1382.

  8. Bacman, S. R., Kauppila, J., Pereira, C. V., Nissanka, N., Miranda, M., Pinto, M., Williams, S. L., Larsson, N. G., Stewart, J. B, & Moraes, C. T. (2018). MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Nature medicine, 24(11), 1696–1700. https://doi.org/10.1038/ s41591-018-0166-8

  9. Baker, M. J., Webb, C. T., Stroud, D. A., Palmer, C. S., Frazier, A. E., Guiard, B., Chacinska, A., Gulbis, J. M. & Ryan, M. T. (2009). Structural and functional requirements for activity of the Tim9-Tim10 complex in mitochondrial protein import. Molecular biology of the cell, 20(3), 769–779. https://doi. org/10.1091/mbc.e08-09-0903

  10. Basch, M., Wagner, M., Rolland, S., Carbonell, A., Zeng, R., Khosravi, S., Schmidt, A., Aftab, W., Imhof, A., Wagener, J., Conradt, B., & Wagener, N. (2020). Msp1 cooperates with the proteasome for extraction of arrested mitochondrial import intermediates. Molecular Biology of the Cell, 31(8), 753–767. https://doi.org/10.1091/mbc.E19-06-0329

  11. Bauerschmitt, H., Mick, D. U., Deckers, M., Vollmer, C., Funes, S., Kehrein, K., Ott, M., Rehling, P. & Herrmann, J. M. (2010). Ribosome-binding Proteins Mdm38 and Mba1 Display Overlapping Functions for Regulation of Mitochondrial Translation. Molecular biology of the cell, 21(12), 1937– 1944. https://doi.org/10.1091/mbc.e10-02-0101

  12. Baum, D. A. & Baum, B. (2014). An inside-out origin for the eukaryotic cell. BMC biology, 12, 76. https://doi. org/10.1186/s12915-014-0076-2

  13. Bausewein, T., Mills, D. J., Langer, J. D., Nitschke, B., Nussberger, S. & Kühlbrandt, W. (2017). Cryo-EM Structure of the TOM Core Complex from Neurospora crassa. Cell, 170(4), 693–700.e7. https://doi.org/10.1016/j. cell.2017.07.012

  14. Becker, T., Pfannschmidt, S., Guiard, B., Stojanovski, D., Milenkovic, D., Kutik, S., Pfanner, N., Meisinger, C. & Wiedemann, N. (2008). Biogenesis of the mitochondrial TOM complex: Mim1 promotes insertion and assembly of signal-anchored receptors. The Journal of biological chemistry, 283(1), 120–127. https://doi.org/10.1074/jbc. M706997200

  15. Becker, T., Song, J. & Pfanner, N. (2019). Versatility of Preprotein Transfer from the Cytosol to Mitochondria. Trends in cell biology, 29(7), 534–548. https://doi.org/10.1016/j. tcb.2019.03.007

  16. Becker, T., Wenz, L. S., Kruger, V., Lehmann, W., Muller, J. M., Goroncy, L., Zufall, N., Lithgow, T., Guiard, B., Chacinska, A., Wagner, R., Meisinger, C. & Pfanner, N. (2011). The mitochondrial import protein Mim1 promotes biogenesis of multispanning outer membrane proteins. The Journal of cell biology, 194(3), 387–395. https://doi.org/10.1083/ jcb.201102044

  17. Bektas, M., Payne, S. G., Liu, H., Goparaju, S., Milstien, S. & Spiegel, S. (2005). A novel acylglycerol kinase that produces lysophosphatidic acid modulates cross talk with EGFR in prostate cancer cells. The Journal of cell biology, 169(5), 801–811. https://doi.org/10.1083/ jcb.200407123

  18. Berthold, J., Bauer, M. F., Schneider, H. C., Klaus, C., Dietmeier, K., Neupert, W. & Brunner, M. (1995). The MIM complex mediates preprotein translocation across the mitochondrial inner membrane and couples it to the mt-Hsp70/ATP driving system. Cell, 81(7), 1085–1093. https://doi.org/10.1016/ s0092-8674(05)80013-3

  19. Beverly, K. N., Sawaya, M. R., Schmid, E. & Koehler, C. M. (2008). The Tim8-Tim13 complex has multiple substrate binding sites and binds cooperatively to Tim23. Journal of molecular biology, 382(5), 1144–1156. https://doi. org/10.1016/j.jmb.2008.07.069

  20. Bien, M., Longen, S., Wagener, N., Chwalla, I., Herrmann, J. M. & Riemer, J. (2010). Mitochondrial disulfide bond formation is driven by intersubunit electron transfer in Erv1 and proofread by glutathione. Molecular cell, 37(4), 516–528. https://doi.org/10.1016/j.molcel.2010.01.017

  21. Björkholm, P., Harish, A., Hagström, E., Ernst, A. M. & Andersson, S. G. (2015). Mitochondrial genomes are retained by selective constraints on protein targeting. Proceedings of the National Academy of Sciences of the United States of America, 112(33), 10154–10161. https:// doi.org/10.1073/pnas.1421372112

  22. Bohnert, M., Rehling, P., Guiard, B., Herrmann, J. M., Pfanner, N. & van der Laan, M. (2010). Cooperation of stop-transfer and conservative sorting mechanisms in mitochondrial protein transport. Current biology: CB, 20(13), 1227–1232. https://doi.org/10.1016/j.cub.2010.05.058

  23. Boos, F., Kramer, L., Groh, C., Jung, F., Haberkant, P., Stein, F., Wollweber, F., Gackstatter, A., Zoller, E., van der Laan, M., Savitski, M. M., Benes, V. & Herrmann, J. M. (2019). Mitochondrial protein-induced stress triggers a global adaptive transcriptional programme. Nature cell biology, 21(4), 442–451. https://doi.org/10.1038/s41556- 019-0294-5

  24. Brix, J., Dietmeier, K. & Pfanner, N. (1997). Differential recognition of preproteins by the purified cytosolic domains of the mitochondrial import receptors Tom20, Tom22, and Tom70. The Journal of biological chemistry, 272(33), 20730–20735. https://doi.org/10.1074/jbc.272.33.20730

  25. Brix, J., Rudiger, S., Bukau, B., Schneider-Mergener, J. & Pfanner, N. (1999). Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, and Tom70 in a presequence-carrying preprotein and a non-cleavable preprotein. The Journal of biological chemistry, 274(23), 16522–16530. https://doi.org/10.1074/jbc.274.23.16522

  26. Brix, J., Ziegler, G. A., Dietmeier, K., Schneider-Mergener, J., Schulz, G. E. & Pfanner, N. (2000). The mitochondrial import receptor Tom70: identification of a 25 kDa core domain with a specific binding site for preproteins. Journal of molecular biology, 303(4), 479–488. https:// doi.org/10.1006/jmbi.2000.4120

  27. Bock, R. (2017). Witnessing Genome Evolution: Experimental Reconstruction of Endosymbiotic and Horizontal Gene Transfer. Annual review of genetics, 51, 1–22. https://doi. org/10.1146/annurev-genet-120215-035329

  28. Burger, G., Gray, M. W. & Franz Lang, B. (2003). Mitochondrial genomes: anything goes. Trends in genetics: TIG, 19(12), 709–716. https://doi.org/10.1016/j.tig.2003.10.012

  29. Burri, L., Strahm, Y., Hawkins, C. J., Gentle, I. E., Puryer, M. A., Verhagen, A., Callus, B., Vaux, D. & Lithgow, T. (2005). Mature DIABLO/Smac is produced by the IMP protease complex on the mitochondrial inner membrane. Molecular biology of the cell, 16(6), 2926–2933. https:// doi.org/10.1091/mbc.e04-12-1086

  30. Callegari, S., Cruz-Zaragoza, L. D. & Rehling, P. (2020). From TOM to the TIM23 complex - handing over of a precursor. Biological chemistry, 401(6-7), 709–721. https://doi. org/10.1515/hsz-2020-0101

  31. Calvo, S. E., Compton, A. G., Hershman, S. G., Lim, S. C., Lieber, D. S., Tucker, E. J., Laskowski, A., Garone, C., Liu, S., Jaffe, D. B., Christodoulou, J., Fletcher, J. M., Bruno, D. L., Goldblatt, J., Dimauro, S., Thorburn, D. R. & Mootha, V. K. (2012). Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing. Science translational medicine, 4(118), 118ra10. https://doi. org/10.1126/scitranslmed.3003310

  32. Ceh-Pavia, E., Ang, S. K., Spiller, M. P. & Lu, H. (2014). The disease-associated mutation of the mitochondrial thiol oxidase Erv1 impairs cofactor binding during its catalytic reaction. The Biochemical journal, 464(3), 449–459. https:// doi.org/10.1042/BJ20140679

