medigraphic.com
ENGLISH

Ginecología y Obstetricia de México

Federación Mexicana de Ginecología y Obstetricia, A.C.
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2023, Número 05

<< Anterior Siguiente >>

Ginecol Obstet Mex 2023; 91 (05)


Virus en el tratamiento de cáncer de mama

González-Mariño MA
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 146
Paginas: 344-365
Archivo PDF: 316.67 Kb.


PALABRAS CLAVE

Cáncer de mama, virus, tratamiento.

RESUMEN

Objetivo: Sintetizar las conclusiones de artículos que estudiaron la aplicación de virus en el tratamiento de cáncer de mama humano.
Metodología: Búsqueda bibliográfica de artículos registrados en PubMed, sin uso de filtros, efectuada en el mes de noviembre de 2019 con los términos: oncolytic virus in breast cancer. Los artículos seleccionados se agruparon en cuadros según el tipo de virus. Se obtuvieron datos del primer autor, año de publicación, vector y conclusiones principales.
Resultados: Se encontraron 271 publicaciones de las que se excluyeron 128 en el cribado por título y resumen, 31 por tratarse de artículos de revisión. Si bien no hubo restricción por idioma, se excluyó un artículo en chino y seis cuyo objetivo principal fue el estudio del cáncer de mama en caninos. Las demás exclusiones se hicieron por falta de vínculo con el tema objeto de revisión. De los 143 artículos seleccionados para lectura completa se excluyeron 17 por no ser pertinentes con el objetivo, lo mismo que una comunicación breve.
Conclusiones: La información seleccionada de virus para tratamiento de pacientes con cáncer de mama proviene casi toda de investigación preclínica con respuestas que favorecen la acción experimental de los oncovirus. En los estudios de investigación clínica, los resultados aún son escasos, pero insinúan su potencial de desarrollo, sobre todo en combinación con oncovirus o con otros agentes terapéuticos.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Wild CP, Weiderpass E, Stewart BW, editors (2020). WorldCancer Report: Cancer Research for Cancer Prevention.Lyon, France: International Agency for Research on Cancer.http://publications.iarc.fr/586.

  2. Cardoso F, Senkus E, Costa A, Papadopoulos E, et al . 4thESO–ESMO International Consensus Guidelines for AdvancedBreast Cancer (ABC 4). Annals of Oncology 2018; 29:1634-57. https://doi.org/10.1093/annonc/mdy192

  3. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a newclass of immunotherapy drugs. Nat Rev Drug Discov 2015;14:642–662. https://doi.org/10.1038/nrd4663

  4. Bommareddy PK, Patel A, Hossain S, Kaufman HL. Talimogenelaherparepvec (T-VEC) and other oncolytic virusesfor the treatment of melanoma. Am J Clin Dermatol 2017;18:1–15. https://doi.org/10.1007/s40257-016-0238-9

  5. Jhawar SR, Thandoni A, Bommareddy PK, Hassan S, etal. Oncolytic viruses-natural and genetically engineeredcancer immunotherapies. Front Oncol 2017; 7:202. https://doi.org/10.3389/fonc.2017.00202

  6. Hennessy ML, Bommareddy PK, Boland G, Kaufman HL.Oncolytic Immunotherapy. Surg Oncol Clin N Am. 2019;28 (3): 419-30. https://doi.org/10.1016/j.soc.2019.02.007

  7. Cody JJ, Hurst DR. Promising oncolytic agents for metastaticbreast cancer treatment. Oncolytic Virotherapy 2015; 4:63-73. https://doi.org/10.2147/OV.S63045

  8. Suryawanshi YR, Zhan T, Essani K. Oncolytic viruses:emerging options for the treatment of breast cancer.Med Oncol 2017; 34 (3): 43. https://doi.org/10.1007/s12032-017-0899-0

  9. Crompton AM, Kirn DH. From ONYX-015 to armed vacciniaviruses: the education and evolution of oncolytic virus development.Curr Cancer Drug Targets 2007; 7 (2): 133-39.https://doi.org/10.2174/156800907780058862

  10. Yan Y, Xu H, Wang J, Wu X, et al. Inhibition of breast cancercells by targeting E2F-1 gene and expressing IL15 oncolyticadenovirus. Biosci Rep 2019; 39 (7) pii: https://doi.org/10.1042/BSR20190384

  11. Dong X, Qu W, Ma S, Zhu Z, et al. Potent antitumoral effectsof targeted promoter-driven oncolytic adenovirus armedwith Dm-dNK for breast cancer in vitro and in vivo. CancerLett 2013; 328 (1): 95-103. https://doi.org/10.1016/j.canlet.2012.09.003

