medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2021, Número 1

<< Anterior

TIP Rev Esp Cienc Quim Biol 2021; 24 (1)


Nanoanticuerpos: desarrollo biotecnológico y aplicaciones

Ortega-Portilla PA, Cancino-Villeda L, Coronado-Aceves EW, Espitia-Pinzón C
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 88
Paginas:
Archivo PDF: 342.51 Kb.


PALABRAS CLAVE

nanoanticuerpos, Nanobodies, cáncer, inmunoterapia, industria farmacéutica.

RESUMEN

Los anticuerpos monoclonales son una de las herramientas más revolucionarias en el área de la biomedicina por tener aplicaciones inmunoterapéuticas e inmunodiagnósticas. Sin embargo, el rápido avance tecnológico que demandan estas áreas genera la exploración de nuevas biomoléculas. El descubrimiento de anticuerpos compuestos únicamente por cadenas pesadas, presentes de forma natural en el suero de los camélidos y en algunas especies de tiburón, son motivo de estudio desde las últimas décadas como una alternativa a los anticuerpos convencionales. Estos poseen una región de reconocimiento antigénico, que consiste en un dominio variable por cada cadena, conocidos como anticuerpos de un solo dominio o nanoanticuerpos. Estas biomoléculas se caracterizan por tener un tamaño reducido, alta especificidad, estabilidad y bajo costo en su producción; propiedades que las convierten en una herramienta altamente versátil. En la presente revisión se abordarán aspectos relevantes de los nanoanticuerpos, como su descubrimiento, características estructurales, desarrollo en el campo de la biotecnología y su potencial de aplicación en enfermedades como el cáncer y en la identificación de microorganismos.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Amcheslavsky, A., Wallace, A. L., Ejemel, M., Li, Q., McMahon, C. T., Stoppato, M., Giuntini, S., Schiller, Z. A., Pondish, J. R., Toomey, J. R., Schneider, R. M., Meisinger, J., Heukers, R., Kruse, A. C., Barry, E. M., Pierce, B. G., Klempner, M. S., Cavacini, L. A. & Wang, Y. (2021). Anti-CfaE nanobodies provide broad cross-protection against major pathogenic enterotoxigenic Escherichia coli strains, with implications for vaccine design. Scientific Reports, 11(1), 2751. DOI: https://doi.org/10.1038/s41598-021-81895-0

  2. Andersen, K. K., Strokappe, N. M., Hultberg, A., Truusalu, K., Smidt, I., Mikelsaar, R. H., Mikelsaar, M., Verrips, T., Hammarström, L. & Marcotte, H. (2015). Neutralization of Clostridium difficile Toxin B Mediated by Engineered Lactobacilli That Produce Single-Domain Antibodies. Infection and Immunity, 84(2), 395–406. DOI: https://doi. org/10.1128/IAI.00870-15

  3. Bailon, H., Yaniro, V. O., Cáceres, O. A., Colque, E. G., Leiva, W. J., Padilla, C., Montejo, H., García, D., Galarza, M., Bonilla, C., Tintaya, B., Ricciardi, G., Smiejkowska, N., Romão, E., Vincke, C., Lévano, J., Celys, M., Lomonte, B. & Muyldermans, S. (2020). Development of nanobodies against hemorrhagic and myotoxic components of Bothrops atrox snake venom.Frontiers in Immunology, 11, 655. DOI: https://doi.org/10.3389/fimmu.2020.00655

  4. Baral, T. N., Magez, S., Stijlemans, B., Conrath, K., Vanhollebeke, B., Pays, E., Muyldermans, S. & De Baetselier, P. (2006). Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor. Nature Medicine, 12(5), 580–584. DOI: https://doi.org/10.1038/nm1395

  5. Bridoux, J., Neyt, S., Debie, P., Descamps, B., Devoogdt, N., Cleeren, F., Bormans, G., Broisat, A., Caveliers, V., Xavier, C., Vanhove, C. & Hernot, S. (2020). Improved Detection of Molecular Markers of Atherosclerotic Plaques Using Sub-Millimeter PET Imaging. Molecules, 25(8), 1838. DOI: https://doi.org/10.3390/molecules25081838

