medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2021, Número 1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2021; 24 (1)


Estado actual de métodos alternativos, de control de hongos y su efecto en la calidad postcosecha de frutos de jitomate (Solanum lycopersicum)

Rodríguez-Guzmán CA, Montaño-Leyva B, Velázquez-Estrada RM, Sánchez-Burgos JA, García-Magaña ML, González-Estrada RR, Gutiérrez-Martínez P
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 116
Paginas:
Archivo PDF: 246.51 Kb.


PALABRAS CLAVE

antifúngico, ecoamigable, postcosecha, sustentable.

RESUMEN

Los tomates en la industria alimentaria son fundamentales por su sabor y alto valor nutricional. Para México, es de gran importancia económica por la generación de empleos directos e indirectos. Por esto la calidad postcosecha es fundamental, y puede verse alterada por condiciones como: temperatura, transporte y almacenamiento al provocar el desarrollo de hongos patógenos, que deterioran su calidad e impiden la comercialización del producto con pérdidas económicas. La principal estrategia de control son los fungicidas sintéticos, sin embargo, aunque son eficaces, afectan negativamente al medio ambiente y a los seres humanos al desarrollar cepas resistentes. Motivo por el que, los consumidores demandan constantemente productos seguros y sin residuos. Esta revisión muestra un panorama general de los métodos de control aplicados a los frutos de jitomate durante la etapa de postcosecha y plantea su aplicación, como una alternativa al uso de fungicidas, ellos son: los tratamientos térmicos, la luz ultravioleta, las sales orgánicas e inorgánicas, el quitosano, el metil jasmonato, el ácido salicílico, los extractos vegetales, los aceites esenciales y los microorganismos; considerados como sistemas ecológicos seguros y económicos que protegen contra los fitopatógenos, aumentan la vida útil y conservan la calidad de los frutos.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Abbey, J. A., Percival, D., Abbey, L., Asiedu, S. K., Prithiviraj, B. & Schilder, A. (2019). Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea) – prospects and challenges. Biocontrol Science and Technology, 29(3), 207–228. https://doi.org/10.1080/ 09583157.2018.1548574

  2. Abdel-Rahman, F. A., Rashid, I. A. & Shoala, T. (2020). Nanoactivities of natural nanomaterials rosmarinic acid, glycyrrhizic acid and glycyrrhizic acid ammonium salt against tomato phytopathogenic fungi Alternaria alternata and Penicillium digitatum. Journal of Plant Protection Research, 60(2), 150–160. https://doi.org/10.24425/ jppr.2020.133309

  3. Abu-El Samen, F., Goussous, S. J., Al-Shudifat, A. & Makhadmeh, I. (2016). Reduced sensitivity of tomato early blight pathogen (Alternaria solani) isolates to protectant fungicides, and implication on disease control. Archives of Phytopathology and Plant Protection, 49(5–6), 120–136. https://doi.org/10.1080/03235408.2016.1160641

  4. Aguilar-Veloz, L. M., Calderón-Santoyo, M., Vázquez González, Y. & Ragazzo-Sánchez, J. A. (2020). Application of essential oils and polyphenols as natural antimicrobial agents in postharvest treatments: Advances and challenges. Food Science & Nutrition, 8(6), 2555–2568. https://doi. org/10.1002/fsn3.1437

  5. Alaoui, F.T, Askarne, L., Boubaker, H., Boudyach, E. & Aomar, A. B. (2017). Control of gray mold disease of tomato by post-harvest application of organic acids and salts. Plant Pathology Journal, 16(2), 62–72. https://doi.org/10.3923/ ppj.2017.62.72

  6. Alfaro-Sifuentes, L., Juan, M., Troncoso-Rojas, R., Meca, D. E., Elorrieta, M. A. & Valenzuela, J. L. (2019). Effectiveness of chemical and thermal treatments on control Rhizopus stolonifer fruit infection comparing tomato cultivars with different sensitivities to cracking. International Journal of Environmental Research and Public Health, 16(15), 2754. https://doi.org/10.3390/ijerph16152754

  7. Arah, I. K., Ahorbo, G. K., Anku, E. K., Kumah, E. K. & Amaglo, H. (2016). Post-harvest handling practices and treatment methods for tomato handlers in developing countries: A mini review. Advances in Agriculture, 2016,1–8. https:// doi.org/10.1155/2016/6436945

  8. Arah, I. K., Amaglo, H., Kumah, E. K. & Ofori, H. (2015). Preharvest and post-harvest factors affecting the quality and shelf life of harvested tomatoes: A mini review. International Journal of Agronomy, (2015) 1–6. https:// doi.org/10.1155/2015/478041

  9. Athayde, A. J. A. A., De Oliveira, P. D. L., Guerra, I. C. D., Da Conceição, M. L., De Lima, M. A. B., Arcanjo, N. M. O., Madruga, M. S., Berger, L. R. R. & de Souza, E. L. (2016). A coating composed of chitosan and Cymbopogon citratus (Dc. Ex Nees) essential oil to control Rhizopus soft rot and quality in tomato fruit stored at room temperature. The Journal of Horticultural Science and Biotechnology, 91(6), 582–591. https://doi.org/10.1080/14620316.2016 .1193428

  10. Azman, N. A. I. N., Rostam, N. F. S., Ibrahim, N. F. & Lob, S. (2020). Potential of aqueous ginger extract as fruit coating on tomato. Universiti Malaysia Terengganu Journal of Undergraduate Research, 2(4), 23–30.

