medigraphic.com
ENGLISH

Revista Cubana de Plantas Medicinales

ISSN 1028-4796 (Impreso)
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2021, Número 2

<< Anterior

Rev Cubana Plant Med 2021; 26 (2)


Actividad antimicrobiana de polifenoles extraídos de frutos de diferentes especies del género Vaccinium

Rico GNA, Espinosa MW, López VDP
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 56
Paginas:
Archivo PDF: 236.81 Kb.


PALABRAS CLAVE

arándanos, antibacterianos, polifenoles, plantas medicinales.

RESUMEN

Introducción: El género Vaccinium pertenece a la familia Ericaceae y tiene polifenoles, minerales y un buen porcentaje de fibras (pectina celulosa). Estos compuestos han mostrado tener propiedades antioxidantes, antitumorales, antiinflamatorias y antimicrobianas.
Objetivo: Describir la actividad antimicrobiana de los compuestos polifenólicos de diferentes especies del género Vaccinium.
Métodos: Se realizó una revisión bibliográfica en las bases BVS, Journals, Google Scholar, Ovid, NCBI y MEDLINE. Para la búsqueda se emplearon las palabras clave: Vaccinium, anti-bacterial angents, polyphenols y medidinal plants, y se emplearon operadores boleanos.
Resultados: Se pudo identificar mediante la revisión que las diferentes especies del género Vaccinium presentan varios compuestos polifenólicos con actividad antimicrobiana, en particular la generada por las proantocianidinas. Estas reportaron mayor actividad inhibitoria frentes a diversos microrganismos patógenos.
Conclusiones: Se comprobó que el género Vaccinium posee una alta variedad de componentes polifenólicos que brindan características de uso terapéutico para el manejo de ciertas enfermedades e infecciones en el ser humano, las cuales podrían ser usadas como alternativa terapéutica.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Mostacero González J, Tatiana Gil A. Fitogeografía y morfología de los Vaccinium (Ericaceae) “arándanos nativos” del Perú. INDES. 2017 [acceso: 01/02/2022];3(1):43-52. Disponible en: http://revistas.untrm.edu.pe/index.php/INDES/article/view/133/198

  2. Martín J, Varo Á, Mérida J, Serratosa MP. Influence of drying processes on anthocyanin profiles, total phenolic compounds and antioxidant activities of blueberry (Vaccinium corymbosum). LWT. 2020 [acceso: 01/02/2022];120:108931. Disponible en: https://www.sciencedirect.com/science/article/pii/S0023643819312733

  3. Chamorro F, Nates G. Biología floral y reproductiva de Vaccinium meridionale (Ericaceae) en los Andes orientales de Colombia. Biol Trop. 2015 [acceso: 01/02/2022];63:1197212. Disponible en: https://www.scielo.sa.cr/pdf/rbt/v63n4/0034-7744-rbt-63-04-01197.pdf

  4. Victoria M, Conejero G, Carril EP. Arándano rojo I (Vaccinium macrocarpon Ait.). Reduca. 2014 [acceso: 01/02/2022];7(2):100-12. Disponible en: https://eprints.ucm.es/id/eprint/27834/1/1736-2065-1-PB.pdf

  5. Jeong S, Velmurugan P, Park J, Jeong D. Probiotic-mediated blueberry (Vaccinium corymbosum L.) fruit fermentation to yield functionalized products for augmented antibacterial and antioxidant activity. J Biosci Bioeng. 2017 [acceso: 01/02/2022];0(0):1-9. Disponible en: https://www.sciencedirect.com/science/article/pii/S1389172317302669?via%3Dihub

  6. Sun Y, Li M, Mitra S, Muhammad R, Debnath B, Lu X, et al. Comparative phytochemical profiles and antioxidant enzyme activity analyses of the southern highbush blueberry (Vaccinium corymbosum) at different developmental stages. Mol. 2018 [acceso: 31/08/2021];23(9):2209 Disponible en: https://www.mdpi.com/1420-3049/23/9/2209/htm

  7. Aranda J. Infección del tracto urinario por Escherichia coli resistente a antibióticos tratada con Vaccinium macrocarpon (arándano rojo): Reporte de caso. Rev Peru Med Integr. 2016 [acceso: 01/02/2022];1(2):50-3. Disponible en: https://www.rpmi.pe/ojs/index.php/RPMI/article/view/19