  33. Chacinska, A., Koehler, C. M., Milenkovic, D., Lithgow, T. & Pfanner, N. (2009). Importing Mitochondrial Proteins: Machineries and Mechanisms. Cell, 138(4), 628–644. https://doi.org/10.1016/j.cell.2009.08.005

  34. Chacinska, A., Lind, M., Frazier, A. E., Dudek, J., Meisinger, C., Geissler, A., Sickmann, A., Meyer, H. E., Truscott, K. N., Guiard, B., Pfanner, N. & Rehling, P. (2005). Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17. Cell, 120(6), 817–829. https://doi.org/10.1016/j.cell.2005.01.011

  35. Chan, N. C. & Lithgow, T. (2008). The peripheral membrane subunits of the SAM complex function codependently in mitochondrial outer membrane biogenesis. Molecular biology of the cell, 19(1), 126–136. https://doi.org/10.1091/ mbc.e07-08-0796

  36. Chaturvedi, D. & Mahalakshmi, R. (2017). Transmembrane beta-barrels: Evolution, folding and energetics. Biochimica et biophysica acta. Biomembranes, 1859(12), 2467–2482. https://doi.org/10.1016/j.bbamem.2017.09.020

  37. Chquet, K., Zurita-Rendon, O., La Piana, R., Yang, S., Dicaire, M. J., Care4Rare, C., Boycott, K. M., Majewski, J., Shoubridge, E. A., Brais, B. & Tetreault, M. (2016). Autosomal recessive cerebellar ataxia caused by a homozygous mutation in PMPCA. Brain: a journal of neurology, 139(Pt 3), e19. https://doi.org/10.1093/brain/awv362

  38. Curran, S. P., Leuenberger, D., Oppliger, W. & Koehler, C. M. (2002). The Tim9p-Tim10p complex binds to the transmembrane domains of the ADP/ATP carrier. The EMBO journal, 21(5), 942–953. https://doi.org/10.1093/ emboj/21.5.942

  39. Curran, S. P., Leuenberger, D., Schmidt, E. & Koehler, C. M. (2002). The role of the Tim8p-Tim13p complex in a conserved import pathway for mitochondrial polytopic inner membrane proteins. The Journal of cell biology, 158(6), 1017–1027. https://doi.org/10.1083/jcb.200205124

  40. D’Silva, P. D., Schilke, B., Walter, W., Andrew, A. & Craig, E. A. (2003). J protein cochaperone of the mitochondrial inner membrane required for protein import into the mitochondrial matrix. Proceedings of the National Academy of Sciences of the United States of America, 100(24), 13839–13844. https://doi.org/10.1073/pnas.1936150100

  41. Davey, K. M., Parboosingh, J. S., McLeod, D. R., Chan, A., Casey, R., Ferreira, P., Snyder, F. F., Bridge, P. J. & Bernier, F. P. (2006). Mutation of DNAJC19, a human homologue of yeast inner mitochondrial membrane co-chaperones, causes DCMA syndrome, a novel autosomal recessive Barth syndrome-like condition. Journal of medical genetics, 43(5), 385–393. https://doi.org/10.1136/jmg.2005.036657

  42. Davis, A. J., Alder, N. N., Jensen, R. E. & Johnson, A. E. (2007). The Tim9p/10p and Tim8p/13p complexes bind to specific sites on Tim23p during mitochondrial protein import. Molecular biology of the cell, 18(2), 475–486. https://doi. org/10.1091/mbc.e06-06-0546

  43. Davis, A. J., Sepuri, N. B., Holder, J., Johnson, A. E. & Jensen, R. E. (2000). Two intermembrane space TIM complexes interact with different domains of Tim23p during its import into mitochondria. The Journal of cell biology, 150(6), 1271–1282. https://doi.org/10.1083/jcb.150.6.1271

  44. Dederer, V., Khmelinskii, A., Huhn, A. G., Okreglak, V., Knop, M. & Lemberg, M. K. (2019). Cooperation of mitochondrial and ER factors in quality control of tail-anchored proteins. eLife, 8, e45506. https://doi.org/10.7554/eLife.45506

  45. Dekker, P. J., Keil, P., Rassow, J., Maarse, A. C., Pfanner, N. & Meijer, M. (1993). Identification of MIM23, a putative component of the protein import machinery of the mitochondrial inner membrane. FEBS letters, 330(1), 66–70. https://doi.org/10.1016/0014-5793(93)80921-g

  46. Devi, L., Raghavendran, V., Prabhu, B. M., Avadhani, N. G. & Anandatheerthavarada, H. K. (2008). Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. The Journal of biological chemistry, 283(14), 9089-9100.

  47. Di Fonzo, A., Ronchi, D., Lodi, T., Fassone, E., Tigano, M., Lamperti, C., Corti, S., Bordoni, A., Fortunato, F., Nizzardo, M., Napoli, L., Donadoni, C., Salani, S., Saladino, F., Moggio, M., Bresolin, N., Ferrero, I. & Comi, G. P. (2009). The mitochondrial disulfide relay system protein GFER is mutated in autosomal-recessive myopathy with cataract and combined respiratory-chain deficiency. American journal of human genetics, 84(5), 594–604. https://doi.org/10.1016/j. ajhg.2009.04.004

  48. Di Maio, R., Barrett, P. J., Hoffman, E. K., Barrett, C. W., Zharikov, A., Borah, A., Hu, X., McCoy, J., Chu, C. T., Burton, E. A., Hastings, T. G. & Greenamyre, J. T. (2016). alpha-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. Science translational medicine, 8(342), 342ra78. https://doi.org/10.1126/ scitranslmed.aaf3634

  49. Di Meo, I., Auricchio, A., Lamperti, C., Burlina, A., Viscomi, C. & Zeviani, M. (2012). Effective AAV-mediated gene therapy in a mouse model of ethylmalonic encephalopathy. EMBO molecular medicine, 4(9), 1008–1014. https://doi. org/10.1002/emmm.201201433

  50. Dimmer, K. S., Papic, D., Schumann, B., Sperl, D., Krumpe, K., Walther, D. M. & Rapaport, D. (2012). A crucial role for Mim2 in the biogenesis of mitochondrial outer membrane proteins. Journal of cell science, 125(Pt 14), 3464–3473. https://doi.org/10.1242/jcs.103804

  51. Doan, K. N., Grevel, A., Martensson, C. U., Ellenrieder, L., Thornton, N., Wenz, L. S., Opalinski, L., Guiard, B., Pfanner, N. & Becker, T. (2020). The Mitochondrial Import Complex MIM Functions as Main Translocase for alpha-Helical Outer Membrane Proteins. Cell reports, 31(4), 107567. https:// doi.org/10.1016/j.celrep.2020.107567

  52. Eme, L., Sharpe, S. C., Brown, M. W. & Roger, A. J. (2014). On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harbor perspectives in biology, 6(8), a016139. https://doi.org/10.1101/cshperspect. a016139

  53. Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. (2017). Archaea and the origin of eukaryotes. Nature reviews. Microbiology, 16(2), 120. https://doi.org/10.1038/ nrmicro.2017.154

  54. Endres, M., Neupert, W. & Brunner, M. (1999). Transport of the ADP/ATP carrier of mitochondria from the TOM complex to the TIM22.54 complex. The EMBO journal, 18(12), 3214–3221. https://doi.org/10.1093/emboj/18.12.3214

  55. Fairman, J. W., Noinaj, N. & Buchanan, S. K. (2011). The structural biology of β-barrel membrane proteins: a summary of recent reports. Current opinion in structural biology, 21(4), 523–531. https://doi.org/10.1016/j. sbi.2011.05.005

  56. Flierl, A., Chen, Y., Coskun, P. E., Samulski, R. J. & Wallace, D. C. (2005). Adeno-associated virus-mediated gene transfer of the heart/muscle adenine nucleotide translocator (ANT) in mouse. Gene therapy, 12(7), 570–578. https:// doi.org/10.1038/sj.gt.3302443

  57. Flinner, N., Ellenrieder, L., Stiller, S. B., Becker, T., Schleiff, E. & Mirus, O. (2013). Mdm10 is an ancient eukaryotic porin co-occurring with the ERMES complex. Biochimica et biophysica acta, 1833(12), 3314–3325. https://doi. org/10.1016/j.bbamcr.2013.10.006

  58. Franco-Iborra, S., Cuadros, T., Parent, A., Romero-Gimenez, J., Vila, M. & Perier, C. (2018). Defective mitochondrial protein import contributes to complex I-induced mitochondrial dysfunction and neurodegeneration in Parkinson’s disease. Cell death & disease, 9(11), 1122. https://doi.org/10.1038/ s41419-018-1154-0