  11. Bautista-Baños, S., Ventura-Aguilar, R. I., Correa-Pacheco, Z. & Corona-Rangel, M. L. (2017). Chitosan: a versatile antimicrobial polysaccharide for fruit and vegetables in post-harvest – a review. Revista Chapingo Serie Horticultura, 23(2), 103–121. http://dx.doi.org/10.5154/r. rchsh.2016.11.030

  12. Boonkorn, P. (2016). Impact of hot water soaking on antioxidant enzyme activities and some qualities of storage tomato fruits. International Food Research Journal, 23(3), 934–938.

  13. Bu, J., Yu, Y., Aisikaer, G. & Ying, T. (2013). Postharvest UV-C irradiation inhibits the production of ethylene and the activity of cell wall-degrading enzymes during softening of tomato (Lycopersicon esculentum L.) fruit. Postharvest Biology and Technology, 86, 337–345. https:// doi.org/10.1016/j.postharvbio.2013.07.026

  14. Carmona-Hernandez, S., Reyes-Pérez, J. J., Chiquito- Contreras, R. G., Rincon-Enriquez, G., Cerdan-Cabrera, C. R. & Hernandez-Montiel, L. G. (2019). Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: A review. Agronomy, 9(3), 121. https://doi.org/10.3390/ agronomy9030121

  15. Carvalho, F. P. (2006). Agriculture, pesticides, food security and food safety. Environmental Science and Policy, 9(7–8), 685–692. https://doi.org/10.1016/j.envsci.2006.08.002

  16. Chapin, L. J. G., Wang, Y., Lutton, E. & Gardener, B. B. M. (2006). Distribution and fungicide sensitivity of fungal pathogens causing anthracnose-like lesions on tomatoes grown in Ohio. Plant Disease, 90(4), 397–403. https://doi. org/10.1094/pd-90-0397

  17. Charles, M. T., Arul, J., Charlebois, D., Yaganza, E. S., Rolland, D., Roussel, D. & Merisier, M. J. (2016). Postharvest UV-C treatment of tomato fruits: Changes in simple sugars and organic acids contents during storage. LWT - Food Science and Technology, 65, 557–564. DOI: https://doi. org/10.1016/j.lwt.2015.08.055

  18. Chitranshi, S., Dubey, N. & Sajjad, M. (2020). Sustainable botanical products for safe post-harvest management of perishable produce: A review. Journal of Horticulture and Postharvest Research 3(1), 125–140. https://doi. org/10.22077/JHPR.2019.2703.1083

  19. Chudinova, E. M., Shkunkova, T. A. & Elansky, S. N. (2020). Fungal pathogens of tomato in South-Western Russia (Krasnodar Territory). Plant Protection News, (3), 210–212. https://doi.org/10.31993/2308-6459-2020-103-3-4998

  20. Cortés-Rivera, H. J., Blancas-Benitez, F. J., Romero-Islas, L. C., Gutiérrez-Martinez, P. & González-Estrada, R. R. (2019). In vitro evaluation of residues of coconut (Cocos nucifera L.) aqueous extracts , against the fungus Penicillium italicum. Emirates Journal of Food and Agriculture, 31(8), 613–617. https://doi.org/10.9755/ejfa.2019.v31.i8.1993

  21. C., Meng, X., Meng, J., Khan, M.I.H., Dai, L., Khan, A., An, X., Zhang J., Huq, T. & Ni, Y. (2019). Chitosan as a preservative for fruits and vegetables : A review on chemistry and antimicrobial properties. Journal of Bioresources and Bioproducts, 4(1), 11–21. https://doi. org/10.21967/jbb.v4i1.189

  22. Dukare, A. S., Paul, S., Nambi, V. E., Gupta, R. K., Singh, R., Sharma, K. & Vishwakarma, R. K. (2019). Exploitation of microbial antagonists for the control of post-harvest diseases of fruits: a review. Critical Reviews in Food Science and Nutrition, 59(9), 1498–1513. https://doi.org/10.1080/104 08398.2017.1417235

  23. Dyshlyuk, L., Babich, O., Prosekov, A., Ivanova, S., Pavsky, V. & Chaplygina, T. (2020). The effect of post-harvest ultraviolet irradiation on the content of antioxidant compounds and the activity of antioxidant enzymes in tomato. Heliyon, 6(1), https://doi.org/10.1016/j.heliyon.2020.e03288

  24. e-CFR. Electronic Code of Federal Regulations (2020). https:// www.ecfr.gov/cgi-bin/text-idx?SID=186c36f172c2a5f 98f740677f73ae152&node=40:24.0.1.1.27&rgn=div5# se40.26.180_131 Fecha de acceso: 05/02/2020.