  6. Chen, F., Ma, H., Li, Y., Wang, H., Samad, A., Zhou, J., Zhu, L., Zhang, Y., He, J., Fan, X. & Jin, T. (2019). Screening of Nanobody Specific for Peanut Major Allergen Ara h 3 by Phage Display. Journal of Agricultural and Food Chemistry, 67(40), 11219–11229. DOI: https://doi.org/10.1021/acs. jafc.9b02388

  7. Cortez-Retamozo, V., Backmann, N., Senter, P. D., Wernery, U., De Baetselier, P., Muyldermans, S. & Revets, H. (2004). Efficient cancer therapy with a nanobody-based conjugate. Cancer Research, 64(8), 2853–2857. DOI: https://doi. org/10.1158/0008-5472.can-03-3935

  8. Dass, S. A., Norazmi, M. N., Acosta, A., Sarmiento, M. E. & Tye, G. J. (2020). TCR-like domain antibody against Mycobacterium tuberculosis (Mtb) heat shock protein antigen presented by HLA-A*11 and HLA-A*24. International Journal of Biological macromolecules, 155, 305–314. DOI: https://doi.org/10.1016/j.ijbiomac.2020.03.229

  9. De Groof, T., Mashayekhi, V., Fan, T. S., Bergkamp, N. D., Sastre Toraño, J., van Senten, J. R., Heukers, R., Smit, M. J. & Oliveira, S. (2019). Nanobody- Targeted Photodynamic Therapy Selectively Kills Viral GPCR-Expressing Glioblastoma Cells. Molecular Pharmaceutics, 16(7), 3145–3156. DOI: https://doi. org/10.1021/acs.molpharmaceut.9b00360

  10. De Meyer, T., Muyldermans, S. & Depicker, A. (2014). Nanobody-based products as research and diagnostic tools. Trends in Biotechnology, 32(5), 263–270. DOI: https://doi. org/10.1016/j.tibtech.2014.03.001

  11. De Vos, J., Devoogdt, N., Lahoutte, T. & Muyldermans, S. (2013). Camelid single-domain antibody-fragment engineering for (pre) clinical in vivo molecular imaging applications: adjusting the bullet to its target. Expert opinion on biological therapy, 13(8), 1149-1160. DOI: https://doi.org/10.1517/1 4712598.2013.800478

  12. Deckers, N., Saerens, D., Kanobana, K., Conrath, K., Victor, B., Wernery, U., Vercruysse, J., Muyldermans, S. & Dorny, P. (2009). Nanobodies, a promising tool for species-specific diagnosis of Taenia solium cysticercosis. International Journal for Parasitology, 39(5), 625–633. DOI: https:// doi.org/10.1016/j.ijpara.2008.10.012

  13. Deken, M. M., Kijanka, M. M., Beltrán Hernández, I., Slooter, M. D., de Bruijn, H. S., van Diest, P. J., van Bergen En Henegouwen, P., Lowik, C., Robinson, D. J., Vahrmeijer, A. L. & Oliveira, S. (2020). Nanobody-targeted photodynamic therapy induces significant tumor regression of trastuzumabresistant HER2-positive breast cancer, after a single treatment session. Journal of Controlled Release: Official Journal of the Controlled Release Society, 323, 269–281. DOI: https://doi.org/10.1016/j.jconrel.2020.04.030

  14. Dietrich, M. H., Chan, L. J., Adair, A., Keremane, S., Pymm, P., Lo, A. W., Cao, Y. C. & Tham, W. H. (2021). Nanobody generation and structural characterization of Plasmodium falciparum 6-cysteine protein Pf12p. The Biochemical Journal, 478(3), 579–595. DOI:https://doi.org/10.1042/ BCJ20200415

  15. Dumoulin, M., Conrath, K., Van Meirhaeghe, A., Meersman, F., Heremans, K., Frenken, L. G., Muyldermans, S., Wyns, L. & Matagne, A. (2002). Single-domain antibody fragments with high conformational stability. Protein Science, 11(3), 500–515. DOI: https://doi.org/10.1110/ps.34602

  16. Els Conrath, K., Lauwereys, M., Wyns, L. & Muyldermans, S. (2001). Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs. The Journal of Biological Chemistry, 276(10), 7346–7350. DOI: https://doi.org/10.1074/jbc.M007734200