  8. Eréndira I, Figueroa E, Sosa M, Bartolomé H, Martínez M. Polifenoles: propiedades antioxidantes y toxicológicas. Rev Fac Cienc Quím. 2017 [acceso: 01/02/2022];16(8):13. Disponible en: https://www.redalyc.org/pdf/4760/476047400002.pdf

  9. Coba P, Coronel D, Verdugo K, Fernanda M, Paredes EY. Estudio etnobotánico del mortiño (Vaccinium floribundum) como alimento ancestral y potencial alimento funcional. Rev Cienc Vida. 2012 [acceso: 01/02/2022];17(2):1-10. Disponible en: https://revistas.ups.edu.ec/index.php/granja/article/view/16.2012.01

  10. Baranowska M, Bartoszek A. Antioxidant and antimicrobial properties of bioactive phytochemicals from cranberry. Postep Hig Med Dosw. 2016 [acceso: 01/02/2022];70(2):1460-8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/28100853/

  11. Nogueira L, Morais E, Brito MA, Santos B, Vale D, Lucena B, et al. Evaluation of antibacterial, antifungal and modulatory activity of methanol and ethanol extracts of Padina sanctae-crucis. Afr Health Sci. 2014 [acceso: 01/02/2022];14(2):372-6. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196416/

  12. Barnoiu O, Moral J, Sequeira B, González L, Flores V. Valor preventivo adyuvante del arándano rojo americano (proantocianidinas 120 mg) en las infecciones del tracto urinario tras la colocación de catéter ureteral. Act Urolog España. 2015 [acceso: 01/02/2022];39(2):112-7. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=4980596

  13. Aliaño M, Jarillo J, Carrera C, Ferreiro M, Álvarez J, Palma M, et al. Optimization of a novel method based on ultrasound-assisted extraction for the quantification of anthocyanins and total phenolic compounds in blueberry samples (Vaccinium corymbosum L.). Foods. 2020 [acceso: 01/02/2022];9(12):1763. Disponible en: https://www.mdpi.com/2304-8158/9/12/1763/htm

  14. Aguilar L, Calderón M, González Y, Ragazzo J. Application of essential oils and polyphenols as natural antimicrobial agents in postharvest treatments: Advances and challenges. Food Sci Nutr. 2020 [acceso: 01/02/2022];8(6):2555-68. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1002/fsn3.1437

  15. Muñoz R, Padilla Am, Perrez O. Efecto inhibitorio del jugo de arandano (Vaccinium macrocarpon) sobre microorganismos en saliva de niños: estudio “in vitro”. Tlaxcala. 2013 [acceso: 01/02/2022]. Disponible en: https://www.medigraphic.com/pdfs/oral/ora-2013/ora1346c.pdf

  16. Cappai F, Garcia A, Cullen R, Davis M, Munoz P. Advancements in Low-Chill blueberry Vaccinium corymbosum L. Tissue culture practices. Plants. 2020 [acceso: 01/02/2022];9(11):1624. Disponible en: https://www.mdpi.com/2223-7747/9/11/1624/htm

  17. Coba P, Coronel D, Verdugo K, Paredes M, Yugsi E, Huachi L. Estudio etnobótanico del mortino (Vaccinium floribundum) como alimento ancestral y potencial alimento funcional. La Granja. 2012 [acceso: 01/02/2022];16(2):5-13. Disponible en: http://www.redalyc.org/articulo.oa?id=476047400002

  18. Liu H, Khoo C, Moreno MV. Some new findings regarding the antiadhesive activity of cranberry pphenolic Compounds and their microbial-derived metabolites against uropathogenic bacteria. J Agric Food Chem. 2019 [acceso: 01/02/2022];67(9):2166-74. Disponible en: https://pubs.acs.org/doi/pdf/10.1021/acs.jafc.8b05625

  19. Kim HW, Rhee MS. Response surface modeling of reductions in uropathogenic Escherichia coli biofilms on silicone by cranberry extract, caprylic acid, and thymol. Biofouling. 2018 [acceso: 01/02/2022];0(0):1-8. Disponible en: https://www.tandfonline.com/doi/abs/10.1080/08927014.2018.1488969?journalCode=gbif20