  25. Esua, O. J., Chin, N. L., Yusof, Y. A. & Sukor, R. (2019). Effects of simultaneous UV-C radiation and ultrasonic energy postharvest treatment on bioactive compounds and antioxidant activity of tomatoes during storage. Food Chemistry, 270, 113–122. https://doi.org/10.1016/j.foodchem.2018.07.031

  26. EU legislation on MRLs. European Commission (2020). http:// ec.europa.eu/food/plant/ Fecha de acceso: 6/02/2020.

  27. Fagundes, C., Palou, L., Monteiro, A. R. & Pérez-Gago, M. B. (2014). Effect of antifungal hydroxypropyl methylcellulosebeeswax edible coatings on gray mold development and quality attributes of cold-stored cherry tomato fruit. Postharvest Biology and Technology, 92, 1–8. https://doi. org/10.1016/j.postharvbio.2014.01.006 27. Fagundes, C., Palou, L., Monteiro, A. R. & Pérez-Gago, M. B. (2015). Hydroxypropyl methylcellulose-beeswax edible coatings formulated with antifungal food additives to reduce alternaria black spot and maintain post-harvest quality of cold-stored cherry tomatoes. Scientia Horticulturae, 193, 249–257. https://doi.org/10.1016/j.scienta.2015.07.027

  28. FAOSTAT. United Nations Food and Agriculture Organization (2019). Food and agriculture data. http://www.fao.org/ faostat/en/#data/QC Fecha de acceso: 9/10/2019

  29. FRAC. Fungicide Resistance Action Commitee. (2020).

  30. http://www.frac.info/publications/downloads Fecha de acceso: 2/02/2020.

  31. Ghazanfar, M. U., Raza, W., Ahmed, K. S., Qamar, J., Haider, N. & Rasheed, M. H. (2016). Evaluation of different fungicides against Alternaria solani (Ellis & Martin) Sorauer cause of early blight of tomato under laboratory conditions. International Journal of Zoology Studies, 1(5). 08-12

  32. González-Estrada, R .R., Blancas-Benítez, F., Velázquez- Estrada, R. M., Montaño-Leyva, B., Ramos-Guerrero, A., Aguirre-Güitrón, L., Moreno-Hernández, C., Coronado- Partida, L. D., Herrera-González, J. A., Rodríguez-Guzmán, C. A., Del Ángel-Cruz, J. A., Rayón-Díaz, E., Cortés-Rivera, H. J., Santoyo-González, M. A. & Gutiérrez-Martínez, P. (2019). Alternative eco-friendly methods in the control of post-harvest decay of tropical and subtropical fruits. In: Modern Fruit Industry. IntechOpen. (1), 3-24 https://doi. org/10.5772/intechopen.85682

  33. Guo, H., Qiao, B., Ji, X., Wang, X. & Zhu, E. (2020). Antifungal activity and possible mechanisms of submicron chitosan dispersions against Alteraria alternata. Postharvest Biology and Technology, 161, 110883. https://doi.org/10.1016/j. postharvbio.2019.04.009

  34. Gutiérrez-Martínez, P., Ramos-Guerrero, A., Rodríguez-Pereida, C., Coronado-Partida, L., Angulo-Parra, J. & González- Estrada, R. (2018). Chitosan for postharvest disinfection of fruits and vegetables. Postharvest Disinfection of Fruits and Vegetables, 1(12), 231–241. https://doi.org/10.1016/ B978-0-12-812698-1.00012-1

  35. Habib, W., Saab, C., Malek, R., Kattoura, L., Rotolo, C., Gerges, E., Baroudy, F., Pollastro, S., Faretra, F. & De Miccolis Angelini, R. M. (2020). Resistance profiles of Botrytis cinerea populations to several fungicide classes on greenhouse tomato and strawberry in Lebanon. Plant Pathology, 69(8), 1453–1468. https://doi.org/10.1111/ppa.13228

  36. Imahori, Y., Bai, J. & Baldwin, E. (2016). Antioxidative responses of ripe tomato fruit to post-harvest chilling and heating treatments. Scientia Horticulturae, 198, 398–406. https://doi.org/10.1016/j.scienta.2015.12.006

  37. Jabnoun-Khiareddine, H., Abdallah, R., El-Mohamedy, R., Abdel-Kareem, F., Gueddes-Chahed, M., Hajlaoiui, A. & Daami-Remadi, M. (2016). Comparative efficacy of potassium salts against soil-borne and air-borne fungi and their ability to suppress tomato wilt and fruit rots. Journal of Microbial & Biochemical Technology, 8(2), 45–55. https:// doi.org/10.4172/1948-5948.1000261

  38. Jiang, N., Li, Z., Wang, L., Li, H., Zhu, X., Feng, X. & Wang, M. (2019). Effects of ultraviolet-c treatment on growth and mycotoxin production by Alternaria strains isolated from tomato fruits. International Journal of Food Microbiology, 311, 108333 https://doi.org/10.1016/j. ijfoodmicro.2019.108333