  12. Bazan-Peregrino M, Sainson RC, Carlisle RC, Thoma C, et al.Combining virotherapy and angiotherapy for the treatmentof breast cancer Cancer Gene Ther 2013; 20 (8):461-68.https://doi.org/10.1038/cgt.2013.41

  13. Hu Z, Zhang Z, Guise T, Seth P. Systemic delivery of an oncolyticadenovirus expressing soluble transforming growthfactor-β receptor II-Fc fusion protein can inhibit breastcancer bone metastasis in a mouse model. Hum GeneTher 2010; 21 (11): 1623-29. https://doi.org/10.1089/hum.2010.018

  14. Zhang Z, Hu Z, Gupta J, Krimmel JD, et al. Intravenousadministration of adenoviruses targeting transforminggrowth factor beta signaling inhibits established bonemetastases in 4T1 mouse mammary tumor model in animmunocompetent syngeneic host. Cancer Gene Ther2012; 19 (9): 630-6. https://doi.org/10.1038/cgt.2012.41

  15. Fang L, Cheng Q, Bai J, Qi YD, et al. An oncolytic adenovirusexpressing interleukin-24 enhances antitumor activitiesin combination with paclitaxel in breast cancer cells. MolMed Rep. 2013; 8 (5): 1416-24. https://doi.org/10.3892/mmr.2013.1680

  16. Bramante S, Koski A, Liikanen I, Vassilev L, et al. Oncolyticvirotherapy for treatment of breast cancer, includingtriple-negative breast cancer. Oncoimmunology 2015;5 (2): e1078057. https://doi.org/10.1080/2162402X.2015.1078057

  17. Hemminki O, Diaconu I, Cerullo V, Pesonen SK, et al. Ad3-hTERT-E1A, a fully serotype 3 oncolytic adenovirus inpatients with chemotherapy refractory cancer. Mol Ther2012; 20 (9): 1821-30. https://doi.org/10.1038/mt.2012.115

  18. Asad AS, Moreno Ayala MA, Gottardo MF, Zuccato C, et al.Viral gene therapy for breast cancer: progress and challenges.Expert Opin Biol Ther 2017; 17 (8): 945-59. https://doi.org/10.1080/14712598.2017.1338684

  19. Alam S, Bowser BS, Israr M, Conway MJ, et al. Adenoassociatedvirus type 2 infection of nude mouse humanbreast cancer xenograft induces necrotic death and inhibitstumor growth. Cancer Biol Ther 2014; 15 (8): 1013-28.https://doi.org/10.4161/cbt.29172

  20. Skelding KA, Barry RD, Shafren DR. Systemic targeting ofmetastatic human breast tumor xenografts by CoxsackievirusA21. Breast Cancer Res Treat 2009; 113 (1): 21-30.https://doi.org/10.1007/s10549-008-9899-2

  21. Skelding KA, Barry RD, Shafren DR. Enhanced oncolysismediated by Coxsackievirus A21 in combination withdoxorubicin hydrochloride. Invest New Drugs 2012; 30(2): 568-81. https://doi.org/10.1007/s10637-010-9614-0

  22. Mayo MA. A summary of taxonomic changes recentlyapproved by ICTV. Arch. Virol 2002; 147: 1655-63. https://doi.org/10.1007/s007050200039

  23. Zhao H, Janke M, Fournier P, Schirrmacher V. RecombinantNewcastle disease virus expressing human interleukin-2serves as a potential candidate for tumor therapy. VirusRes 200; 136 (1-2): 75-80. https://doi.org/10.1016/j.virusres.2008.04.020

  24. Ghrici M, El Zowalaty M, Omar AR, Ideris A. Induction ofapoptosis in MCF-7 cells by the hemagglutinin-neuraminidaseglycoprotein of Newcastle disease virus Malaysianstrain AF2240. Oncol Rep 2013; 30 (3): 1035-44. https://doi.org/10.3892/or.2013.2573

  25. Ahmad U, Ahmed I, Keong YY, Abd Manan N, et al. Inhibitoryand apoptosis-inducing effects of Newcastledisease virus strain AF2240 on mammary carcinoma cellline. Biomed Res Int 2015; 2015: 127828. https://doi.org/10.1155/2015/127828