  17. Gai, S. A. & Wittrup, K. D. (2007). Yeast surface display for protein engineering and characterization. Current Opinion in Structural Biology, 17(4), 467-473. DOI: https://doi. org/10.1016/j.sbi.2007.08.012

  18. Galán, A., Comor, L., Horvatić, A., Kuleš, J., Guillemin, N., Mrljak, V. & Bhide, M. (2016). Library-based display technologies: where do we stand? Molecular BioSystems, 12(8), 2342-2358. DOI: https://doi. org/10.1039/C6MB00219F

  19. Gao, H., Wu, Y., Shi, J., Zhang, X., Liu, T., Hu, B., Jia, B., Wan, Y., Liu, Z. & Wang, F. (2020). Nuclear imagingguided PD-L1 blockade therapy increases effectiveness of cancer immunotherapy. Journal for Immunotherapy of Cancer, 8(2), e001156. DOI: http://dx.doi.org/10.1136/ jitc-2020-001156

  20. García-García, A., Madrid, R., González, I., García, T. & Martín, R. (2020). A novel approach to produce phage single domain antibody fragments for the detection of gluten in foods. Food Chemistry, 321, 126685. DOI: https://doi. org/10.1016/j.foodchem.2020.126685

  21. Goldman, E. R., Anderson, G. P., Liu, J. L., Delehanty, J. B., Sherwood, L. J., Osborn, L. E., Cummins, L. B. & Hayhurst, A. (2006). Facile generation of heat-stable antiviral and antitoxin single domain antibodies from a semisynthetic llama library. Analytical Chemistry, 78(24), 8245–8255. DOI: https://doi.org/10.1021/ac0610053

  22. Govaert, J., Pellis, M., Deschacht, N., Vincke, C., Conrath, K., Muyldermans, S. & Saerens, D. (2012). Dual beneficial effect of interloop disulfide bond for single domain antibody fragments. The Journal of Biological Chemistry, 287(3), 1970–1979. DOI: https://doi.org/10.1074/jbc.M111.242818

  23. Greenberg, A. S., Avila, D., Hughes, M., Hughes, A., McKinney, E. C. & Flajnik, M. F. (1995). A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature,374(6518), 168–173. DOI: https://doi.org/10.1038/374168a0

  24. Hajari Taheri, F., Hassani, M., Sharifzadeh, Z., Behdani, M., Arashkia, A. & Abolhassani, M. (2019). T cell engineered with a novel nanobody-based chimeric antigen receptor against VEGFR2 as a candidate for tumor immunotherapy. IUBMB Life, 71(9), 1259–1267. DOI: https://doi. org/10.1002/iub.2019

  25. Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hamers, C., Songa, E. B., Bendahman, N. & Hamers, R. (1993). Naturally occurring antibodies devoid of light chains. Nature, 363(6428), 446–448. DOI: https:// doi.org/10.1038/363446a0

  26. Harmsen, M. M., Ruuls, R. C., Nijman, I. J., Niewold, T. A., Frenken, L. G. & de Geus, B. (2000). Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features. Molecular Immunology, 37(10), 579–590. DOI: https://doi.org/10.1016/s0161- 5890(00)00081-x

  27. Hassani, M., Hajari Taheri, F., Sharifzadeh, Z., Arashkia, A., Hadjati, J., van Weerden, W. M., Abdoli, S., Modarressi, M. H. & Abolhassani, M. (2020). Engineered Jurkat Cells for Targeting Prostate-Specific Membrane Antigen on Prostate Cancer Cells by Nanobody-Based Chimeric Antigen Receptor. Iranian Biomedical Journal, 24(2), 81–88. DOI: https://doi.org/10.29252/ibj.24.2.81

  28. He, Y., Ren, Y., Guo, B., Yang, Y., Ji, Y., Zhang, D., Wang, J., Wang, Y. & Wang, H. (2020). Development of a specific nanobody and its application in rapid and selective determination of Salmonella enteritidis in milk. Food Chemistry, 310, 125942. DOI: https://doi.org/10.1016/j. foodchem.2019.125942

  29. Hollifield, A. L., Arnall, J. R. & Moore, D. C. (2020). Caplacizumab: an anti-von Willebrand factor antibody for the treatment of thrombotic thrombocytopenic purpura. American journal of health-system pharmacy: AJHP. Official Journal of the American Society of Health- System Pharmacists, 77(15), 1201–1207. DOI: https://doi. org/10.1093/ajhp/zxaa151