  39. Kator, L., Oche, O. D., Hosea, Z. Y. & Agatsa, T. D. (2019). Effect of aqueous extract of moringa leaves on post-harvest shelf life and quality of tomato fruits inoculated with fungal pathogens in Makurdi. Asian Journal of Agricultural and Horticultural Research, 3(1), 1–13. https://doi.org/10.9734/ ajahr/2019/45766

  40. Khatri, D., Panigrahi, J., Prajapati, A. & Bariya, H. (2020). Attributes of Aloe vera gel and chitosan treatments on the quality and biochemical traits of post-harvest tomatoes. Scientia Horticulturae, 259, 108837 https://doi. org/10.1016/j.scienta.2019.108837

  41. Khubone, L. W. & Mditshwa, A. (2018). The effects of UV-C irradiation on post-harvest quality of tomatoes (Solanum lycopersicum). Acta Horticulturae, 1201, 75–82. https:// doi.org/10.17660/ActaHortic.2018.1201.11

  42. Kibar, H. F. & K. Sabir, F. K. (2018). Chitosan coating for extending post-harvest quality of tomatoes (Lycopersicon esculentum Mill.) maintained at different storage. AIMS Agriculture and Food, 3(2), 97–108. https://doi. org/10.3934/agrfood.2018.2.97

  43. Kim, K. H., Kabir, E. & Jahan, S. A. (2017). Exposure to pesticides and the associated human health effects. Science of the total environment, 575, 525-535. https:// doi.org/10.1016/j.scitotenv.2016.09.009

  44. Kong, J., Zhang, Y., Ju, J., Xie, Y., Guo, Y., Cheng, Y., Qian, H., Quek, S. Y. & Yao, W. (2019). Antifungal effects of thymol and salicylic acid on cell membrane and mitochondria of Rhizopus stolonifer and their application in post-harvest preservation of tomatoes. Food Chemistry, 285, 380–388. https://doi.org/10.1016/j.foodchem.2019.01.099

  45. Kumar, N., Tokas, J., Kumar, P. & Singal, H. R. (2018). Effect of salicylic acid on post-harvest quality of tomato (Solanum lycopersicum L .) Fruit. 6(1), 1744–1747.

  46. Lai, J., Cao, X., Yu, T., Wang, Q., Zhang, Y., Zheng, X. & Lu, H. (2018). Effect of Cryptococcus laurentii on inducing disease resistance in cherry tomato fruit with focus on the expression of defense-related genes. Food Chemistry, 254, 208–216. https://doi.org/10.1016/j.foodchem.2018.01.100

  47. Liu, C., Zheng, H., Sheng, K., Liu, W. & Zheng, L. (2018a). Effects of post-harvest UV-C irradiation on phenolic acids, flavonoids, and key phenylpropanoid pathway genes in tomato fruit. Scientia Horticulturae, 241, 107–114. https:// doi.org/10.1016/j.scienta.2018.06.075

  48. Liu, H., Meng, F., Miao, H., Chen, S., Yin, T., Hu, S., Shao, Z., Liu, Y., Gao, L., Zhu, C., Zhang, B. & Wang, Q. (2018b). Effects of post-harvest methyl jasmonate treatment on main health-promoting components and volatile organic compounds in cherry tomato fruits. Food Chemistry, 263, 194–200. https://doi.org/10.1016/j.foodchem.2018.04.124

  49. Liu, S., Fu, L., Tan, H., Jiang, J., Che, Z., Tian, Y. & Chen, G. (2021). Resistance to boscalid in Botrytis cinerea from greenhouse grown tomato. Plant Disease, 105(3) 628-635 https://doi.org/10.1094/PDIS-06-20-1191-RE

  50. Loayza, F. E., Brecht, J. K., Simonne, A. H., Plotto, A., Baldwin, E. A., Bai, J. & Lon-kan, E. (2020). A brief hot-water treatment alleviates chilling injury symptoms in fresh tomatoes. Journal of the Science of Food and Agriculture, 101(1), 54-64 https://doi.org/10.1002/jsfa.10821

  51. Lu, H., Li, L., Limwachiranon, J., Xie, J. & Luo, Z. (2016). Effect of UV-C on ripening of tomato fruits in response to wound. Scientia Horticulturae, 213, 104–109. https://doi. org/10.1016/j.scienta.2016.10.017

  52. Mandal, D., Pautu, L., Hazarika, T. K., Nautiyal, B. P. & Shukla, A. C. (2016). Effect of salicylic acid on physico-chemical attributes and shelf life of tomato fruits at refrigerated storage effect of salicylic acid on physico-chemical attributes and shelf life of tomato fruits at refrigerated storage. International Journal of Bio-resource and Stress Management, 7(6), 1272-1278. https://doi.org//10.23910/ IJBSM/2016.7.6.1683b

  53. Mandal, D. & Shukla, A. C. (2018). Effect of chitosan, wax and particle film coating on shelf life and quality of tomato cv. Samrudhi at ambient storage. Research Journal of Agricultural Sciences, 9, 111–116.