  26. Raihan J, Ahmad U, Yong YK, Eshak Z, et al. Regression ofsolid breast tumors in mice by Newcastle disease virus isassociated with production of apoptosis related cytokines.BMC Cancer 2019; 19 (1): 315. https://doi.org/10.1186/s12885-019-5516-5 Erratum in: BMC Cancer. 2019;19(1):378

  27. Abd-Aziz N, Stanbridge EJ, Shafee N. Newcastle diseasevirus degrades HIF-1α through proteasomal pathwaysindependent of VHL and p53. J Gen Virol 2016; 97 (12):3174-82. https://doi.org/10.1099/jgv.0.000623

  28. Amin MZ, Ani CH, Tan SW T, Yeap SK, et al. Evaluation ofa recombinant newcastle disease virus expressing humanIL12 against human breast cancer. Sci Rep 2019; 9 (1):13999. https://doi.org/10.1038/s41598-019-50222-z

  29. O’Bryan SM, Mathis JM. Oncolytic virotherapy for breastcancer treatment. Current Gene Therapy 2018; 18: 192-205.https://doi.org/10.2174/1566523218666180910163805

  30. Ebert O, Harbaran S, Shinozaki K, Woo SL. Systemic therapyof experimental breast cancer metastases by mutant vesicularstomatitis virus in immune-competent mice. CancerGene Ther 2005; 12 (4): 350-58. https://doi.org/10.1038/sj.cgt.7700794

  31. Ahmed M, Puckett S, Lyles DS. Susceptibility of breastcancer cells to an oncolytic matrix (M) protein mutant ofvesicular stomatitis virus. Cancer Gene Ther 2010; 17 (12):883-92. https://doi.org/10.1038/cgt.2010.46

  32. Le Boeuf F, Gebremeskel S, McMullen N, He H, et al.Reovirus FAST protein enhances vesicular stomatitis virusoncolytic virotherapy in primary and metastatic tumormodels. Mol Ther Oncolytics 2017; 6: 80-89. https://doi.org/10.1016/j.omto.2017.08.001

  33. Martin NT, Roy DG, Workenhe ST, van den Wollenberg DJM,et al. Presurgical neoadjuvant oncolytic virotherapy confersprotection against rechallenge in a murine model of breastcancer. Sci Rep 2019; 9 (1): 1865. https://doi.org/10.1038/s41598-018-38385-7

  34. Zhao Q, Zhang W, Ning Z, Zhuang X, et al. A novel oncolyticherpes simplex virus type 2 has potent anti-tumor activity.PLoS One 2014; 9 (3): e93103. https://doi.org/10.1371/journal.pone.0093103

  35. Hu JC, Coffin RS, Davis CJ, Graham NJ, et al. A phase I studyof OncoVEXGM-CSF, a second-generation oncolytic herpessimplex virus expressing granulocyte macrophage colonystimulatingfactor. Clin Cancer Res 2006; 12 (22): 6737-47.https://doi.org/10.1158/1078-0432.CCR-06-0759

  36. Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, et al.Talimogene Laherparepvec improves durable response ratein patients with advanced melanoma. J Clin Oncol 2015;33: 2780-88 https://doi.org/10.1200/JCO.2014.58.3377.

  37. Wu A, Mazumder A, Martuza RL, et al. Biological purgingof breast cancer cells using an attenuated replicationcompetentherpes simplex virus in human hematopoieticstem cell transplantation. Cancer Res 2001; 61 (7): 3009-15.

  38. Shen Y, Nemunaitis J. Herpes simplex virus 1 (HSV-1) forcancer treatment. Cancer Gene Ther 2006; 13 (11): 975-92.https://doi.org/10.1038/sj.cgt.7700946

  39. Teshigahara O, Goshima F, Takao K, Kohno S, et al. Oncolyticviral therapy for breast cancer with herpes simplex virustype 1 mutant HF 10. J Surg Oncol 2004; 85 (1): 42-47.https://doi.org/10.1002/jso.20005

  40. Kimata H, Imai T, Kikumori T, Teshigahara O, et al. Pilotstudy of oncolytic viral therapy using mutant herpessimplex virus (HF10) against recurrent metastatic breastcancer. Ann Surg Oncol 2006; 13 (8): 1078-84. https://doi.org/10.1245/ASO.2006.08.035

  41. Sahin TT, Kasuya H, Nomura N, Shikano T, et al. Impact ofnovel oncolytic virus HF10 on cellular components of thetumor microenviroment in patients with recurrent breastcancer. Cancer Gene Ther 2012; 19 (4): 229-37. https://doi.org/10.1038/cgt.2011.80