  30. Hu, Y., Sun, Y., Gu, J., Yang, F., Wu, S., Zhang, C., Ji., X., Lv, H., Muyldermans, S. & Wang, S. (2021). Selection of specific nanobodies to develop an immunoassay detecting Staphylococcus aureus in milk. Food Chemistry, 353, 129481. DOI: https://doi.org/10.1016/j. foodchem.2021.129481

  31. Jailkhani, N., Ingram, J. R., Rashidian, M., Rickelt, S., Tian, C., Mak, H., Jiang, Z., Ploegh, H. L. & Hynes, R. O. (2019). Noninvasive imaging of tumor progression, metastasis, and fibrosis using a nanobody targeting the extracellular matrix. Proceedings of the National Academy of Sciences of the United States of America, 116(28), 14181–14190. DOI: https://doi.org/10.1073/pnas.1817442116

  32. Jovčevska, I. & Muyldermans, S. (2020). The Therapeutic Potential of Nanobodies. BioDrugs, 34, 11–26. DOI: https:// doi.org/10.1007/s40259-019-00392-z

  33. Kalusche, S., Vanshylla, K., Kleipass, F., Gruell, H., Müller, B., Zeng, Z., Koch, K., Stein, S., Marcotte, H., Klein, F. & Dietrich, U. (2020). Lactobacilli Expressing Broadly Neutralizing Nanobodies against HIV-1 as Potential Vectors for HIV-1 Prophylaxis? Vaccines, 8(4), 758. DOI: https:// doi.org/10.3390/vaccines8040758

  34. Kang, W., Ding, C., Zheng, D., Ma, X., Yi, L., Tong, X., Wu, C., Xue, C., Yu, Y. & Zhou, Q. (2021). Nanobody Conjugates for Targeted Cancer Therapy and Imaging. Technology in cancer research & Treatment, 20, 15330338211010117. DOI: https://doi.org/10.1177/15330338211010117

  35. Keyaerts, M., Xavier, C., Heemskerk, J., Devoogdt, N., Everaert, H., Ackaert, C., Vanhoeij, M., Duhoux, F. P., Gevaert, T., Simon, P., Schallier, D., Fontaine, C., Vaneycken, I., Vanhove, C., De Greve, J., Lamote, J., Caveliers, V. & Lahoutte, T. (2016). Phase I Study of 68Ga-HER2- Nanobody for PET/CT Assessment of HER2 Expression in Breast Carcinoma. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 57(1), 27–33. DOI: https://doi.org/10.2967/jnumed.115.162024

  36. Klarenbeek, A., El Mazouari, K., Desmyter, A., Blanchetot, C., Hultberg, A., de Jonge, N., Roovers, R. C., Cambillau, C., Spinelli, S., Del-Favero, J., Verrips, T., de Haard, H. J. & Achour, I. (2015). Camelid Ig V genes reveal significant human homology not seen in therapeutic target genes, providing for a powerful therapeutic antibody platform. mAbs, 7(4), 693–706. DOI: https://doi.org/10.1080/1942 0862.2015.1046648

  37. Köhler, G. & Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 256(5517), 495–497. DOI: https://doi. org/10.1038/256495a0

  38. Korotkov, K. V., Pardon, E., Steyaert, J. & Hol, W. G. (2009). Crystal structure of the N-terminal domain of the secretin GspD from ETEC determined with the assistance of a nanobody. Structure, 17(2), 255–265. DOI: https://doi. org/10.1016/j.str.2008.11.011

  39. Lam, K. H., Tremblay, J. M., Vazquez-Cintron, E., Perry, K., Ondeck, C., Webb, R. P., McNutt, P. M., Shoemaker, C. B. & Jin, R. (2020). Structural Insights into Rational Design of Single-Domain Antibody-Based Antitoxins against Botulinum Neurotoxins. Cell Reports, 30(8), 2526–2539. e6. DOI: https://doi.org/10.1016/j.celrep.2020.01.107

  40. Lee, C. M., Iorno, N., Sierro, F. & Christ, D. (2007). Selection of human antibody fragments by phage display. Nature Protocols, 2(11), 3001–3008. DOI: https://doi.org/10.1038/ nprot.2007.448