  59. Frazier, A. E., Dudek, J., Guiard, B., Voos, W., Li, Y., Lind, M., Meisinger, C., Geissler, A., Sickmann, A., Meyer, H. E., Bilanchone, V., Cumsky, M. G., Truscott, K. N., Pfanner, N. & Rehling, P. (2004). Pam16 has an essential role in the mitochondrial protein import motor. Nature structural & molecular biology, 11(3), 226–233. https://doi.org/10.1038/ nsmb735

  60. Funes, S., Kauff, F., van der Sluis, E. O., Ott, M. & Herrmann, J. M. (2011). Evolution of YidC/Oxa1/Alb3 insertases: three independent gene duplications followed by functional specialization in bacteria, mitochondria and chloroplasts. Biological chemistry, 392(1-2), 13–19. https://doi. org/10.1515/BC.2011.013

  61. Gakh, O., Cavadini, P. & Isaya, G. (2002). Mitochondrial processing peptidases. Biochimica et biophysica acta, 1592(1), 63–77. https://doi.org/10.1016/s0167- 4889(02)00265-3

  62. Gammage, P. A., Viscomi, C., Simard, M. L., Costa, A., Gaude, E., Powell, C. A., Van Haute, L., McCann, B. J., Rebelo- Guiomar, P., Cerutti, R., Zhang, L., Rebar, E. J., Zeviani, M., Frezza, C., Stewart, J. B., & Minczuk, M. (2018). Genome editing in mitochondria corrects a pathogenic tDNA mutation in vivo. Nature medicine, 24(11), 1691–1695. https://doi.org/10.1038/s41591-018-0165-9

  63. Gebert, N., Gebert, M., Oeljeklaus, S., von der Malsburg, K., Stroud, D. A., Kulawiak, B., Wirth, C., Zahedi, R. P., Dolezal, P., Wiese, S., Simon, O., Schulze-Specking, A., Truscott, K. N., Sickmann, A., Rehling, P., Guiard, B., Hunte, C., Warscheid, B., van der Laan, M., Pfanner, N. & Wiedemann, N. (2011). Dual function of Sdh3 in the respiratory chain and TIM22 protein translocase of the mitochondrial inner membrane. Molecular cell, 44(5), 811–818. https://doi. org/10.1016/j.molcel.2011.09.025

  64. Geissler, A., Chacinska, A., Truscott, K. N., Wiedemann, N., Brandner, K., Sickmann, A., Meyer, H. E., Meisinger, C., Pfanner, N. & Rehling, P. (2002). The mitochondrial presequence translocase: an essential role of Tim50 in directing preproteins to the import channel. Cell, 111(4), 507–518. https://doi.org/10.1016/s0092-8674(02)01073-5

  65. Gentle, I., Gabriel, K., Beech, P., Waller, R. & Lithgow, T. (2004). The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. The Journal of cell biology, 164(1), 19–24. https://doi. org/10.1083/jcb.200310092

  66. Ghiselli, F., Gomes-Dos-Santos, A., Adema, C. M., Lopes- Lima, M., Sharbrough, J. & Boore, J. L. (2021). Molluscan mitochondrial genomes break the rules. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 376(1825), 20200159. https://doi. org/10.1098/rstb.2020.0159

  67. Glick, B. S., Brandt, A., Cunningham, K., Muller, S., Hallberg, R. L. & Schatz, G. (1992). Cytochromes c1 and b2 are sorted to the intermembrane space of yeast mitochondria by a stop-transfer mechanism. Cell, 69(5), 809–822. https:// doi.org/10.1016/0092-8674(92)90292-k

  68. Gomkale, R., Cruz-Zaragoza, L. D., Suppanz, I., Guiard, B., Montoya, J., Callegari, S., Pacheu-Grau, D., Warscheid, B. & Rehling, P. (2020). Defining the Substrate Spectrum of the TIM22 Complex Identifies Pyruvate Carrier Subunits as Unconventional Cargos. Current biology: CB, 30(6), 1119–1127.e5. https://doi.org/10.1016/j.cub.2020.01.024

  69. Gratzer, S., Lithgow, T., Bauer, R. E., Lamping, E., Paltauf, F., Kohlwein, S. D., Haucke, V., Junne, T., Schatz, G. & Horst, M. (1995). Mas37p, a novel receptor subunit for protein import into mitochondria. The Journal of cell biology, 129(1), 25–34. https://doi.org/10.1083/jcb.129.1.25

  70. Gray, M. W. (2012). Mitochondrial Evolution. Cold Spring Harbor perspectives in biology, 4(9), a011403. https://doi. org/10.1101/cshperspect.a011403

  71. Gray, M. W. (2015). Mosaic nature of the mitochondrial proteome: Implications for the origin and evolution of mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 112(33), 10133–10138. https://doi.org/10.1073/pnas.1421379112

  72. Habib, S. J., Waizenegger, T., Lech, M., Neupert, W. & Rapaport, D. (2005). Assembly of the TOB complex of mitochondria. The Journal of biological chemistry, 280(8), 6434–6440. https://doi.org/10.1074/jbc.M411510200

  73. Habib, S. J., Waizenegger, T., Niewienda, A., Paschen, S. A., Neupert, W. & Rapaport, D. (2007). The N-terminal domain of Tob55 has a receptor-like function in the biogenesis of mitochondrial beta-barrel proteins. The Journal of cell biology, 176(1), 77–88. https://doi.org/10.1083/ jcb.200602050

  74. Hansen, K. G., Aviram, N., Laborenz, J., Bibi, C., Meyer, M., Spang, A., Schuldiner, M. & Herrmann, J. M. (2018). An ER surface retrieval pathway safeguards the import of mitochondrial membrane proteins in yeast. Science (New York, N.Y.), 361(6407), 1118–1122. https://doi.org/10.1126/ science.aar8174

  75. Hartl, F. U., Schmidt, B., Wachter, E., Weiss, H. & Neupert, W. (1986). Transport into mitochondria and intramitochondrial sorting of the Fe/S protein of ubiquinolcytochrome c reductase. Cell, 47(6), 939–951. https://doi. org/10.1016/0092-8674(86)90809-3

  76. Hawlitschek, G., Schneider, H., Schmidt, B., Tropschug, M., Hartl, F. U. & Neupert, W. (1988). Mitochondrial protein import: identification of processing peptidase and of PEP, a processing enhancing protein. Cell, 53(5), 795–806. https://doi.org/10.1016/0092-8674(88)90096-7

  77. Hell, K., Herrmann, J. M., Pratje, E., Neupert, W. & Stuart, R. A. (1998). Oxa1p, an essential component of the N-tail protein export machinery in mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 95(5), 2250–2255. https://doi.org/10.1073/ pnas.95.5.2250

  78. Herrmann, J. M. (2003). Converting bacteria to organelles: evolution of mitochondrial protein sorting. Trends in microbiology, 11(2), 74–79. https://doi.org/10.1016/s0966- 842x(02)00033-1

  79. Herrmann, J. M., Neupert, W. & Stuart, R. A. (1997). Insertion into the mitochondrial inner membrane of a polytopic protein, the nuclear-encoded Oxa1p. The EMBO journal, 16(9), 2217–2226. https://doi.org/10.1093/emboj/16.9.2217

  80. Hildenbeutel, M., Theis, M., Geier, M., Haferkamp, I., Neuhaus, H. E., Herrmann, J. M. & Ott, M. (2012). The Membrane Insertase Oxa1 Is Required for Efficient Import of Carrier Proteins into Mitochondria. Journal of molecular biology, 423(4), 590–599. https://doi.org/10.1016/j. jmb.2012.07.018

  81. Hohr, A. I. C., Lindau, C., Wirth, C., Qiu, J., Stroud, D. A., Kutik, S., Guiard, B., Hunte, C., Becker, T., Pfanner, N. & Wiedemann, N. (2018). Membrane protein insertion through a mitochondrial beta-barrel gate. Science (New York, N.Y.), 359(6373), eaah6834. https://doi.org/10.1126/ science.aah6834

  82. Ieva, R., Schrempp, S. G., Opalinski, L., Wollweber, F., Hoss, P., Heisswolf, A. K., Gebert, M., Zhang, Y., Guiard, B., Rospert, S., Becker, T., Chacinska, A., Pfanner, N. & van der Laan, M. (2014). Mgr2 functions as lateral gatekeeper for preprotein sorting in the mitochondrial inner membrane. Molecular cell, 56(5), 641–652. https://doi.org/10.1016/j. molcel.2014.10.010

  83. Itakura, E., Zavodszky, E., Shao, S., Wohlever, M. L., Keenan, R. J., & Hegde, R. S. (2016). Ubiquilins Chaperone and Triage Mitochondrial Membrane Proteins for Degradation. Molecular cell, 63(1), 21–33. https://doi.org/10.1016/j. molcel.2016.05.020