  42. Liu R, Varghese S, Rabkin SD. Oncolytic herpes simplexvirus vector therapy of breast cancer in C3(1)/SV40 Tantigentransgenic mice. Cancer Res 2005; 65 (4): 1532-40.doi:10.1158/0008-5472.CAN-04-3353

  43. Cody JJ, Scaturro P, Cantor AB, Yancey Gillespie G, et al.Preclinical evaluation of oncolytic δγ(1)34.5 herpes simplexvirus expressing interleukin-12 for therapy of breast cancerbrain metastases. Int J Breast Cancer 2012; 2012: 628697.https://doi.org/10.1155/2012/628697

  44. Wood LW, Shillitoe EJ. Effect of a caspase inhibitor,zVADfmk, on the inhibition of breast cancer cells by herpessimplex virus type 1. Cancer Gene Ther 2011; 18 (10): 685-94. https://doi.org/10.1038/cgt.2011.34

  45. Tan G, Kasuya H, Sahin TT, Yamamura K, et al. Combinationtherapy of oncolytic herpes simplex virus HF10 andbevacizumab against experimental model of human breastcarcinoma xenograft. Int J Cancer 2015; 136 (7): 1718-30.https://doi.org/10.1002/ijc.29163

  46. Conner J, Braidwood L. Expression of inhibitor of growth4 by HSV1716 improves oncolytic potency and enhancesefficacy. Cancer Gene Ther 2012; 19 (7): 499-507. https://doi.org/10.1038/cgt.2012.24

  47. Cuddington BP, Dyer AL, Workenhe ST, Mossman KL. Oncolyticbovine herpesvirus type 1 infects and kills breasttumor cells and breast cancer-initiating cells irrespectiveof tumor subtype. Cancer Gene Ther 2013; 20 (5): 282-89.https://doi.org/10.1038/cgt.2013.18

  48. Brun J, McManus D, Lefebvre C, Hu K, et al. Identificationof genetically modified Maraba virus as an oncolyticrhabdovirus. Mol Ther. 2010;18(8):1440–1449. https://doi.org/10.1038/mt.2010.103

  49. Bourgeois-Daigneault MC, St-Germain LE, Roy DG, Pelin A,et al. Combination of Paclitaxel and MG1 oncolytic virus asa successful strategy for breast cancer treatment. BreastCancer Res 2016; 18 (1): 83. https://doi.org/10.1186/s13058-016-0744-y

  50. Bourgeois-Daigneault MC, Roy DG, Aitken AS, El Sayes N,et al. Neoadjuvant oncolytic virotherapy before surgerysensitizes triple-negative breast cancer to immune checkpointtherapy. Sci Transl Med 2018; 10 (422). pii: eaao1641.https://doi.org/10.1126/scitranslmed.aao1641

  51. Choi AH, O'Leary MP, Lu J, Kim SI, et al. Endogenous Aktactivity promotes virus entry and predicts efficacy ofnovel chimeric Orthopoxvirus in Triple-Negative BreastCancer. Mol Ther Oncolytics 2018; 9: 22-29. https://doi.org/10.1016/j.omto.2018.04.001

  52. Choi AH, O'Leary MP, Chaurasiya S, Lu J, et al. Novel chimericparapoxvirus CF189 as an oncolytic immunotherapy intriple-negative breast cancer. Surgery 2018; 163 (2): 336-42. https://doi.org/10.1016/j.surg.2017.09.030

  53. Maxwell IH, Chapman JT, Scherrer LC, Spitzer AL, et al. Expansionof tropism of a feline parvovirus to target a humantumor cell line by display of an alpha(v) integrin bindingpeptide on the capsid. Gene Ther 2001; 8 (4): 324-331.https://doi.org/10.1038/sj.gt.3301399

  54. Muharram G, Le Rhun E, Loison I, Wizla P, et al. ParvovirusH-1 induces cytopathic effects in breast carcinoma-derivedcultures. Breast Cancer Res Treat 2010; 121 (1): 23-33.https://doi.org/10.1007/s10549-009-0451-9

  55. Ansardi DC, Porter DC, Jackson CA, Gillespie GY, et al. RNAreplicons derived from poliovirus are directly oncolytic forhuman tumor cells of diverse origins. Cancer Res 2001; 61(23): 8470-479.