  54. V., Karthik, R., Ramachandran, S. & Rajagopal, S. (2018). Chitosan applications in food industry. In Biopolymers for Food Design. 20(15) 469–491. Elsevier. https://doi.org/10.1016/B978-0-12-811449-0.00015-3

  55. Mansourbahmani, S., Ghareyazie, B., Kalatejari, S., Mohammadi, R. S. & Zarinnia, V. (2017). Effect of post-harvest UV-C irradiation and calcium chloride on enzymatic activity and decay of tomato (Lycopersicon esculentum L.) fruit during storage. Journal of Integrative Agriculture, 16(9), 2093–2100. https://doi.org/10.1016/ S2095-3119(16)61569-1

  56. Martínez-Ruiz, F. E., Cervantes-Díaz, L., Aíl-Catzím, C. E., Hernández-Montiel, L. G., Sánchez, C. L. D. T. & Rueda- Puente, E. O. (2016). Hongos fitopatógenos asociados al tomate (Solanum lycopersicum l.) en la zona árida del noroeste de México: la importancia de su diagnóstico. European Scientific Journal, 12(18), 232. https://doi. org/10.19044/esj.2016.v12n18p232

  57. Matyjaszczyk, E. (2015). Prevention methods for pest control and their use in Poland. Pest management science, 71(4), 485-491.

  58. Mditshwa, A., Magwaza, L. S., Tesfay, S. Z. & Mbili, N. C. (2017). Effect of ultraviolet irradiation on post-harvest quality and composition of tomatoes: a review. Journal of Food Science and Technology, 54(10), 3025–3035. https:// doi.org/10.1007/s13197-017-2802-6

  59. Olaiya, C. O., Karigidi, K. O., Ogunleye, A. B. & Kareem, O. R. (2016). Possible enhancement of nutrients and antioxidant capacity of two tropical fruits by UV radiation treatment. Advances in Life Science and Technology. 46, 80-85

  60. Pagno, C. H., Castagna, A., Trivellini, A., Mensuali-Sodi, A., Ranieri, A., Ferreira, E. A., Rios, A. de O. & Flôres, S. H. (2018). The nutraceutical quality of tomato fruit during domestic storage is affected by chitosan coating. Journal of Food Processing and Preservation, 42(1), e13326. https:// doi.org/10.1111/jfpp.13326

  61. Palou, L., Ali, A., Fallik, E. & Romanazzi, G. (2016). GRAS, plant- and animal-derived compounds as alternatives to conventional fungicides for the control of post-harvest diseases of fresh horticultural produce. Postharvest Biology and Technology, 122, 41–52. https://doi.org/10.1016/j. postharvbio.2016.04.017

  62. Pane, C., Fratianni, F., Parisi, M., Nazzaro, F. & Zaccardelli, M. (2016). Control of Alternaria post-harvest infections on cherry tomato fruits by wild pepper phenolic-rich extracts. Crop Protection, 84, 81–87. https://doi.org/10.1016/j. cropro.2016.02.015

  63. Parvin, N., Kader, M. A., Huque, R., Molla, M. E. & Khan, M. A. (2018). Extension of shelf-life of tomato using irradiated chitosan and its physical and biochemical characteristics. International Letters of Natural Sciences, 67, 16–23. https:// doi.org/10.18052/www.scipress.com/ILNS.67.16

  64. Pataro, G., Sinik, M., Capitoli, M. M., Donsì, G. & Ferrari, G. (2015). The influence of post-harvest UV-C and pulsed light treatments on quality and antioxidant properties of tomato fruits during storage. Innovative Food Science & Emerging Technologies, 30, 103–111. https://doi.org/10.1016/j. ifset.2015.06.003

  65. Patel, N. A., Dange, S. R. S. & Patel, S. I. (2005). Efficacy of chemicals in controlling fruit rot of tomato caused by Alternaria tomato. Indian Journal of Agricultural Research, 39(1), 72–75.

  66. Peralta-Ruiz, Y., Tovar, C. D. G., Sinning-Mangonez, A., Coronell, E. A., Marino, M. F. & Chaves-Lopez, C. (2020). Reduction of post-harvest quality loss and microbiological decay of tomato “chonto” (Solanum lycopersicum L.) using chitosan-e essential oil-based edible coatings under low-temperature storage. Polymers, 12(8), 1822. https:// doi.org/10.3390/polym12081822

  67. Pinheiro, J., Alegria, C., Abreu, M., Gonçalves, E. M. & Silva, C. L. M. (2015). Use of UV-C post-harvest treatment for extending fresh whole tomato (Solanum lycopersicum, cv. Zinac) shelf-life. Journal of Food Science and Technology, 52(8), 5066–5074. https://doi.org/10.1007/s13197-014- 1550-0

  68. Pinheiro, J., Ganhao, R., Goncalves E. M. & Silva, C. L. M. (2019). Assessment of thermosonication as post-harvest treatment applied on whole tomato fruits: Optimization and validation. Foods 8(12) 649. https://doi.org/10.3390/ foods8120649

  69. Pirozzi, A., Del Grosso, V., Ferrari, G. & Donsì, F. (2020). Edible coatings containing oregano essential oil nanoemulsion for improving post-harvest quality and shelf life of tomatoes. Foods, 9(11), 1605. https://doi.org/10.3390/foods9111605

  70. Poveda, J. (2020). Use of plant-defense hormones against pathogen-diseases of post-harvest fresh produce. Physiological and Molecular Plant Pathology, 111, 101521. https://doi.org/10.1016/j.pmpp.2020.101521

  71. Rani, S., Singh, R. & Gupta, S. (2017). Development of integrated disease management module for early blight of tomato in Jammu. Journal of Pharmacognosy and Phytochemistry, 6(2), 268–273.