  84. Jin, H., May, M., Tranebjaerg, L., Kendall, E., Fontan, G., Jackson, J., Subramony, S. H., Arena, F., Lubs, H., Smith, S., Stevenson, R., Schwartz, C. & Vetrie, D. (1996). A novel X-linked gene, DDP, shows mutations in families with deafness (DFN-1), dystonia, mental deficiency and blindness. Nature genetics, 14(2), 177–180. https://doi. org/10.1038/ng1096-177

  85. Jobling, R. K., Assoum, M., Gakh, O., Blaser, S., Raiman, J. A., Mignot, C., Roze, E., Durr, A., Brice, A., Levy, N., Prasad, C., Paton, T., Paterson, A. D., Roslin, N. M., Marshall, C. R., Desvignes, J. P., Roeckel-Trevisiol, N., Scherer, S. W., Rouleau, G. A., Megarbane, A., Isaya, G., Delague, V. & Yoon, G. (2015). PMPCA mutations cause abnormal mitochondrial protein processing in patients with non-progressive cerebellar ataxia. Brain: a journal of neurology, 138(Pt 6), 1505–1517. https://doi.org/10.1093/ brain/awv057

  86. Joshi, M., Anselm, I., Shi, J., Bale, T. A., Towne, M., Schmitz- Abe, K., Crowley, L., Giani, F. C., Kazerounian, S., Markianos, K., Lidov, H. G., Folkerth, R., Sankaran, V. G. & Agrawal, P. B. (2016). Mutations in the substrate binding glycine-rich loop of the mitochondrial processing peptidasealpha protein (PMPCA) cause a severe mitochondrial disease. Cold Spring Harbor molecular case studies, 2(3), a000786. https://doi.org/10.1101/mcs.a000786

  87. Kang, P. J., Ostermann, J., Shilling, J., Neupert, W., Craig, E. A. & Pfanner, N. (1990). Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature, 348(6297), 137–143. https:// doi.org/10.1038/348137a0

  88. Kang, Y., Stroud, D. A., Baker, M. J., De Souza, D. P., Frazier, A. E., Liem, M., Tull, D., Mathivanan, S., McConville, M. J., Thorburn, D. R., Ryan, M. T. & Stojanovski, D. (2017). Sengers Syndrome-Associated Mitochondrial Acylglycerol Kinase Is a Subunit of the Human TIM22 Protein Import Complex. Molecular cell, 67(3), 457–470.e5. https://doi. org/10.1016/j.molcel.2017.06.014

  89. Karakaidos, P. & Rampias, T. (2020). Mitonuclear Interactions in the Maintenance of Mitochondrial Integrity. Life (Basel, Switzerland), 10(9), 173. https://doi.org/10.3390/ life10090173

  90. Kerscher, O., Holder, J., Srinivasan, M., Leung, R. S. & Jensen, R. E. (1997). The Tim54p-Tim22p complex mediates insertion of proteins into the mitochondrial inner membrane. The Journal of cell biology, 139(7), 1663–1675. https://doi. org/10.1083/jcb.139.7.1663

  91. Kerscher, O., Sepuri, N. B. & Jensen, R. E. (2000). Tim18p is a new component of the Tim54p-Tim22p translocon in the mitochondrial inner membrane. Molecular biology of the cell, 11(1), 103–116. https://doi.org/10.1091/mbc.11.1.103

  92. Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., Yokochi, M., Mizuno, Y. & Shimizu, N. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 392(6676), 605–608. https://doi.org/10.1038/33416

  93. Klein, J. A., Longo-Guess, C. M., Rossmann, M. P., Seburn, K. L., Hurd, R. E., Frankel, W. N., Bronson, R. T, & Ackerman, S. L. (2002). The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature, 419(6905), 367–374. https://doi.org/10.1038/nature01034

  94. Koehler, C. M. (2004). The small Tim proteins and the twin Cx3C motif. Trends in biochemical sciences, 29(1), 1–4. https://doi.org/10.1016/j.tibs.2003.11.003

  95. Koehler, C. M., Jarosch, E., Tokatlidis, K., Schmid, K., Schweyen, R. J. & Schatz, G. (1998). Import of mitochondrial carriers mediated by essential proteins of the intermembrane space. Science (New York, N.Y.), 279(5349), 369–373. https://doi. org/10.1126/science.279.5349.369

  96. Koehler, C. M., Leuenberger, D., Merchant, S., Renold, A., Junne, T. & Schatz, G. (1999). Human deafness dystonia syndrome is a mitochondrial disease. Proceedings of the National Academy of Sciences of the United States of America, 96(5), 2141–2146. https://doi.org/10.1073/ pnas.96.5.2141

  97. Koehler, C. M., Merchant, S., Oppliger, W., Schmid, K., Jarosch, E., Dolfini, L., Junne, T., Schatz, G. & Tokatlidis, K. (1998). Tim9p, an essential partner subunit of Tim10p for the import of mitochondrial carrier proteins. The EMBO journal, 17(22), 6477–6486. https://doi.org/10.1093/ emboj/17.22.6477

  98. Koehler, C. M., Murphy, M. P., Bally, N. A., Leuenberger, D., Oppliger, W., Dolfini, L., Junne, T., Schatz, G, & Or, E. (2000). Tim18p, a new subunit of the TIM22 complex that mediates insertion of imported proteins into the yeast mitochondrial inner membrane. Molecular and cellular biology, 20(4), 1187–1193. https://doi.org/10.1128/ MCB.20.4.1187-1193.2000

  99. Kozjak, V., Wiedemann, N., Milenkovic, D., Lohaus, C., Meyer, H. E., Guiard, B., Meisinger, C. & Pfanner, N. (2003). An essential role of Sam50 in the protein sorting and assembly machinery of the mitochondrial outer membrane. The Journal of biological chemistry, 278(49), 48520–48523. https://doi.org/10.1074/jbc.C300442200

  100. Kronidou, N. G., Oppliger, W., Bolliger, L., Hannavy, K., Glick, B. S., Schatz, G. & Horst, M. (1994). Dynamic interaction between Isp45 and mitochondrial hsp70 in the protein import system of the yeast mitochondrial inner membrane. Proceedings of the National Academy of Sciences of the United States of America, 91(26), 12818–12822. https:// doi.org/10.1073/pnas.91.26.12818

  101. Kruger, V., Becker, T., Becker, L., Montilla-Martinez, M., Ellenrieder, L., Vogtle, F. N., Meyer, H. E., Ryan, M. T., Wiedemann, N., Warscheid, B., Pfanner, N., Wagner, R. & Meisinger, C. (2017). Identification of new channels by systematic analysis of the mitochondrial outer membrane. The Journal of cell biology, 216(11), 3485–3495. https:// doi.org/10.1083/jcb.201706043

  102. Kubrich, M., Keil, P., Rassow, J., Dekker, P. J., Blom, J., Meijer, M. & Pfanner, N. (1994). The polytopic mitochondrial inner membrane proteins MIM17 and MIM23 operate at the same preprotein import site. FEBS letters, 349(2), 222–228. https://doi.org/10.1016/0014-5793(94)00670-9

  103. Kubrich, M., Rassow, J., Voos, W., Pfanner, N. & Honlinger, A. (1998). The import route of ADP/ATP carrier into mitochondria separates from the general import pathway of cleavable preproteins at the trans side of the outer membrane. The Journal of biological chemistry, 273(26), 16374–16381. https://doi.org/10.1074/jbc.273.26.16374

  104. Lee, S., Lee, H., Yoo, S., Ieva, R., van der Laan, M., von Heijne, G. & Kim, H. (2020). The Mgr2 subunit of the TIM23 complex regulates membrane insertion of marginal stoptransfer signals in the mitochondrial inner membrane. FEBS letters, 594(6), 1081–1087. https://doi.org/10.1002/1873- 3468.13692

  105. Lin, Y. F., Schulz, A. M., Pellegrino, M. W., Lu, Y., Shaham, S. & Haynes, C. M. (2016). Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response. Nature, 533(7603), 416–419. https://doi.org/10.1038/nature17989

  106. López-García, P. & Moreira, D. (2020). The Syntrophy hypothesis for the origin of eukaryotes revisited. Nature microbiology, 5(5), 655–667. https://doi.org/10.1038/ s41564-020-0710-4

  107. Maarse, A. C., Blom, J., Grivell, L. A. & Meijer, M. (1992). MPI1, an essential gene encoding a mitochondrial membrane protein, is possibly involved in protein import into yeast mitochondria. The EMBO journal, 11(10), 3619–3628.