  56. Ochiai H, Moore SA, Archer GE, Okamura T, et al. Treatmentof intracerebral neoplasia and neoplastic meningitis withregional delivery of oncolytic recombinant poliovirus.Clin Cancer Res. 2004;10(14):4831-4838. https://doi.org/10.1158/1078-0432.CCR-03-0694

  57. Holl EK, Brown MC, Boczkowski D, McNamara MA, et al.Recombinant oncolytic poliovirus, PVSRIPO, has potentcytotoxic and innate inflammatory effects, mediatingtherapy in human breast and prostate cancer xenograftmodels. Oncotarget. 2016;7(48):79828-79841. https://doi.org/10.18632/oncotarget.12975

  58. Clements D, Helson E, Gujar SA, Lee PW. Reovirus in cancertherapy: an evidence-based review. Oncolytic Virother.2014; 3:69-82. https://doi.org/10.2147/OV.S51321

  59. Marcato P, Dean CA, Giacomantonio CA, Lee PW. OncolyticReovirus effectively targets breast cancer stem cells.Mol Ther. 2009;17(6):972-979. https://doi.org/10.1038/mt.2009.58

  60. Thirukkumaran C, Shi ZQ, Thirukkumaran P, Luider J, etal. PUMA and NF-kB Are Cell Signaling Predictors of ReovirusOncolysis of Breast Cancer. PLoS One. 2017 ;12(1):e0168233. https://doi.org/10.1371/journal.pone.0168233

  61. Mostafa AA, Meyers DE, Thirukkumaran CM, Liu PJ, et al.Oncolytic Reovirus and immune checkpoint inhibition as anovel immunotherapeutic strategy for breast cancer. Cancers(Basel). 2018;10(6). pii: E205. https://doi.org/10.3390/cancers10060205

  62. Rodríguez Stewart RM, Berry JTL, Berger AK, Yoon SB, et al.Enhanced killing of triple-negative breast cancer cells byreassortant Reovirus and topoisomerase inhibitors. J Virol.2019. pii: JVI.01411-19. https://doi.org/10.1128/JVI.01411-19

  63. Sugiyama T, Yoneda M, Kuraishi T, Hattori S, et al. Measlesvirus selectively blind to signaling lymphocyte activationmolecule as a novel oncolytic virus for breast cancertreatment. Gene Ther. 2013; 20 (3): 338-47. https://doi.org/10.1038/gt.2012.44

  64. Griffin DE. Measles virus. In: David M, Knipe P, Peter M,Howley M, Griffin DE, Lamb RA, Malcolm A, Martin M,Bernard Roizman S, Stephen E, Straus M (eds). Fields Virology.Lippincott Williams & Wilkins: Philadelphia, 2006;1401-1586. https://www.amazon.com/Fields-Virology-2-Set-Bernard/dp/0781702534

  65. Msaouel P, Iankov ID, Allen C, Morris JC, et al. Engineeredmeasles virus as a novel oncolytic therapy against prostatecancer. Prostate 2009; 69: 82-91 https://doi.org/10.1002/pros.20857

  66. Allen C, Paraskevakou G, Liu C, Iankov ID, et al. Oncolyticmeasles virus strains in the treatment of gliomas.Expert Opin Biol Ther 2008; 8: 213-220. https://doi.org/10.1517/14712598.8.2.213

  67. McDonald CJ, Erlichman C, Ingle JN, Rosales GA, et al. Ameasles virus vaccine strain derivative as a novel oncolyticagent against breast cancer. Breast Cancer Res Treat 2006;99: 177-84. https://doi.org/10.1007/s10549-006-9200-5

  68. Blechacz B, Splinter PL, Greiner S, Myers R, et al. Engineeredmeasles virus as a novel oncolytic viral therapy system forhepatocellular carcinoma. Hepatology 2006; 44: 1465-77.https://doi.org/10.1002/hep.21437

  69. Iankov ID, Msaouel P, Allen C, Federspiel MJ, et al. Demonstrationof anti-tumor activity of oncolytic measles virusstrains in a malignant pleural effusion breast cancer model.Breast Cancer Res Treat 2010; 122 (3): 745-54. https://doi.org/10.1007/s10549-009-0602-z

  70. Liu C, Erlichman C, McDonald CJ, Ingle JN, et al. Heatshock protein inhibitors increase the efficacy of measlesvirotherapy. Gene Ther 2008; 15 (14): 1024-34. https://doi.org/10.1038/gt.2008.30

  71. Opyrchal M, Allen C, Msaouel P, Iankov I, et al. Inhibitionof Rho-associated coiled-coil-forming kinase increasesefficacy of measles virotherapy. Cancer Gene Ther 2013; 20(11): 630-37. https://doi.org/10.1038/cgt.2013.58