  72. Rao, J., Chen, B. & McClements, D. J. (2019). Improving the efficacy of essential oils as antimicrobials in foods: mechanisms of action. Annual Review of Food Science and Technology, 10(1), 365–387. https://doi.org/10.1146/ annurev-food-032818-121727

  73. Rashid, T. S., Awla, H. K. & Sijam, K. (2018). Antifungal effects of Rhus coriaria L. fruit extracts against tomato anthracnose caused by Colletotrichum acutatum. Industrial Crops and Products, 113, 391–397. https://doi.org/10.1016/j. indcrop.2018.01.066

  74. Rguez, S., Djébali, N., Slimene, I. B., Abid, G., Hammemi, M., Chenenaoui, S., Bachkouel, S., Daami-Remadi, M., Ksouri, R. & Hamrouni-Sellami, I. (2018). Cupressus sempervirens essential oils and their major compounds successfully control post-harvest grey mould disease of tomato. Industrial Crops and Products, 123, 135–141. https://doi.org/10.1016/j.indcrop.2018.06.060

  75. Rives-Castillo, S. C. H., Ventura-Aguilar, R. I., Hernández- López, M. & Bautista-Baños, S. (2018). Extensión de la vida de anaquel y conservación postcosecha de jitomates var. ´Kenton´ mediante la aplicación de recubrimientos biodegradables. Acta Agricola y Pecuaria, 4(3), 80–91. https://dialnet.unirioja.es/servlet/articulo?codigo=6788414

  76. Rodrigues, B. B. & Kakde, U. B. (2019). Post harvest fungi associated with Solanum lycopersicum (Tomato) fruits collected from different markets of Mumbai. International Interdisciplinary Research Journa, 9(1). 52-60.

  77. Rodríguez-Guzmán, C. A., González-Estrada, R. R., Bautista- Baños, S. & Gutiérrez-Martínez, P. (2019). Efecto del quitosano en el control de Alternaria sp. en plantas de jitomate en invernadero. TIP Revista Especializada en Ciencias Químico-Biológicas, 22, 1–7. https://doi. org/10.22201/fesz.23958723e.2019.0.161

  78. Romanazzi, G., Feliziani, E., Baños, S. B. & Sivakumar, D. (2017). Shelf life extension of fresh fruit and vegetables by chitosan treatment. Critical Reviews in Food Science and Nutrition, 57(3), 579–601. https://doi.org/10.1080/10 408398.2014.900474

  79. Romanazzi, G., Feliziani, E. & Sivakumar, D. (2018). Chitosan, a biopolymer with triple action on post-harvest decay of fruit and vegetables: Eliciting, antimicrobial and film-forming properties. Frontiers in Microbiology, 9, 1–9. https://doi. org/10.3389/fmicb.2018.02745

  80. Romanazzi, G., Sanzani, S. M., Bi, Y., Tian, S., Gutiérrez- Martínez, P. & Alkan, N. (2016a). Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biology and Technology, 122, 82–94. https:// doi.org/10.1016/j.postharvbio.2016.08.003

  81. Romanazzi, G., Smilanick, J. L., Feliziani, E. & Droby, S. (2016b). Integrated management of post-harvest gray mold on fruit crops. Postharvest Biology and Technology, 113, 69–76. https://doi.org/10.1016/j.postharvbio.2015.11.003

  82. Ruiz-Martínez, J., Aguirre-Joya, J. A., Rojas, R., Vicente, A., Aguilar-González, M. A., Rodríguez-Herrera, R., Alvarez- Perez, O. B., Torres-León, C. & Aguilar, C. N. (2020). Candelilla wax edible coating with Flourensia cernua bioactives to prolong the quality of tomato fruits. Foods, 9(9), 1303. https://doi.org/10.3390/foods9091303

  83. Sajad, A. M. & Jamaluddin Abid, H. Q. (2017). Fungi associated with the spoilage of post harvest tomato fruits and their frequency of occurences in different markets of jabalpur, Madhya-Pradesh, India. Int J. Cur. Res, Rev., 9(5), 12–16.