  108. Maarse, A. C., Blom, J., Keil, P., Pfanner, N. & Meijer, M. (1994). Identification of the essential yeast protein MIM17, an integral mitochondrial inner membrane protein involved in protein import. FEBS letters, 349(2), 215–221. https:// doi.org/10.1016/0014-5793(94)00669-5

  109. Mani, J., Rout, S., Desy, S. & Schneider, A. (2017). Mitochondrial protein import - Functional analysis of the highly diverged Tom22 orthologue of Trypanosoma brucei. Scientific reports, 7, 40738. https://doi.org/10.1038/srep40738

  110. Mårtensson, C. U., Priesnitz, C., Song, J., Ellenrieder, L., Doan, K. N., Boos, F., Floerchinger, A., Zufall, N., Oeljeklaus, S., Warscheid, B. & Becker, T. (2019). Mitochondrial protein translocation-associated degradation. Nature, 569(7758), 679–683. https://doi.org/10.1038/s41586-019-1227-y

  111. Martin, W. & Müller, M. (1998). The hydrogen hypothesis for the first eukaryote. Nature, 392(6671), 37–41. https://doi. org/10.1038/32096

  112. Matsumoto, S., Nakatsukasa, K., Kakuta, C., Tamura, Y., Esaki, M. & Endo, T. (2019). Msp1 Clears Mistargeted Proteins by Facilitating Their Transfer from Mitochondria to the ER. Molecular cell, 76(1), 191–205.e10. https://doi. org/10.1016/j.molcel.2019.07.006

  113. Matta, S. K., Kumar, A. & D’Silva, P. (2020). Mgr2 regulates mitochondrial preprotein import by associating with channel-forming Tim23 subunit. Molecular biology of the cell, 31(11), 1112–1123. https://doi.org/10.1091/mbc. E19-12-0677

  114. Mayr, J. A., Haack, T. B., Graf, E., Zimmermann, F. A., Wieland, T., Haberberger, B., Superti-Furga, A., Kirschner, J., Steinmann, B., Baumgartner, M. R., Moroni, I., Lamantea, E., Zeviani, M., Rodenburg, R. J., Smeitink, J., Strom, T. M., Meitinger, T., Sperl, W. & Prokisch, H. (2012). Lack of the mitochondrial protein acylglycerol kinase causes Sengers syndrome. American journal of human genetics, 90(2), 314–320. https://doi.org/10.1016/j.ajhg.2011.12.005

  115. Mehawej, C., Delahodde, A., Legeai-Mallet, L., Delague, V., Kaci, N., Desvignes, J. P., Kibar, Z., Capo-Chichi, J. M., Chouery, E., Munnich, A., Cormier-Daire, V. & Mégarbané, A. (2014). The impairment of MAGMAS function in human is responsible for a severe skeletal dysplasia. PLoS genetics, 10(5), e1004311. https://doi.org/10.1371/journal. pgen.1004311

  116. Meinecke, M., Wagner, R., Kovermann, P., Guiard, B., Mick, D. U., Hutu, D. P., Voos, W., Truscott, K. N., Chacinska, A., Pfanner, N. & Rehling, P. (2006). Tim50 maintains the permeability barrier of the mitochondrial inner membrane. Science (New York, N.Y.), 312(5779), 1523–1526. https:// doi.org/10.1126/science.1127628

  117. Melber, A. & Haynes, C. M. (2018). UPRmt regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell research, 28(3), 281–295. https://doi. org/10.1038/cr.2018.16

  118. Metzger, M. B., Scales, J. L., Dunklebarger, M. F., Loncarek, J. & Weissman, A. M. (2020). A protein quality control pathway at the mitochondrial outer membrane. eLife, 9, e51065. https://doi.org/10.7554/eLife.51065

  119. Miao, B., Davis, J. E. & Craig, E. A. (1997). Mge1 functions as a nucleotide release factor for Ssc1, a mitochondrial Hsp70 of Saccharomycescerevisiae. Journal of molecular biology, 265(5), 541–552. https://doi.org/10.1006/jmbi.1996.0762

  120. Milenkovic, D., Kozjak, V., Wiedemann, N., Lohaus, C., Meyer, H. E., Guiard, B., Pfanner, N. & Meisinger, C. (2004). Sam35 of the mitochondrial protein sorting and assembly machinery is a peripheral outer membrane protein essential for cell viability. The Journal of biological chemistry, 279(21), 22781–22785. https://doi.org/10.1074/jbc.C400120200

  121. Milenkovic, D., Ramming, T., Müller, J. M., Wenz, L. S., Gebert, N., Schulze-Specking, A., Stojanovski, D., Rospert, S. & Chacinska, A. (2009). Identification of the signal directing Tim9 and Tim10 into the intermembrane space of mitochondria. Molecular biology of the cell, 20(10), 2530–2539. https://doi.org/10.1091/mbc.e08-11-1108

  122. Mokranjac D. (2020). How to get to the other side of the mitochondrial inner membrane - the protein import motor. Biological chemistry, 401(6-7), 723–736. https://doi. org/10.1515/hsz-2020-0106

  123. Mokranjac, D. & Neupert, W. (2010). The many faces of the mitochondrial TIM23 complex. Biochimica et biophysica acta, 1797(6-7), 1045–1054. https://doi.org/10.1016/j. bbabio.2010.01.026

  124. Mokranjac, D., Paschen, S. A., Kozany, C., Prokisch, H., Hoppins, S. C., Nargang, F. E., Neupert, W. & Hell, K. (2003). Tim50, a novel component of the TIM23 preprotein translocase of mitochondria. The EMBO journal, 22(4), 816–825. https://doi.org/10.1093/emboj/cdg090

  125. Mokranjac, D., Popov-Celeketić, D., Hell, K. & Neupert, W. (2005). Role of Tim21 in mitochondrial translocation contact sites. The Journal of biological chemistry, 280(25), 23437–23440. https://doi.org/10.1074/jbc.C500135200

  126. Mokranjac, D., Sichting, M., Popov-Celeketić, D., Mapa, K., Gevorkyan-Airapetov, L., Zohary, K., Hell, K., Azem, A. & Neupert, W. (2009). Role of Tim50 in the transfer of precursor proteins from the outer to the inner membrane of mitochondria. Molecular biology of the cell, 20(5), 1400–1407. https://doi.org/10.1091/mbc.e08-09-0934

  127. Möller-Hergt, B. V., Carlström, A., Stephan, K., Imhof, A. & Ott, M. (2018). The ribosome receptors Mrx15 and Mba1 jointly organize cotranslational insertion and protein biogenesis in mitochondria. Molecular biology of the cell, 29(20), 2386–2396. https://doi.org/10.1091/mbc.E18-04-0227

  128. Murphy, M. P., Leuenberger, D., Curran, S. P., Oppliger, W. & Koehler, C. M. (2001). The essential function of the small Tim proteins in the TIM22 import pathway does not depend on formation of the soluble 70-kilodalton complex. Molecular and cellular biology, 21(18), 6132–6138. https:// doi.org/10.1128/MCB.21.18.6132-6138.2001

  129. Nargund, A. M., Fiorese, C. J., Pellegrino, M. W., Deng, P. & Haynes, C. M. (2015). Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR(mt). Molecular cell, 58(1), 123–133. https://doi.org/10.1016/j. molcel.2015.02.008

  130. Nargund, A. M., Pellegrino, M. W., Fiorese, C. J., Baker, B. M, & Haynes, C. M. (2012). Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science (New York, N.Y.), 337(6094), 587–590. https://doi. org/10.1126/science.1223560

  131. Nguyen, T. N., Padman, B. S. & Lazarou, M. (2016). Deciphering the Molecular Signals of PINK1/Parkin Mitophagy. Trends in cell biology, 26(10), 733–744. https://doi.org/10.1016/j. tcb.2016.05.008

  132. Noinaj, N., Kuszak, A. J., Gumbart, J. C., Lukacik, P., Chang, H., Easley, N. C., Lithgow, T. & Buchanan, S. K. (2013). Structural insight into the biogenesis of β-barrel membrane proteins. Nature, 501(7467), 385–390. https:// doi.org/10.1038/nature12521

  133. Ojala, T., Polinati, P., Manninen, T., Hiippala, A., Rajantie, J., Karikoski, R., Suomalainen, A. & Tyni, T. (2012). New mutation of mitochondrial DNAJC19 causing dilated and noncompaction cardiomyopathy, anemia, ataxia, and male genital anomalies. Pediatric research, 72(4), 432–437. https://doi.org/10.1038/pr.2012.92

  134. Papic, D., Krumpe, K., Dukanovic, J., Dimmer, K. S. & Rapaport, D. (2011). Multispan mitochondrial outer membrane protein Ugo1 follows a unique Mim1-dependent import pathway. The Journal of cell biology, 194(3), 397–405. https://doi. org/10.1083/jcb.201102041

  135. Petrakis, N., Alcock, F. & Tokatlidis, K. (2009). Mitochondrial ATP-independent chaperones. IUBMB life,61(9), 909–914. https://doi.org/10.1002/iub.235

  136. Pfanner, N. & Neupert, W. (1987). Distinct steps in the import of ADP/ATP carrier into mitochondria. The Journal of biological chemistry, 262(16), 7528–7536.