  20. Kim HW, Chung DH, Kim SA, Rhee MS. Synergistic cranberry juice combinations with natural-borne antimicrobials for the eradication of uropathogenic Escherichia coli biofilm within a short time. Appl Microbiol. 2019 [acceso: 01/02/2022];68:321-8. Disponible en: https://sfamjournals.onlinelibrary.wiley.com/doi/10.1111/lam.13140

  21. Ulrey RK, Barksdale SM, Zhou W, Hoek ML Van. Cranberry proanthocyanidins have anti-biofilm properties against Pseudomonas aeruginosa. BMC Comp Altern Med. 2014 [acceso: 01/02/2022];499(14):1-12. Disponible en: https://pubmed.ncbi.nlm.nih.gov/25511463/

  22. Gutiérrez I, Fernández J, Lombó F. Plant nutraceuticals as antimicrobial agents in food preservation: terpenoids, polyphenols and thiols. Int J Antimicrob Agents. 2018 [acceso: 01/02/2022];52(3):309-15. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29777759/

  23. Jagannathan J, Venkataseshan V. Pragasam V. Proanthocyanidins, Will they effectively restrain conspicuous bacterial strains devolving on urinary tract infection ? J Basic Microbiol. 2018 [acceso: 01/02/2022];632(014):1-12. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29775211/

  24. Diarra M, Hassan Y, Block G, Drover J, Delaquis P, Oomah D. Antibacterial activities of a polyphenolic-rich extract prepared from American cranberry (Vaccinium macrocarpon) fruit pomace against Listeria spp. LWT. 2020 [acceso: 01/02/2022];123:109056. Disponible en: https://www.sciencedirect.com/science/article/pii/S002364382030044X

  25. Baron G, Altomare A, Regazzoni L, Fumagalli L, Artasensi A, Borghi E, et al. Profiling Vaccinium macrocarpon components and metabolites in human urine and the urine ex-vivo effect on Candida albicans adhesion and biofilm-formation. Biochem Pharmacol. 2020 [acceso: 01/02/2022];173:113726. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31778647/

  26. Ranfaing J, Dunyach C, Louis L, Lavigne J, Sotto A. Propolis potentiates the effect of cranberry (Vaccinium macrocarpon) against the virulence of uropathogenic Escherichia coli. Sci Reports. 2018 [acceso: 01/02/2022];8(1):111. Disponible en: https://www.nature.com/articles/s41598-018-29082-6

  27. Lavigne J, Ranfaing J, Dunyach C, Sotto A. Synergistic effect of ropolis and antibiotics on uropathogenic Escherichia coli. Antibiot. 2020 [acceso: 01/02/2022];9(11):739. Disponible en: https://www.mdpi.com/2079-6382/9/11/739/htm

  28. Dey G, Sireswar S. Emerging functional beverages: fruit wines and transgenic wines. Sci Beverages. 2019 [acceso: 01/02/2022];471-514. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780128152690000143?via%3Dihub

  29. Lipson SM, Karalis G, Karthikeyan L, Ozen FS, Gordon RE, Ponnala S, et al. Mechanism of anti-rotavirus synergistic activity by Epigallocatechin Gallate and a proanthocyanidin-containing nutraceutical. Food Environ Virol. 2017 [acceso: 01/02/2022];11(11201):1-10. Disponible en: https://pubmed.ncbi.nlm.nih.gov/28466464/

  30. Nikolaeva Glomb D, Nedyalkova Dincheva N, Badjakov VK. In vitro antiviral activity of a series of wild berry fruit extracts against representatives of Picorna, Orthomyxo- and Paramyxoviridae. Nat Prod Commun. 2014;9(1):1-144. Disponible en: https://journals.sagepub.com/doi/10.1177/1934578X1400900116

  31. Gescher K, Hensel A, Hafezi W, Derksen A, Kühn J. Oligomeric proanthocyanidins from Rumex acetosa L. inhibit the attachment of herpes simplex virus type-1. Antiviral Res. 2011;89(1):9-18. Disponible en: https://pubmed.ncbi.nlm.nih.gov/21070811/