  72. Iankov ID, Kurokawa CB, D'Assoro AB, Ingle JN, et al. Inhibitionof the Aurora A kinase augments the anti-tumorefficacy of oncolytic measles virotherapy. Cancer GeneTher 2015; 22 (9): 438-44. https://doi.org/10.1038/cgt.2015.36

  73. Jing Y, Bejarano MT, Zaias J, Merchan JR. In vivo anti-metastaticeffects of uPAR retargeted measles virus in syngeneicand xenograft models of mammary cancer. Breast CancerRes Treat 2015; 149 (1): 99-108. https://doi.org/10.1007/s10549-014-3236-8

  74. Jing Y, Chavez V, Ban Y, Acquavella N, et al. MolecularEffects of Stromal-Selective Targeting by uPAR-RetargetedOncolytic Virus in Breast Cancer. Mol Cancer Res 2017;15 (10): 1410-20. https://doi.org/10.1158/1541-7786.MCR-17-0016

  75. Shi LY, Han Z, Li XX, Li M, Han H, Chen J, Zang S. InactivatedSendai virus strain Tianjin induces apoptosis in breastcancer MCF-7 cells by promoting caspase activation andFas/FasL expression. Cancer Biother Radiopharm 2015; 30(1): 33-40. doi: 10.1089/cbr.2014.1704.

  76. Zhang Q, Yu YA, Wang E, Chen N, et al. Eradication of solidhuman breast tumors in nude mice with an intravenouslyinjected light-emitting oncolytic vaccinia virus. Cancer Res2007; 67 (20): 10038-46. https://doi.org/10.1158/0008-5472.CAN-07-0146

  77. Seubert CM, Stritzker J, Hess M, Donat U, Sturm JB, ChenN, von Hof JM, Krewer B, Tietze LF, Gentschev I, Szalay AA.Enhanced tumor therapy using vaccinia virus strain GLV-1h68 in combination with a β-galactosidase-activatableprodrug seco-analog of duocarmycin SA. Cancer Gene Ther2011; 18 (1): 42-52. https://doi.org/10.1038/cgt.2010.49

  78. Hofmann E, Grummt F, Szalay AA. Vaccinia virus GLV-1h237 carrying a Walker A motif mutation of mouse Cdc6protein enhances human breast tumor therapy in mousexenografts. Int J Oncol 2011; 38 (3): 871-8. https://doi.org/10.3892/ijo.2011.910

  79. Haddad D, Chen N, Zhang Q, Chen CH, et al. A novel geneticallymodified oncolytic vaccinia virus in experimentalmodels is effective against a wide range of human cancers.Ann Surg Oncol 2012; 19 (Suppl 3): S665-74. https://doi.org/10.1245/s10434-011-2198-x

  80. Gil M, Seshadri M, Komorowski MP, Abrams SI, et al. TargetingCXCL12/CXCR4 signaling with oncolytic virotherapydisrupts tumor vasculature and inhibits breast cancer metastases.Proc Natl Acad Sci USA 2013; 110 (14): E1291-300.https://doi.org/10.1073/pnas.1220580110

  81. Gholami S, Chen CH, Belin LJ, Lou E, et al. Vaccinia virus GLV-1h153 is a novel agent for detection and effective local controlof positive surgical margins for breast cancer. Breast CancerRes 2013; 15 (2): R26. https://doi.org/10.1186/bcr3404

  82. Gholami S, Marano A, Chen NG, Aguilar RJ, et al. A novelvaccinia virus with dual oncolytic and anti-angiogenictherapeutic effects against triple-negative breast cancer.Breast Cancer Res Treat 2014; 148 (3): 489-99. https://doi.org/10.1007/s10549-014-3180-7

  83. Eissa IR, Bustos-Villalobos I, Ichinose T, Matsumura S,Naoe Y, Miyajima N, Morimoto D, Mukoyama N,Zhiwen W,Tanaka M, Hasegawa H, Sumigama S , Aleksic B, Kodera ,Kasuya H. The Current Status and Future Prospects of OncolyticViruses in Clinical Trials against Melanoma, Glioma,Pancreatic, and Breast Cancers 2018; 10 (10): 356; doi:10.3390/cancers10100356

  84. Heise C, Hermiston T, Johnson L, Brooks G, et al. An adenovirusE1A mutant that demonstrates potent and selectivesystemic anti-tumoral efficacy. Nat Med 2000; 6 (10):1134-39. https://doi.org/10.1038/80474