  137. Pfeffer, S., Woellhaf, M. W., Herrmann, J. M. & Förster, F. (2015). Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography. Nature communications, 6, 6019. https://doi.org/10.1038/ ncomms7019

  138. Ponce-Rojas, J. C., Avendaño-Monsalve, M. C., Yañez-Falcón, A. R., Jaimes-Miranda, F., Garay, E., Torres-Quiroz, F., DeLuna, A. & Funes, S. (2017). αβ’-NAC cooperates with Sam37 to mediate early stages of mitochondrial protein import. The FEBS journal, 284(5), 814–830. https://doi. org/10.1111/febs.14024

  139. Popov-Celeketić, J., Waizenegger, T. & Rapaport, D. (2008). Mim1 functions in an oligomeric form to facilitate the integration of Tom20 into the mitochondrial outer membrane. Journal of molecular biology,376(3), 671–680. https://doi.org/10.1016/j.jmb.2007.12.006

  140. Portugez, S., Martin, W. F. & Hazkani-Covo, E. (2018). Mosaic mitochondrial-plastid insertions into the nuclear genome show evidence of both non-homologous end joining and homologous recombination. BMC evolutionary biology, 18(1), 162. https://doi.org/10.1186/s12862-018-1279-x

  141. Poveda-Huertes, D., Matic, S., Marada, A., Habernig, L., Licheva, M., Myketin, L., Gilsbach, R., Tosal-Castano, S., Papinski, D., Mulica, P., Kretz, O., Kücükköse, C., Taskin, A. A., Hein, L., Kraft, C., Büttner, S., Meisinger, C. & Vögtle, F. N. (2020). An Early mtUPR: Redistribution of the Nuclear Transcription Factor Rox1 to Mitochondria Protects against Intramitochondrial Proteotoxic Aggregates. Molecular cell,77(1), 180–188.e9. https://doi.org/10.1016/j. molcel.2019.09.026

  142. Preuss, M., Ott, M., Funes, S., Luirink, J., & Herrmann, J. M. (2005). Evolution of mitochondrial oxa proteins from bacterial YidC. Inherited and acquired functions of a conserved protein insertion machinery. The Journal of biological chemistry, 280(13), 13004–13011. https://doi. org/10.1074/jbc.M414093200

  143. Qiu, J., Wenz, L. S., Zerbes, R. M., Oeljeklaus, S., Bohnert, M., Stroud, D. A., Wirth, C., Ellenrieder, L., Thornton, N., Kutik, S., Wiese, S., Schulze-Specking, A., Zufall, N., Chacinska, A., Guiard, B., Hunte, C., Warscheid, B., van der Laan, M., Pfanner, N., Wiedemann, N., & Becker, T. (2013). Coupling of mitochondrial import and export translocases by receptor-mediated supercomplex formation. Cell, 154(3), 596–608. https://doi.org/10.1016/j. cell.2013.06.033

  144. Qureshi, M. A., Haynes, C. M. & Pellegrino, M. W. (2017). The mitochondrial unfolded protein response: Signaling from the powerhouse. The Journal of biological chemistry, 292(33), 13500–13506. https://doi.org/10.1074/jbc.R117.791061

  145. Rampelt, H., Sucec, I., Bersch, B., Horten, P., Perschil, I., Martinou, J. C., van der Laan, M., Wiedemann, N., Schanda, P. & Pfanner, N. (2020). The mitochondrial carrier pathway transports non-canonical substrates with an odd number of transmembrane segments. BMC biology, 18(1), 2. https:// doi.org/10.1186/s12915-019-0733-6

  146. Rassow, J., Maarse, A. C., Krainer, E., Kübrich, M., Müller, H., Meijer, M., Craig, E. A. & Pfanner, N. (1994). Mitochondrial protein import: biochemical and genetic evidence for interaction of matrix hsp70 and the inner membrane protein MIM44. The Journal of cell biology, 127(6 Pt 1), 1547–1556. https://doi.org/10.1083/jcb.127.6.1547

  147. Rehling, P., Brandner, K. & Pfanner, N. (2004). Mitochondrial import and the twin-pore translocase. Nature reviews. Molecular cell biology, 5(7), 519–530. https://doi. org/10.1038/nrm1426

  148. Rich, P. R. & Maréchal, A. (2010). The mitochondrial respiratory chain. Essays in biochemistry, 47, 1–23. https://doi. org/10.1042/bse0470001

  149. Russell, S., Bennett, J., Wellman, J. A., Chung, D. C., Yu, Z. F., Tillman, A., Wittes, J., Pappas, J., Elci, O., McCague, S., Cross, D., Marshall, K. A., Walshire, J., Kehoe, T. L., Reichert, H., Davis, M., Raffini, L., George, L. A., Hudson, F. P., Dingfield, L., Zhu, X., Haller, J.A., Sohn, E.H., Mahajan, V.B., Pfeifer, W., Weckmann, M., Johnson, C., Gewaily, D., Drack, A., Stone, E., Wachtel, K., Simonelli, F., Leroy, B.P., Wright, J.F., High, K.A. & Maguire, A.M (2017). Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet (London, England), 390(10097), 849–860. https://doi. org/10.1016/S0140-6736(17)31868-8

  150. Sagan L. (1993). On the origin of mitosing cells. 1967. The Journal of NIH research: life sciences research and news about the National Institutes of Health and the Alcohol, Drug Abuse, and Mental Health Administration, 5(3), 65–72.

  151. Sarzi, E., Seveno, M., Piro-Mégy, C., Elzière, L., Quilès, M., Péquignot, M., Müller, A., Hamel, C. P., Lenaers, G. & Delettre, C. (2018). OPA1 gene therapy prevents retinal ganglion cell loss in a Dominant Optic Atrophy mouse model. Scientific reports, 8(1), 2468. https://doi. org/10.1038/s41598-018-20838-8

  152. Schmidt, O., Pfanner, N. & Meisinger, C. (2010). Mitochondrial protein import: from proteomics to functional mechanisms. Nature reviews. Molecular cell biology, 11(9), 655–667. https://doi.org/10.1038/nrm2959

  153. Schneider, H. C., Berthold, J., Bauer, M. F., Dietmeier, K., Guiard, B., Brunner, M. & Neupert, W. (1994). Mitochondrial Hsp70/MIM44 complex facilitates protein import. Nature, 371(6500), 768–774. https://doi.org/10.1038/371768a0

  154. Schulz, C., Schendzielorz, A. & Rehling, P. (2015). Unlocking the presequence import pathway. Trends in cell biology, 25(5), 265–275. https://doi.org/10.1016/j.tcb.2014.12.001

  155. Shahrour, M. A., Staretz-Chacham, O., Dayan, D., Stephen, J., Weech, A., Damseh, N., Pri Chen, H., Edvardson, S., Mazaheri, S., Saada, A., NISC Intramural Sequencing, Hershkovitz, E., Shaag, A., Huizing, M., Abu-Libdeh, B., Gahl, W. A., Azem, A., Anikster, Y., Vilboux, T., Elpeleg, O. & Malicdan, M. C. (2017). Mitochondrial epileptic encephalopathy, 3-methylglutaconic aciduria and variable complex V deficiency associated with TIMM50 mutations. Clinical genetics, 91(5), 690–696. https://doi.org/10.1111/ cge.12855

  156. Shiota, T., Mabuchi, H., Tanaka-Yamano, S., Yamano, K., & Endo, T. (2011). In vivo protein-interaction mapping of a mitochondrial translocator protein Tom22 at work. Proceedings of the National Academy of Sciences of the United States of America, 108(37), 15179–15183. https://doi.org/10.1073/pnas.1105921108

  157. Shiota, T., Imai, K., Qiu, J., Hewitt, V. L., Tan, K., Shen, H. H., Sakiyama, N., Fukasawa, Y., Hayat, S., Kamiya, M., Elofsson, A., Tomii, K., Horton, P., Wiedemann, N., Pfanner, N., Lithgow, T. & Endo, T. (2015). Molecular architecture of the active mitochondrial protein gate. Science (New York, N.Y.),349(6255), 1544–1548. https://doi.org/10.1126/ science.aac6428

  158. Short, M. K., Hallett, J. P., Tar, K., Dange, T., Schmidt, M., Moir, R., Willis, I. M. & Jubinsky, P. T. (2012). The yeast magmas ortholog pam16 has an essential function in fermentative growth that involves sphingolipid metabolism. PloS one, 7(7), e39428. https://doi.org/10.1371/journal. pone.0039428

  159. Sideris, D. P., Petrakis, N., Katrakili, N., Mikropoulou, D., Gallo, A., Ciofi-Baffoni, S., Banci, L., Bertini, I. & Tokatlidis, K. (2009). A novel intermembrane space-targeting signal docks cysteines onto Mia40 during mitochondrial oxidative folding. The Journal of cell biology, 187(7), 1007–1022. https://doi.org/10.1083/jcb.200905134