  41. Li, W., Schäfer, A., Kulkarni, S. S., Liu, X., Martinez, D. R., Chen, C., Sun, Z., Leist, S. R., Drelich, A., Zhang, L., Ura, M. L., Berezuk, A., Chittori, S., Leopold, K., Mannar, D., Srivastava, S. S., Zhu, X., Peterson, E. C., Tseng, C. T., Mellors, J. W. & Dimitrov, D. S. (2020). High Potency of a Bivalent Human VH Domain in SARS-CoV-2 Animal Models. Cell, 183(2), 429–441.e16. DOI: https://doi. org/10.1016/j.cell.2020.09.007

  42. Liu, W., Song, H., Chen, Q., Yu, J., Xian, M., Nian, R. & Feng, D. (2018). Recent advances in the selection and identification of antigen-specific nanobodies. Molecular Immunology, 96, 37–47. DOI: 10.1016/j.molimm.2018.02.012

  43. Liu, M., Li, L., Jin, D. & Liu, Y. (2021). Nanobody-A versatile tool for cancer diagnosis and therapeutics. Wiley interdisciplinary reviews. Nanomedicine and Nanobiotechnology, e1697. Advance online publication. DOI: 10.1002/wnan.1697

  44. Mathonet, P., Ioannou, Avgousta, Betley, Jason & Ullman, C. (2011). CIS display, a DNA-based in vitro selection technology for therapeutic peptides. Chimica Oggi Chemistry Today, 29, 10-12. DOI: https://doi.org/10.1073/ pnas.0400219101

  45. Mazzega, E., Beran, A., Cabrini, M. & de Marco, A. (2019). In vitro isolation of nanobodies for selective Alexandrium minutum recognition: a model for convenient development of dedicated immuno-reagents to study and diagnostic toxic unicellular algae. Harmful Algae, 82, 44-51. DOI: https:// doi.org/10.1016/j.hal.2019.01.002

  46. Morales-Yanez, F. J., Sariego, I., Vincke, C., Hassanzadeh- Ghassabeh, G., Polman, K. & Muyldermans, S. (2019). An innovative approach in the detection of Toxocara canis excretory/secretory antigens using specific nanobodies. International Journal for Parasitology, 49(8), 635–645. DOI: https://doi.org/10.1016/j.ijpara.2019.03.004

  47. Muyldermans, S., Atarhouch, T., Saldanha, J., Barbosa, J. A. & Hamers, R. (1994). Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Engineering, 7(9), 1129–1135. DOI: https://doi. org/10.1093/protein/7.9.1129

  48. Muyldermans S. (2013). Nanobodies: natural singledomain antibodies. Annual Review of Biochemistry, 82, 775–797. DOI: https://doi.org/10.1146/annurevbiochem- 063011-092449

  49. Muyldermans, S. (2021). A guide to: generation and design of nanobodies. The FEBS Journal, 288(7), 2084-2102. DOI: https://doi.org/10.1111/febs.15515

  50. Njeru, F. N., & Kusolwa, P. M. (2021). Nanobodies: their potential for applications in biotechnology, diagnosis and antiviral properties in Africa; focus on application in agriculture. Biotechnology & Biotechnological Equipment, 35(1), 1331-1342. DOI: https://doi.org/10.1080/1310281 8.2021.1974943

  51. Nuttall, S. D., Krishnan, U. V., Hattarki, M., De Gori, R., Irving, R. A. & Hudson, P. J. (2001). Isolation of the new antigen receptor from wobbegong sharks, and use as a scaffold for the display of protein loop libraries. Molecular Immunology, 38(4), 313–326. DOI: https://doi.org/10.1016/ s0161-5890(01)00057-8

  52. Odegrip, R., Coomber, D., Eldridge, B., Hederer, R., Kuhlman, P. A., Ullman, C., FitzGerald, K. & McGregor, D. (2004). CIS display: in vitro selection of peptides from libraries of protein–DNA complexes. Proceedings of the National Academy of Sciences, 101(9), 2806-2810. DOI: https://doi. org/10.1073/pnas.0400219101

  53. Oloketuyi, S., Mazzega, E., Zavašnik, J., Pungjunun, K., Kalcher, K., De Marco, A. & Mehmeti, E. (2020). Electrochemical immunosensor functionalized with nanobodies for the detection of the toxic microalgae Alexandrium minutum using glassy carbon electrode modified with gold nanoparticles. Biosensors a d Bioelectronics, 154, 112052. DOI: https://doi.org/10.1016/j.bios.2020.112052