  85. Cho WK, Seong YR, Lee YH, Kim MJ, et al. Oncolytic effectsof adenovirus mutant capable of replicating in hypoxicand normoxic regions of solid tumor. Mol Ther 2004; 10(5): 938-49. https://doi.org/10.1016/j.ymthe.2004.07.023

  86. Shi CX, Long MA, Liu L, Graham FL, et al. The humanSCGB2A2 (mammaglobin-1) promoter/enhancer in ahelper-dependent adenovirus vector directs high levelsof transgene expression in mammary carcinoma cells butnot in normal nonmammary cells. Mol Ther 2004; 10(4):758-67. https://doi.org/10.1016/j.ymthe.2004.06.849

  87. Wang Y, Thorne S, Hannock J, Francis J, et al. A novel assayto assess primary human cancer infectibility by replicationselectiveoncolytic adenoviruses. Clin Cancer Res 2005; 11(1): 351-60. https://doi.org/10.1158/1078-0432.351.11.1

  88. Wang ZG, Zhao W, Ramachandra M, Seth P. An oncolyticadenovirus expressing soluble transforming growth factorbetatype II receptor for targeting breast cancer: in vitroevaluation. Mol Cancer Ther 2006; 5 (2): 367-73. https://doi.org/10.1158/1535-7163.MCT-05-0125

  89. Stoff-Khalili MA, Rivera AA, Stoff A, Michael Mathis J, et al.Combining high selectivity of replication via CXCR4 promoterwith fiber chimerism for effective adenoviral oncolysisin breast cancer. Int J Cancer 2007; 120 (4): 935-41. https://doi.org/10.1002/ijc.22338

  90. Hakkarainen T, Särkioja M, Lehenkari P, Miettinen S, et al. Humanmesenchymal stem cells lack tumor tropism but enhancethe antitumor activity of oncolytic adenoviruses in orthotopiclung and breast tumors. Hum Gene Ther. 2007;18(7):627-641.https://doi.org/10.1089/hum.2007.034

  91. Ranki T, Kanerva A, Ristimäki A, Hakkarainen T,et al. Aheparan sulfate-targeted conditionally replicative adenovirus,Ad5.pk7-Delta24, for the treatment of advancedbreast cancer. Gene Ther 2007; 14 (1): 58-67. https://doi.org/10.1038/sj.gt.3302830

  92. Ranki T, Särkioja M, Hakkarainen T, von Smitten K, et al.Systemic efficacy of oncolytic adenoviruses in imagableorthotopic models of hormone refractory metastaticbreast cancer. Int J Cancer 2007; 121 (1): 165-74. https://doi.org/10.1002/ijc.22627

  93. Eriksson M, Guse K, Bauerschmitz G, Virkkunen P, etal. Oncolytic adenoviruses kill breast cancer initiatingCD44+CD24-/low cells. Mol Ther 2007; 15 (12): 2088-93.https://doi.org/10.1038/sj.mt.6300300

  94. Bauerschmitz GJ, Ranki T, Kangasniemi L, Ribacka C, et alTissue-specific promoters active in CD44+CD24-/low breastcancer cells. Cancer Res 2008; 68 (14): 5533-39. https://doi.org/10.1158/0008-5472.CAN-07-5288

  95. Gomes EM, Rodrigues MS, Phadke AP, Butcher LD, et al.Antitumor activity of an oncolytic adenoviral-CD40 ligand(CD154) transgene construct in human breast cancercells. Clin Cancer Res 2009; 15 (4): 1317-25. https://doi.org/10.1158/1078-0432.CCR-08-1360

  96. Yoo JY, Ryu J, Gao R, Yaguchi T, et al. Tumor suppression byapoptotic and anti-angiogenic effects of mortalin-targetingadeno-oncolytic virus. J Gene Med 2010; 12 (7): 586-95.https://doi.org/10.1002/jgm.1471

  97. Wang C, Dai Z, Fan R, Deng Y, et al. HSF1 overexpressionenhances oncolytic effect of replicative adenovirus. J TranslMed 2010; 8: 44. https://doi.org/10.1186/1479-5876-8-44

  98. Hu Z, Robbins JS, Pister A, Zafar MB, et al. A modified hTERTpromoter-directed oncolytic adenovirus replication withconcurrent inhibition of TGFbeta signaling for breast cancertherapy. Cancer Gene Ther 2010; 17 (4): 235-43. https://doi.org/10.1038/cgt.2009.72 Erratum in: Cancer GeneTher. 2010 Cancer Gene Therapy 2010; 17: 906.