  160. Sinha, D., Joshi, N., Chittoor, B., Samji, P. & D’Silva, P. (2010). Role of Magmas in protein transport and human mitochondria biogenesis. Human molecular genetics,19(7), 1248–1262. https://doi.org/10.1093/hmg/ddq002

  161. Sirrenberg, C., Bauer, M. F., Guiard, B., Neupert, W. & Brunner, M. (1996). Import of carrier proteins into the mitochondrial inner membrane mediated by Tim22. Nature, 384(6609), 582–585. https://doi.org/10.1038/384582a0

  162. Sirrenberg, C., Endres, M., Fölsch, H., Stuart, R. A., Neupert, W. & Brunner, M. (1998). Carrier protein import into mitochondria mediated by the intermembrane proteins Tim10/Mrs11 and Tim12/Mrs5. Nature, 391(6670), 912–915. https://doi.org/10.1038/36136

  163. Song, J., Herrmann, J. M. & Becker, T. (2021). Quality control of the mitochondrial proteome. Nature reviews. Molecular cell biology, 22(1), 54–70. https://doi.org/10.1038/s41580- 020-00300-2

  164. Stiller, S. B., Höpker, J., Oeljeklaus, S., Schütze, C., Schrempp, S. G., Vent-Schmidt, J., Horvath, S. E., Frazier, A. E., Gebert, N., van der Laan, M., Bohnert, M., Warscheid, B., Pfanner, N. & Wiedemann, N. (2016). Mitochondrial OXA Translocase Plays a Major Role in Biogenesis of Inner- Membrane Proteins. Cell metabolism, 23(5), 901–908. https://doi.org/10.1016/j.cmet.2016.04.005

  165. Stojanovski, D., Bragoszewski, P. & Chacinska, A. (2012). The MIA pathway: a tight bond between protein transport and oxidative folding in mitochondria. Biochimica et biophysica acta, 1823(7), 1142–1150. https://doi.org/10.1016/j. bbamcr.2012.04.014

  166. Stroud, D. A., Becker, T., Qiu, J., Stojanovski, D., Pfannschmidt, S., Wirth, C., Hunte, C., Guiard, B., Meisinger, C., Pfanner, N. & Wiedemann, N. (2011). Biogenesis of mitochondrial β-barrel proteins: the POTRA domain is involved in precursor release from the SAM complex. Molecular biology of the cell, 22(16), 2823–2833. https:// doi.org/10.1091/mbc.E11-02-0148

  167. Sztolsztener, M. E., Brewinska, A., Guiard, B. & Chacinska, A. (2013). Disulfide bond formation: sulfhydryl oxidase ALR controls mitochondrial biogenesis of human MIA40. Traffic (Copenhagen, Denmark), 14(3), 309–320. https:// doi.org/10.1111/tra.12030

  168. Thorsness, P. E. & Fox, T. D. (1990). Escape of DNA from mitochondria to the nucleus in Saccharomyces cerevisiae. Nature, 346(6282), 376–379. https://doi. org/10.1038/346376a0

  169. Torres-Torronteras, J., Viscomi, C., Cabrera-Pérez, R., Cámara, Y., Di Meo, I., Barquinero, J., Auricchio, A., Pizzorno, G., Hirano, M., Zeviani, M. & Martí, R. (2014). Gene therapy using a liver-targeted AAV vector restores nucleoside and nucleotide homeostasis in a murine model of MNGIE. Molecular therapy: the journal of the American Society of Gene Therapy, 22(5), 901–907. https://doi.org/10.1038/ mt.2014.6

  170. Torres-Torronteras, J., Cabrera-Pérez, R., Vila-Julià, F., Viscomi, C., Cámara, Y., Hirano, M., Zeviani, M. & Martí, R. (2018). Long-Term Sustained Effect of Liver-Targeted Adeno-Associated Virus Gene Therapy for Mitochondrial Neurogastrointestinal Encephalomyopathy. Human gene therapy, 29(6), 708–718. https://doi.org/10.1089/ hum.2017.133

  171. Tort, F., Ugarteburu, O., Texidó, L., Gea-Sorlí, S., García- Villoria, J., Ferrer-Cortès, X., Arias, Á., Matalonga, L., Gort, L., Ferrer, I., Guitart-Mampel, M., Garrabou, G., Vaz, F. M., Pristoupilova, A., Rodríguez, M., Beltran, S., Cardellach, F., Wanders, R. J., Fillat, C., García-Silva, M. T. & Ribes, A. (2019). Mutations in TIMM50 cause severe mitochondrial dysfunction by targeting key aspects of mitochondrial physiology. Human mutation, 40(10), 1700–1712. https://doi.org/10.1002/humu.23779

  172. Tranebjaerg, L., Schwartz, C., Eriksen, H., Andreasson, S., Ponjavic, V., Dahl, A., Stevenson, R. E., May, M., Arena, F. & Barker, D. (1995). A new X linked recessive deafness syndrome with blindness, dystonia, fractures, and mental deficiency is linked to Xq22. Journal of medical genetics, 32(4), 257–263. https://doi.org/10.1136/jmg.32.4.257

  173. Tria, F., Brueckner, J., Skejo, J., Xavier, J. C., Kapust, N., Knopp, M., Wimmer, J., Nagies, F., Zimorski, V., Gould, S. B., Garg, S. G. & Martin, W. F. (2021). Gene duplications trace mitochondria to the onset of eukaryote complexity. Genome biology and evolution, evab055. Advance online publication. https://doi.org/10.1093/gbe/evab055

  174. Truscott, K. N., Voos, W., Frazier, A. E., Lind, M., Li, Y., Geissler, A., Dudek, J., Müller, H., Sickmann, A., Meyer, H. E., Meisinger, C., Guiard, B., Rehling, P. & Pfanner, N. (2003). A J-protein is an essential subunit of the presequence translocase-associated protein import motor of mitochondria. The Journal of cell biology, 163(4), 707–713. https://doi.org/10.1083/jcb.200308004

  175. Tucker, K. & Park, E. (2019). Cryo-EM structure of the mitochondrial protein-import channel TOM complex at near-atomic resolution. Nature structural & molecular biology, 26(12), 1158–1166. https://doi.org/10.1038/ s41594-019-0339-2

  176. Valente, E. M., Bentivoglio, A. R., Dixon, P. H., Ferraris, A., Ialongo, T., Frontali, M., Albanese, A. & Wood, N. W. (2001). Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. American journal of human genetics, 68(4), 895–900. https://doi.org/10.1086/319522

  177. van der Laan, M., Chacinska, A., Lind, M., Perschil, I., Sickmann, A., Meyer, H. E., Guiard, B., Meisinger, C., Pfanner, N. & Rehling, P. (2005). Pam17 is required for architecture and translocation activity of the mitochondrial protein import motor. Molecular and cellular biology, 25(17), 7449–7458. https://doi.org/10.1128/MCB.25.17.7449-7458.2005

  178. van der Laan, M., Meinecke, M., Dudek, J., Hutu, D. P., Lind, M., Perschil, I., Guiard, B., Wagner, R., Pfanner, N. & Rehling, P. (2007). Motor-free mitochondrial presequence translocase drives membrane integration of preproteins. Nature cell biology, 9(10), 1152–1159. https://doi. org/10.1038/ncb1635

  179. van der Laan, M., Wiedemann, N., Mick, D. U., Guiard, B., Rehling, P. & Pfanner, N. (2006). A role for Tim21 in membrane-potential-dependent preprotein sorting in mitochondria. Current biology: CB, 16(22), 2271–2276. https://doi.org/10.1016/j.cub.2006.10.025

  180. Vasiljev, A., Ahting, U., Nargang, F. E., Go, N. E., Habib, S. J., Kozany, C., Panneels, V., Sinning, I., Prokisch, H., Neupert, W., Nussberger, S. & Rapaport, D. (2004). Reconstituted TOM core complex and Tim9/Tim10 complex of mitochondria are sufficient for translocation of the ADP/ ATP carrier across membranes. Molecular biology of the cell, 15(3), 1445–1458. https://doi.org/10.1091/mbc.e03- 05-0272

  181. Vergnolle, M. A., Baud, C., Golovanov, A. P., Alcock, F., Luciano, P., Lian, L. Y. & Tokatlidis, K. (2005). Distinct domains of small Tims involved in subunit interaction and substrate recognition. Journal of molecular biology, 351(4), 839–849. https://doi.org/10.1016/j.jmb.2005.06.010

  182. Vögtle, F. N., Brändl, B., Larson, A., Pendziwiat, M., Friederich, M. W., White, S. M., Basinger, A., Kücükköse, C., Muhle, H., Jähn, J. A., Keminer, O., Helbig, K. L., Delto, C. F., Myketin, L., Mossmann, D., Burger, N., Miyake, N., Burnett, A., van Baalen, A., Lovell, M. A., Matsumoto N., Walsh, M., Yu, H.C., Shinde, D.N., Stephani, U., Van Hove, J.L.K., Müller, F.J. & Helbig, I. (2018). Mutations in PMPCB Encoding the Catalytic Subunit of the Mitochondrial Presequence Protease Cause Neurodegeneration in Early Childhood. American journal of human genetics, 102(4), 557–573. https://doi.org/10.1016/j.ajhg.2018.02.014

  183. von Heijne G. (1986). Mitochondrial targeting sequences may form amphiphilic helices. The EMBO journal, 5(6), 1335–1342.