  32. Terlizzi ME, Occhipinti A, Luganini A, Maffei ME. Inhibition of herpes simplex type 1 and type 2 infections by Oximacro, a cranberry extract with a high content of A-type proanthocyanidins (PACs-A). Antiviral Res. 2016;16(3):1-43. Disponible en: https://pubmed.ncbi.nlm.nih.gov/27321663/

  33. Kronenberg A, Bütikofer L, Odutayo A, Mühlemann K, Da Costa B, Battaglia M, et al. Symptomatic treatment of uncomplicated lower urinary tract infections in the ambulatory setting: randomised, double blind trial. BMJ. 2017 [acceso: 01/02/2022];359:1-10. Disponible en: http://dx.doi.org/10.1136/bmj.j4784

  34. León R, Meckes M, Said S, Molina GM, Vargas J, Torres J, et al. Antimycobacterial neolignans isolated from Aristolochia taliscana. Fio Cruz Br. 2010 [acceso: 01/02/2022];105(1):45-51. Disponible en: https://pubmed.ncbi.nlm.nih.gov/20209328/

  35. Silva N, Fernandez J. Biological properties of medicinal plants: a review of their antimicrobial activity. J Venom Anim Toxins Incl Trop Dis. 2010;16(3):402-13. Disponible en: https://www.scielo.br/j/jvatitd/a/y5c3zwC7vBhWvDpFsSbSFGS/abstract/?lang=en

  36. Ramírez A, Jilwer J, Chiroque J. Efecto in vitro del zumo de Vaccinium corymbosum L. sobre Escherichia coli. Rev Univ Nac Trujillo. 2017 [acceso: 01/02/2022]. Disponible en: https://1library.co/document/6qmg307q-efecto-vitro-zumo-vaccinium-corymbosum-sobre-escherichia-coli.html

  37. Rodriguez C, Quirantes R, Uberos J, Jimenez C, Peña A, Segura A. Antibacterial activity of isolated phenolic compounds from cranberry (Vaccinium macrocarpon) against Escherichia coli. Food Funct. 2016 [acceso: 01/02/2022];605(45):1-26. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26902395/

  38. Hsin-I Chou, Kuan-Sheng Chen, Hsien-Chi Wang. Effects of cranberry extract on prevention of urinary tract infection in dogs and on adhesion of Escherichia coli to Madin-Darby canine kidney cells. Dep Vet Med. 2016 [acceso: 01/02/2022];77(4):421-7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/27027843/

  39. Coleman CM, Auker KM, Killday KB, Azadi P, Black I, Ferreira D. Arabinoxyloglucan Oligosaccharides may contribute to the antiadhesive roperties of porcine urine after cranberry consumption. Nat Prod. 2018 [acceso: 01/02/2022];188(68):17. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30873836/

  40. Gato E, Rosalowska A, Martínez M, Lores M, Bou G, Pérez A. Anti-adhesive activity of a Vaccinium corymbosum polyphenolic extract targeting intestinal colonization by Klebsiella pneumoniae. Biomed Pharmacother. 2020 [acceso: 01/02/2022];132:110885. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33113420/

  41. Huttunen S, Toivanen M, Arkko S, Ruponen M, Tikkanen-kaukanen C. Inhibition activity of wild berry juice fractions against Streptococcus pneumoniae binding to human bronchial cells. Phyther Res. 2011 [acceso: 01/02/2022];127(25):122-7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/20625989/

  42. Matsushima M, Suzuki T, Masui A, Kasai K, Kouchi T. Growth inhibitory action of cranberry on Helicobacter pylori. Gastroenterology. 2008;23(2):175-80. Disponible en: https://pubmed.ncbi.nlm.nih.gov/19120894/

  43. Quesada N, Vargas L. Actividad antinicrobiana del arándano (Vaccinium macrocarpon). Rev Med Costa Rica Centroam. 2013 [acceso: 01/02/2022];LXX(605):9-12. Disponible en: https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=40645

  44. Toivanen M, Huttunen S, Duricová J, Soininen P, Laatikainen R, Loimaranta V, et al. Screening of binding activity of Streptococcus pneumoniae, Streptococcus agalactiae and Streptococcus suis to berries and juices. Phyther Res. 2010 [acceso: 01/02/2022];101(July):95-101. Disponible en: https://pubmed.ncbi.nlm.nih.gov/19610031/