  84. Salas-Méndez, E. de J., Vicente, A., Pinheiro, A. C., Ballesteros, L. F., Silva, P., Rodríguez-García, R., Hernández-Castillo, F. D., Díaz-Jiménez, M. de L. V., Flores-López, M. L., Villarreal-Quintanilla, J. Á., Peña-Ramos, F. M., Carrillo- Lomelí, D. A. & Jasso de Rodríguez, D. (2019). Application of edible nanolaminate coatings with antimicrobial extract of Flourensia cernua to extend the shelf-life of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 150, 19–27. https://doi.org/10.1016/j. postharvbio.2018.12.008

  85. Shama, G. & Alderson, P. (2005). UV hormesis in fruits: A concept ripe for commercialisation. Trends in Food Science and Technology, 16(4), 128–136. https://doi.org/10.1016/j. tifs.2004.10.001

  86. Shamurailatpam, D. & Kumar A. (2020). A review on recent methods to control early blight of tomato (Solanum lycopersicum L.). Plant Cell Biotechnology and Molecular Biology, 21, 136-148.

  87. Sharif, M. A., Kumer, A., Ahmed, M. B. & Paul, S. (2018). Chitosan is a new target of chemical replacement to formalin in food preservative. International Journal of Chemical Studies, 6(1), 757–760.

  88. Shenglong, D., Jihong, Z., Shaoyang, C., Shuang, M. & Li, Z. (2019). The combined effect of 1-methylcyclopropene and citral suppressed post-harvest grey mould of tomato fruit by inhibiting the growth of Botrytis cinerea. Journal of Phytopathology, 167(2), 123–134. https://doi.org/10.1111/ jph.12780

  89. Shridhar, B. P., Sharma, M., Gupta, S. K. & Sharma, S. K. (2018). New generation fungicides for the management of buckeye rot of tomato. Indian Phytopathology, 71(4), 621–625. https://doi.org/10.1007/s42360-018-0079-y

  90. SIAP. Servicio de Información Agroalimentaria y Pesquera. (2019). Atlas agroalimentario 2018. https://www.gob.mx/ siap/acciones-y-programas/atlas-agroalimentario-2018 Fecha de acceso: 06/10/2019.

  91. Singh, J., Roy, B., Mishra, S. & Garg, R. (2020). Post-harvest treatment for preserving antioxidant properties and total phenolic content of tomatoes and litchis. Journal of Thematic Analysis, 1(1), 125–135.

  92. Sivakumar, D. & Bautista-Baños, S. (2014). A review on the use of essential oils for post-harvest decay control and maintenance of fruit quality during storage. Crop Protection, 64, 27–37. https://doi.org/10.1016/j.cropro.2014.05.012

  93. Sivakumar, D. & Fallik, E. (2013). Influence of heat treatments on quality retention of fresh and fresh-cut produce. Food Reviews International, 29(3), 294–320. https://doi.org/10 .1080/87559129.2013.790048

  94. Sree, K. P., Sree, M. S. & Samreen, P. S. (2020). Application of chitosan edible coating for preservation of tomato. International Journal of Chemical Studies, 8(4), 3281–3285. https://doi.org/10.22271/chemi.2020.v8.i4ao.10157

  95. Sucharitha, K. V., Beulah, A. M. & Ravikiran, K. (2018). Effect of chitosan coating on storage stability of tomatoes (Lycopersicon esculentum Mill). In International Food Research Journal, 25(1), 93-99.

  96. Sultana, N., Zakir, H. M., Parvin, M. A., Sharmin, S. & Seal, H. P. (2019). Effect of chitosan coating on physiological responses and nutritional qualities of tomato fruits during post-harvest storage. Asian Journal of Advances in Agricultural Research, 10(2), 1–11. https://doi.org/10.9734/ ajaar/2019/v10i230027

  97. Sun, C., Fu, D., Jin, L., Chen, M., Zheng, X. & Yu, T. (2018). Chitin isolated from yeast cell wall induces the resistance of tomato fruit to Botrytis cinerea. Carbohydrate Polymers, 199, 341–352. https://doi.org/10.1016/j. carbpol.2018.07.045

  98. Tadesse, T. N. & Abtew, W. G. (2016). Effect of hot water treatment on reduction of chilling injury and keeping quality in tomato (Solanum lycopersicum L.) fruits. Journal of Stored Products and Postharvest Research, 7(7), 61-68. https://academicjournals.org/journal/JSPPR/ article-abstract/985D59660444

  99. Tang, Q., Zhu, F., Cao, X., Zheng, X., Yu, T. & Lu, L. (2019). Cryptococcus laurentii controls gray mold of cherry tomato fruit via modulation of ethylene-associated immune responses. Food Chemistry, 278, 240–247. https://doi. org/10.1016/j.foodchem.2018.11.051

  100. Tauxe, R. V. (2001). Food safety and irradiation: protecting the public from foodborne infections. Emerging Infectious Diseases, 7(7), 516–521. https://doi.org/10.3201/ eid0707.017706

  101. The Japan Food Chemical Research Foundation. (2020). Search engine for MRLs. http://db.ffcr.or.jp/front/food_group_ comp Fecha de acceso: 8/02/2020.