  184. Vukotic, M., Nolte, H., König, T., Saita, S., Ananjew, M., Krüger, M., Tatsuta, T. & Langer, T. (2017). Acylglycerol Kinase Mutated in Sengers Syndrome Is a Subunit of the TIM22 Protein Translocase in Mitochondria. Molecular cell, 67(3), 471–483.e7. https://doi.org/10.1016/j.molcel.2017.06.013

  185. Wang, X. & Chen, X. J. (2015). A cytosolic network suppressing mitochondria-mediated proteostatic stress and cell death. Nature, 524(7566), 481–484. https://doi.org/10.1038/ nature14859

  186. Wang, W., Chen, X., Zhang, L., Yi, J., Ma, Q., Yin, J., Zhuo, W., Gu, J. & Yang, M. (2020). Atomic structure of human TOM core complex. Cell discovery, 6, 67. https://doi. org/10.1038/s41421-020-00198-2

  187. Webb, C. T., Gorman, M. A., Lazarou, M., Ryan, M. T. & Gulbis, J. M. (2006). Crystal structure of the mitochondrial chaperone TIM9.10 reveals a six-bladed alpha-propeller. Molecular cell, 21(1), 123–133. https://doi.org/10.1016/j. molcel.2005.11.010

  188. Weidberg, H. & Amon, A. (2018). MitoCPR-A surveillance pathway that protects mitochondria in response to protein import stress. Science (New York, N.Y.), 360(6385), eaan4146. https://doi.org/10.1126/science.aan4146

  189. Weinhäupl, K., Lindau, C., Hessel, A., Wang, Y., Schütze, C., Jores, T., Melchionda, L., Schönfisch, B., Kalbacher, H., Bersch, B., Rapaport, D., Brennich, M., Lindorff-Larsen, K.,

  190. Wiedemann, N. & Schanda, P. (2018). Structural Basis of Membrane Protein Chaperoning through the Mitochondrial Intermembrane Space. Cell,175(5), 1365–1379.e25. https:// doi.org/10.1016/j.cell.2018.10.039

  191. Wenz, L. S., Ellenrieder, L., Qiu, J., Bohnert, M., Zufall, N., van der Laan, M., Pfanner, N., Wiedemann, N. & Becker, T. (2015). Sam37 is crucial for formation of the mitochondrial TOM-SAM supercomplex, thereby promoting β-barrel biogenesis. The Journal of cell biology, 210(7), 1047–1054. https://doi.org/10.1083/jcb.201504119

  192. Wiedemann, N., Kozjak, V., Chacinska, A., Schönfisch, B., Rospert, S., Ryan, M. T., Pfanner, N. & Meisinger, C. (2003). Machinery for protein sorting and assembly in the mitochondrial outer membrane. Nature, 424(6948), 565–571. https://doi.org/10.1038/nature01753

  193. Wiedemann, N., Pfanner, N. & Chacinska, A. (2006). Chaperoning through the mitochondrial intermembrane space. Molecular cell, 21(2), 145–148. https://doi. org/10.1016/j.molcel.2006.01.001

  194. Wiedemann, N., Pfanner, N. & Ryan, M. T. (2001). The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. The EMBO journal, 20(5), 951–960. https://doi.org/10.1093/ emboj/20.5.951

  195. Wiedemann, N., Truscott, K. N., Pfannschmidt, S., Guiard, B., Meisinger, C. & Pfanner, N. (2004). Biogenesis of the protein import channel Tom40 of the mitochondrial outer membrane: intermembrane space components are involved in an early stage of the assembly pathway. The Journal of biological chemistry, 279(18), 18188–18194. https://doi. org/10.1074/jbc.M400050200

  196. Williams, T. A., Cox, C. J., Foster, P. G., Szöllősi, G. J. & Embley, T. M. (2020). Phylogenomics provides robust support for a two-domains tree of life. Nature ecology & evolution, 4(1), 138–147. https://doi.org/10.1038/s41559- 019-1040-x

  197. Wrobel, L., Topf, U., Bragoszewski, P., Wiese, S., Sztolsztener, M. E., Oeljeklaus, S., Varabyova, A., Lirski, M., Chroscicki, P., Mroczek, S., Januszewicz, E., Dziembowski, A., Koblowska, M., Warscheid, B. & Chacinska, A. (2015). Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol. Nature,524(7566), 485–488. https:// doi.org/10.1038/nature14951

  198. Yablonska, S., Ganesan, V., Ferrando, L. M., Kim, J., Pyzel, A., Baranova, O. V., Khattar, N. K., Larkin, T. M., Baranov, S. V., Chen, N., Strohlein, C. E., Stevens, D. A., Wang, X., Chang, Y. F., Schurdak, M. E., Carlisle, D. L., Minden, J. S. & Friedlander, R. M. (2019). Mutant huntingtin disrupts mitochondrial proteostasis by interacting with TIM23. Proceedings of the National Academy of Sciences of the United States of America, 116(33), 16593–16602. https:// doi.org/10.1073/pnas.1904101116

  199. Yamamoto, H., Esaki, M., Kanamori, T., Tamura, Y., Nishikawa, S. i. & Endo, T. (2002). Tim50 is a subunit of the TIM23 complex that links protein translocation across the outer and inner mitochondrial membranes. Cell,111(4), 519–528. https://doi.org/10.1016/s0092-8674(02)01053-x

  200. Yamamoto, H., Fukui, K., Takahashi, H., Kitamura, S., Shiota, T., Terao, K., Uchida, M., Esaki, M., Nishikawa, S., Yoshihisa, T., Yamano, K. & Endo, T. (2009). Roles of Tom70 in import of presequence-containing mitochondrial proteins. The Journal of biological chemistry, 284(46), 31635–31646. https://doi.org/10.1074/jbc.M109.041756

  201. Yamano, K., Matsuda, N. & Tanaka, K. (2016). The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO reports,17(3), 300–316. https://doi.org/10.15252/embr.201541486

  202. Yamano, K., Yatsukawa, Y., Esaki, M., Hobbs, A. E., Jensen, R. E. & Endo, T. (2008). Tom20 and Tom22 share the common signal recognition pathway in mitochondrial protein import. The Journal of biological chemistry, 283(7), 3799–3807. https://doi.org/10.1074/jbc.M708339200

  203. Yano, H., Baranov, S. V., Baranova, O. V., Kim, J., Pan, Y., Yablonska, S., Carlisle, D. L., Ferrante, R. J., Kim, A. H. & Friedlander, R. M. (2014). Inhibition of mitochondrial protein import by mutant huntingtin. Nature neuroscience, 17(6), 822–831. https://doi.org/10.1038/nn.3721

  204. Young, J. C., Hoogenraad, N. J. & Hartl, F. U. (2003). Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell, 112(1), 41–50. https://doi.org/10.1016/s0092-8674(02)01250-3

  205. Zaremba-Niedzwiedzka, K., Caceres, E. F., Saw, J. H., Bäckström, D., Juzokaite, L., Vancaester, E., Seitz, K. W., Anantharaman, K., Starnawski, P., Kjeldsen, K. U., Stott, M. B., Nunoura, T., Banfield, J. F., Schramm, A., Baker, B. J., Spang, A. & Ettema, T. J. (2017). Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature, 541(7637), 353–358. https://doi.org/10.1038/ nature21031

  206. Zhao, Q., Wang, J., Levichkin, I. V., Stasinopoulos, S., Ryan, M. T., & Hoogenraad, N. J. (2002). A mitochondrial specific stress response in mammalian cells. The EMBO journal, 21(17), 4411–4419. https://doi.org/10.1093/emboj/cdf445

  207. Zorova, L. D., Popkov, V. A., Plotnikov, E. Y., Silachev, D. N., Pevzner, I. B., Jankauskas, S. S., Babenko, V. A., Zorov, S. D., Balakireva, A. V., Juhaszova, M., Sollott, S. J. & Zorov, D. B. (2018). Mitochondrial membrane potential. Analytical biochemistry, 552, 50–59. https://doi. org/10.1016/j.ab.2017.07.009




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2021;24

ARTíCULOS SIMILARES

CARGANDO ...