  54. Orcutt, K. D. & Wittrup, K. D. (2010). Yeast display and selections. In Antibody engineering (pp. 207-233). Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3- 642-01144-3_15

  55. Ortega, P. A., Silva-Miranda, M., Torres-Larios, A., Campos- Chávez, E., Franken, K., Ottenhoff, T., Ivanyi, J. & Espitia, C. (2020). Selection of a Single Domain Antibody, Specific for an HLA-Bound Epitope of the Mycobacterial Ag85B Antigen. Frontiers in Immunology, 11, 577815. DOI: https:// doi.org/10.3389/fimmu.2020.577815

  56. Padlan, E. A. (1994). Anatomy of the antibody molecule. Molecular Immunology, 31(3), 169–217. DOI: 10.1016/0161-5890(94)90001-9

  57. Pinto Torres, J. E., Goossens, J., Ding, J., Li, Z., Lu, S., Vertommen, D., Naniima, P., Chen, R., Muyldermans, S., Sterckx, Y. G. & Magez, S. (2018). Development of a Nanobody-based lateral flow assay to detect active Trypanosoma congolense infections. Scientific Reports, 8(1), 9019. DOI:10.1038/s41598-018-26732-7

  58. Ren, X., Yue, X., Mwakinyali, S. E., Zhang, W., Zhang, Q. & Li, P. (2020). Small Molecular Contaminant and Microorganism Can Be Simultaneously Detected Based on Nanobody-Phage: Using Carcinogen Aflatoxin and Its Main Fungal Aspergillus Section Flavi spp. in Stored Maize for Demonstration. Frontiers in Microbiology, 10, 3023. DOI: https://doi.org/10.3389/fmicb.2019.03023

  59. Respaud, R., Vecellio, L., Diot, P. & Heuzé-Vourc’h, N. (2015). Nebulization as a delivery method for mAbs in respiratory diseases. Expert Opinion on Drug Delivery, 12(6), 1027–1039. DOI:10.1517/17425247.2015.999039

  60. Roshan, R., Naderi, S., Behdani, M., Cohan, R. A., Ghaderi, H., Shokrgozar, M. A., Golkar, M. & Kazemi- Lomedasht, F. (2021). Isolation and characterization of nanobodies against epithelial cell adhesion molecule as novel theranostic agents for cancer therapy. Molecular Immunology, 129, 70–77. DOI: https://doi.org/10.1016/j. molimm.2020.10.021

  61. Sadeghi, A., Behdani, M., Muyldermans, S., Habibi-Anbouhi, M. & Kazemi-Lomedasht, F. (2020). Development of a mono-specific anti-VEGF bivalent nanobody with extended plasma half-life for treatment of pathologic neovascularization. Drug Testing and Analysis, 12(1), 92–100. DOI: 10.1002/dta.2693

  62. Salema, V. & Fernández, L. Á. (2017). Escherichia coli surface display for the selection of nanobodies. Microbial Biotechnology, 10(6), 1468-1484. DOI: https://doi. org/10.1111/1751-7915.12819

  63. Salvador, J. P., Vilaplana, L. & Marco, M. P. (2019). Nanobody: outstanding features for diagnostic and therapeutic applications. Analytical and Bioanalytical Chemistry, 411(9), 1703–1713. DOI: https://doi.org/10.1007/s00216- 019-01633-4

  64. Shokrollahi, N., Habibi Anbouhi, M., Jahanian-Najafabadi, A., AliRahimi, E. & Behdani, M. (2021). Expressing of Recombinant VEGFR2-specific Nanobody in Baculovirus Expression System. Iranian Journal of Biotechnology, 19(1), 60-66. DOI: https://doi.org/10.30498/IJB.2021.2783

  65. Silva, S., Maghalaes, A. A., De Castro, S. S., Zurita-Turk, M., Goulart, L. R., Miyoshi, A. & Azevedo, V. (2011). The phage display technique: advantages and recent patents. Recent Patents on DNA & Gene Sequences, 5, 136-148. DOI: 10.2174/187221511796392060