  45. Maisuria V, Santos Y, Tufenkji N, Déziel E. Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. Sci Rep. 2016 [acceso: 01/02/2022];6(30169):2-13. Disponible en: https://www.nature.com/articles/srep30169

  46. Gudžinskaitė I, Stackevičienė E, Liaudanskas M, Zymonė K, Žvikas V, Viškelis J, et al. Variability in the qualitative and quantitative composition and content of phenolic compounds in the fruit of introduced American cranberry (Vaccinium macrocarpon Aiton). Plants. 2020 [acceso: 01/02/2022];9(10):1379. Disponible en: https://www.mdpi.com/2223-7747/9/10/1379/htm

  47. Lee K, Kim W, Lim J, Nam S, Youn MIN, Nam S, et al. Antipathogenic properties of green tea polyphenol epigallocatechin gallate at concentrations below the MIC against enterohemorrhagic Escherichia coli O157: H7. J Food Prot. 2009;72(2):325-31. Disponible en: https://pubmed.ncbi.nlm.nih.gov/19350976/

  48. Dagostin SFF. Utilizacao de Vaccinium macrocarpom (cranberry) para prevecao de infecção urinária recorrente: revisão da literatura e divulgação a profissionais de saúde. Univ Extrem Sul Catarin. 2015 [acceso: 01/02/2022]. Disponible en: http://repositorio.unesc.net/handle/1/3605

  49. Silva S, Costa EM, Mendes M, Morais RM. Antimicrobial, antiadhesive and antibiofilm activity of an ethanolic anthocyanin rich blueberry extract purified by solid phase extraction. Antimicrob Act Blueb. 2016 [acceso: 01/02/2022];251(12):1-24. Disponible en: https://pubmed.ncbi.nlm.nih.gov/27349348/

  50. Lacombe A, Wu VCH, Tyler S, Edwards K. Antimicrobial action of the American cranberry constituents; phenolics, anthocyanins, and organic acids, against Escherichia coli O157: H7. Int J Food Microbiol. 2010 [acceso: 01/02/2022];139(1-2):102-7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/20153540/

  51. Modolon K, Modolon M, Souza M, Maia J, Dal F, Morisso P, et al. Smart wound dressing based on κ-carrageenan/locust bean gum/cranberry extract for monitoring bacterial infections. Carbohydr Polym. 2019 [acceso: 01/02/2022];206:362-70. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30553333/

  52. Rossi R, Porta S, Canovi B. Overview on cranberry and urinary tract infections in females. J Clin Gastroenterol. 2010 [acceso: 01/02/2022];44(1):61-2. Disponible en: https://pubmed.ncbi.nlm.nih.gov/20495471/

  53. Blumberg JB, Basu A, Krueger CG, Lila MA, Neto CC, Novotny JA, et al. Impact of cranberries on gut microbiota and cardiometabolic health : Proceedings of the Cranberry Health Research Conference 2015. Adv Nutr Int. 2016 [acceso: 01/02/2022];7(7):1-12. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942875/

  54. Reyes Jurado P, Palou L. Métodos de evaluación de la actividad antimicrobiana y de determinación de los componentes químicos de los aceites esenciales. Temas Sel Ing Aliment. 2014 [acceso: 01/02/2022];8(1):68-78. Disponible en: https://nanopdf.com/download/metodos-de-evaluacion-de-la-actividad-antimicrobiana-y-de_pdf

  55. López Velandia DP, Torres Caycedo MI, Prada Quiroga CF. Genes de resistencia en bacilos Gram negativos: Impacto en la salud pública en Colombia. Univ Salud. 2016 [acceso: 01/02/2022];18(1):190-202. Disponible en: https://revistas.udenar.edu.co/index.php/usalud/article/view/2735/pdf

  56. Sanchez Y, Urbano EX, Gonzalez FJ, Ferrebuz AJ. Caracterización fenotípica de cepas de Staphylococcus aureus productoras de B-lactamasas y resistente a la meticilina. Rev Investig Salud Univ Boyacá. 2018 [acceso: 01/02/2022];5(1):125-43. Disponible en: https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/302/427




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Plant Med. 2021;26

ARTíCULOS SIMILARES

CARGANDO ...