  102. Venditti, T., D’hallewin, G., Ladu, G., Petretto, G. L., Pintore, G. & Labavitch, J. M. (2018). Effect of NaHCO3 treatments on the activity of cell-wall-degrading enzymes produced by Penicillium digitatum during the pathogenesis process on grapefruit. Journal of the Science of Food and Agriculture, 98(13), 4928–4936. https://doi.org/10.1002/jsfa.9025

  103. Vincent, H., Wiersema, J., Kell, S., Fielder, H., Dobbie, S., Castañeda-Álvarez, N. P., Guarino, L., Eastwood, R., Leόn, B. & Maxted, N. (2013). A prioritized crop wild relative inventory to help underpin global food security. Biological Conservation, 167, 265–275. https://doi.org/10.1016/j. biocon.2013.08.011

  104. Wanasinghe, W. U. T. & Damunupola, J. W. (2020). Effect of UV-C hormesis in regulating anthracnose disease and post-harvest quality of tomato. Journal of Agricultural Sciences – Sri Lanka, 15(3), 318. https://doi.org/10.4038/ jas.v15i3.9024

  105. Wang, L., Baldwin, E., Luo, W., Zhao, W., Brecht, J. & Bai, J. (2019a) Key tomato volatile compounds during postharvest ripening in response to chilling and pre-chilling heat treatments. Postharvest Biology and Technology, 154, 11–20. https://doi.org/10.1016/j.postharvbio.2019.04.013

  106. Wang, X. M., Du, X.F., Nong, Y.U.A.N. & Shao, H. (2019b). Growth-inhibition of 12 fungicides against Botrytis cinerea in tomato and their preventive effects in field. Pakistan Journal of Botany, 51(6), 2291–2294. https://doi. org/10.30848/PJB2019-6(32)

  107. Wang, Y., Yu, T., Xia, J., Yu, D., Wang, J. & Zheng, X. (2010). Biocontrol of post-harvest gray mold of cherry tomatoes with the marine yeast Rhodosporidium paludigenum. Biological Control, 53(2), 178–182. https://doi.org/10.1016/j. biocontrol.2010.01.002 107. Wei, Y., Xu, M., Wu, H., Tu, S., Pan, L. & Tu, K. (2016). Defense response of cherry tomato at different maturity stages to combined treatment of hot air and Cryptococcus laurentii. Postharvest Biology and Technology, 117, 177–186. https:// doi.org/10.1016/j.postharvbio.2016.03.001

  108. Wei, Y., Zhou, D., Wang, Z., Tu, S., Shao, X., Peng, J., Pan, L. & Tu, K. (2018). Hot air treatment reduces post-harvest decay and delays softening of cherry tomato by regulating gene expression and activities of cell wall-degrading enzymes. Journal of the Science of Food and Agriculture, 98(6), 2105–2112. https://doi.org/10.1002/jsfa.8692

  109. Xie, G., Tan, S. & Yu, L. (2012). Morphological and molecular identification of pathogenic fungal of post-harvest tomato fruit during storage. African Journal of Microbiology Research, 6(22), 4805-4809. https://doi.org/10.5897/ AJMR12.596

  110. Xing, Y., Xu, Q., Li, X., Chen, C., Ma, L., Li, S., Che, Z. & Lin, H. (2016). Chitosan-based coating with antimicrobial agents: Preparation, property, mechanism, and application effectiveness on fruits and vegetables. International Journal of Polymer Science, 2016 1-24. https://doi. org/10.1155/2016/4851730

  111. Yan, L., Zheng, H., Liu, W., Liu, C., Jin, T., Liu, S. & Zheng, L. (2021). UV-C treatment enhances organic acids and GABA accumulation in tomato fruits during storage. Food Chemistry, 338, 128126. https://doi.org/10.1016/j. foodchem.2020.128126

  112. Yasser, M. M., Marzouk, M. M., Kamel, T. A. & Naaffa, A. M. A. (2019). Effect of hot water treatment on post-harvest fruit rots and quality of tomato fruits. Plant Archives, 19(2), 2325–2334.

  113. Youssef, K., Sanzani, S. M., Ligorio, A., Ippolito, A. & Terry, L. A. (2014). Sodium carbonate and bicarbonate treatments induce resistance to post-harvest green mould on citrus fruit. Postharvest Biology and Technology, 87, 61–69. https:// doi.org/10.1016/j.postharvbio.2013.08.006

  114. Zhang, W. & Jiang, W. (2019). UV treatment improved the quality of post-harvest fruits and vegetables by inducing resistance. Trends in Food Science & Technology, 92, 71–80. https://doi.org/10.1016/j.tifs.2019.08.012

  115. Zhang, X., Sheng, J., Li, F., Meng, D. & Shen, L. (2012). Methyl jasmonate alters arginine catabolism and improves postharvest chilling tolerance in cherry tomato fruit. Postharvest Biology and Technology, 64(1), 160–167. https://doi. org/10.1016/j.postharvbio.2011.07.006

  116. Zong, Y., Liu, J., Li, B., Qin, G. & Tian, S. (2010). Effects of yeast antagonists in combination with hot water treatment on postharvest diseases of tomato fruit. Biological Control, 54(3), 316–321. https://doi.org/10.1016/j.biocontrol.2010.06.003




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2021;24

ARTíCULOS SIMILARES

CARGANDO ...