  66. Singh, S., Kumar, N. K., Dwiwedi, P., Charan, J., Kaur, R., Sidhu, P. & Chugh, V. K. (2018). Monoclonal Antibodies: A Review. Current Clinical Pharmacology, 13(2), 85–99. DOI: 10.2174/1574884712666170809124728

  67. Siontorou, C. G. (2013). Nanobodies as novel agents for disease diagnosis and therapy. International Journal of Nanomedicine, 8, 4215–4227. DOI: https://doi.org/10.2147/ IJN.S39428

  68. Smith, G. P. (1985). Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 228(4705), 1315-1317. DOI: https://doi. org/10.1126/science.4001944

  69. Sockolosky, J. T., Dougan, M., Ingram, J. R., Ho, C. C., Kauke, M. J., Almo, S. C., Ploegh, H. L. & Garcia, K. C. (2016). Durable antitumor responses to CD47 blockade require adaptive immune stimulation. Proceedings of the National Academy of Sciences of the United States of America, 113(19), 2646–2654. DOI: https://doi.org/10.1073/ pnas.1604268113

  70. Stanfield, R. L., Dooley, H., Verdino, P., Flajnik, M. F. & Wilson, I. A. (2007). Maturation of shark single-domain (IgNAR) antibodies: evidence for induced-fit binding. Journal of Molecular Biology, 367(2), 358–372. DOI: https://doi. org/10.1016/j.jmb.2006.12.045

  71. Terfrüchte, M., Reindl, M., Jankowski, S., Sarkari, P., Feldbrügge, M. & Schipper, K. (2017). Applying unconventional secretion in Ustilago maydis for the export of functional nanobodies. International Journal of Molecular Sciences, 18(5), 937. DOI: https://doi.org/10.3390/ijms18050937

  72. Valdez-Cruz, N. A., García-Hernández, E., Espitia, C., Cobos-Marín, L., Altamirano, C., Bando-Campos, C. G., Cofas-Vargas, L. F., Coronado-Aceves, E. W., González- Hernández, R. A., Hernández-Peralta, P., Juárez-López, D., Ortega-Portilla, P. A., Restrepo-Pineda, S., Zelada-Cordero, P. & Trujillo-Roldán, M. A. (2021). Integrative overview of antibodies against SARS-CoV-2 and their possible applications in COVID-19 prophylaxis and treatment. Microbial Cell Factories, 20(1), 88. DOI: https://doi. org/10.1186/s12934-021-01576-5

  73. Vincke, C., Loris, R., Saerens, D., Martinez-Rodriguez, S., Muyldermans, S. & Conrath, K. (2009). General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. The Journal of Biological Chemistry, 284(5), 3273–3284. DOI: https://doi.org/10.1074/jbc.M806889200

  74. Wang, J., Bever, C. R., Majkova, Z., Dechant, J. E., Yang, J., Gee, S. J., Xu, T. & Hammock, B. D. (2014). Heterologous antigen selection of camelid heavy chain single domain antibodies against tetrabromobisphenol A. Analytical Chemistry, 86(16), 8296–8302. DOI: https://doi. org/10.1021/ac5017437

  75. Wang, Y., Fan, Z., Shao, L., Kong, X., Hou, X., Tian, D., Sun, Y., Xiao, Y. & Yu, L. (2016). Nanobody-derived nanobiotechnology tool kits for diverse biomedical and biotechnology applications. International Journal of Nanomedicine, 11, 3287–3303. DOI: https://doi. org/10.2147/IJN.S107194

  76. Wrapp, D., De Vlieger, D., Corbett, K. S., Torres, G. M., Wang, N., Van Breedam, W., Roose, K., van Schie, L., VIB-CMB COVID-19 Response Team, Hoffmann, M., Pöhlmann, S., Graham, B. S., Callewaert, N., Schepens, B., Saelens, X. & McLellan, J. S. (2020). Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Cell, 181(6), 1436–1441. DOI: https:// doi.org/10.1016/j.cell.2020.04.031

  77. Wu, C. H., Liu, I. J., Lu, R. M. & Wu, H. C. (2016). Advancement and applications of peptide phage display technology in biomedical science. Journal of Biomedical Science, 23: 8. DOI: https://doi.org/10.1186/s12929-016-0223-x

  78. Xavier, C., Blykers, A., Vaneycken, I., D’Huyvetter, M., Heemskerk, J., Lahoutte, T. & Caveliers, V. (2016). 18F-nanobody for PET imaging of HER2 overexpressing tumors. Nuclear Medicine and Biology, 43(4), 247–252. DOI: https://doi.org/10.1016/j.nucmedbio.2016.01.002

  79. Xiang, Y., Nambulli, S., Xiao, Z., Liu, H., Sang, Z., Duprex, W. P., Schneidman-Duhovny, D., Zhang, C. & Shi, Y. (2020). Versatile and multivalent nanobodies efficiently neutralize SARS-CoV-2. Science (New York, N.Y.), 370(6523), 1479–1484. DOI: https://doi.org/10.1126/ science.abe4747

  80. Xie, Y. J., Dougan, M., Ingram, J. R., Pishesha, N., Fang, T., Momin, N. & Ploegh, H. L. (2020). Improved Antitumor Efficacy of Chimeric Antigen Receptor T Cells that Secrete Single-Domain Antibody Fragments. Cancer Immunology Research, 8(4), 518–529. DOI: https://doi. org/10.1158/2326-6066.CIR-19-0734

  81. Xing, Y., Chand, G., Liu, C., Cook, G., O’Doherty, J., Zhao, L., Wong, N., Meszaros, L. K., Ting, H. H. & Zhao, J. (2019). Early Phase I Study of a 99mTc-Labeled Anti-Programmed Death Ligand-1 (PD-L1) Single-Domain Antibody in SPECT/CT Assessment of PD-L1 Expression in Non-Small Cell Lung Cancer. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 60(9), 1213– 1220. DOI: https://doi.org/10.2967/jnumed.118.224170

  82. Xu, C., Liu, X., Zhang, C., Zhang, X., Zhong, J., Liu, Y., Hu, X.,Lin, M. & Liu, X. (2017). Establishment of a sensitive time-resolved fluoroimmunoassay for detection of Bacillus thuringiensis Cry1Ie toxin based nanobody from a phage display library. Analytical Biochemistry, 518, 53-59. DOI: https://doi.org/10.1016/j.ab.2016.11.006

  83. Yang E. Y. & Shah K. (2020). Nanobodies: Next Generation of Cancer Diagnostics and Therapeutics. Frontiers in Oncology 10:1182. DOI: https://doi.org/10.3389/fonc.2020.01182

  84. Yim, S. S., Choi, J. W., Lee, R. J., Lee, Y. J., Lee, S. H., Kim, S. Y, & Jeong, K. J. (2015). Development of a new platform for secretory production of recombinant proteins in Corynebacterium glutamicum. Biotechnology and Bioengineering, 113(1), 163-172. DOI: https://doi. org/10.1002/bit.25692

  85. Zhang, X., Hu, F., Liu, C., Yin, L., Zhang, Y., Zhang, Y. & Lan, X. (2018). Evaluation of 99mTc-HYNIC-VCAM- 1scFv as a Potential Qualitative and Semiquantitative Probe Targeting Various Tumors. Contrast Media & Molecular Imaging, 2018, 7832805. DOI: https://doi. org/10.1155/2018/7832805

  86. Zhang, Q., Wu, L., Liu, S., Chen, Q., Zeng, L., Chen, X. & Zhang, Q. (2020). Targeted nanobody complex enhanced photodynamic therapy for lung cancer by overcoming tumor microenvironment. Cancer Cell International, 20(1), 570. DOI: https://doi.org/10.1186/s12935-020-01613-0

  87. Zhang, W., Lin, M., Yan, Q., Budachetri, K., Hou, L., Sahni, A. & Rikihisa, Y. (2021). An intracellular nanobody targeting T4SS effector inhibits Ehrlichia infection. Proceedings of the National Academy of Sciences, 118(18). DOI: https:// doi.org/10.1073/pnas.2024102118.

  88. Zhu, X., Wang, L., Liu, R., Flutter, B., Li, S., Ding, J., Tao, H., Liu, C., Sun, M. & Gao, B. (2010). COMBODY: one-domain antibody multimer with improved avidity. Immunology and Cell Biology, 88(6), 667–675. DOI:https://doi.org/10.1038/ icb.2010.21




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2021;24

ARTíCULOS SIMILARES

CARGANDO ...