  99. Dembinski JL, Spaeth EL, Fueyo J, Gomez-Manzano C, etal. Reduction of nontarget infection and systemic toxicityby targeted delivery of conditionally replicating virusestransported in mesenchymal stem cells. Cancer Gene Ther2010; 17 (4): 289-97. https://doi.org/10.1038/cgt.2009.67

  100. Zhang Z, Krimmel J, Zhang Z, Hu Z, et al. Systemic delivery ofa novel liver-detargeted oncolytic adenovirus causes reducedliver toxicity but maintains the antitumor response in abreast cancer bone metastasis model. Hum Gene Ther 2011;22 (9): 1137-42. https://doi.org/10.1089/hum.2011.003

  101. Zhu W, Wei L, Zhang H, Chen J, et al. Oncolytic adenovirusarmed with IL-24 inhibits the growth of breast cancer invitro and in vivo. J Exp Clin Cancer Res 2012; 31: 51. https://doi.org/10.1186/1756-9966-31-51

  102. Zhu W, Zhang H, Shi Y, Song M, et al. Oncolytic adenovirusencoding tumor necrosis factor-related apoptosis inducingligand (TRAIL) inhibits the growth and metastasis of triplenegativebreast cancer. Cancer Biol Ther 2013; 14 (11):1016-23. https://doi.org/10.4161/cbt.26043

  103. Yang Y, Xu W, Neill T, Hu Z, et al. Systemic Delivery of anOncolytic Adenovirus Expressing Decorin for the Treatmentof Breast Cancer Bone Metastases. Hum Gene Ther 2015;26 (12): 813-25. https://doi.org/10.1089/hum.2015.098

  104. Tang M, Zu C, He A, Wang W, et al. Synergistic antitumoreffect of adenovirus armed with Drosophila melanogasterdeoxyribonucleoside kinase and nucleoside analogsfor human breast carcinoma in vitro and in vivo. DrugDes Devel Ther 2015: 3301-12. https://doi.org/10.2147/DDDT.S81717

  105. Liikanen I, Tähtinen S, Guse K, Gutmann T, et al. OncolyticAdenovirus Expressing Monoclonal Antibody Trastuzumabfor Treatment of HER2-Positive Cancer. Mol Cancer Ther2016; 15 (9): 2259-69. https://doi.org/10.1158/1535-7163.MCT-15-0819

  106. Shayestehpour M, Moghim S, Salimi V, Jalilvand S, et al. Targetinghuman breast cancer cells by an oncolytic adenovirususing microRNA-targeting strategy. Virus Res 2017; 240:207-14. https://doi.org/10.1016/j.virusres.2017.08.016

  107. Garza-Morales R, Gonzalez-Ramos R, Chiba A, Montes deOca-Luna R, et al. Temozolomide Enhances Triple-NegativeBreast Cancer Virotherapy In Vitro. Cancers (Basel) 2018;10 (5) pii: E144. https://doi.org/10.3390/cancers10050144

  108. Chen S, Li YQ, Yin XZ, Li SZ, et al. Recombinant adenovirusesexpressing apoptin suppress the growth of MCF‑7 breastcancer cells and affect cell autophagy. Oncol Rep 2019;41 (5): 2818-32. https://doi.org/10.3892/or.2019.7077

  109. Fernandez M, Porosnicu M, Markovic D, Barber GN.Genetically engineered vesicular stomatitis virus in genetherapy: application for treatment of malignant disease.J Virol 2002; 76 (2): 895-904. https://doi.org/10.1128/jvi.76.2.895-904.2002

  110. Bergman I, Whitaker-Dowling P, Gao Y, Griffin JA, et al.Vesicular stomatitis virus expressing a chimeric Sindbisglycoprotein containing an Fc antibody binding domaintargets to Her2/neu overexpressing breast cancer cells.Virology 2003; 316 (2): 337-47. https://doi.org/10.1016/j.virol.2003.07.010

  111. Bergman I, Griffin JA, Gao Y, Whitaker-Dowling P. Treatmentof implanted mammary tumors with recombinant vesicularstomatitis virus targeted to Her2/neu. Int J Cancer. 2007;121 (2): 425-30. https://doi.org/10.1002/ijc.22680

  112. Jha BK, Dong B, Nguyen CT, Polyakova I, et al. Supression ofantiviral innate immunity by sunitinib enhances oncolyticvirotherapy. Mol Ther 2013; 21 (9): 1749-1757. https://doi.org/10.1038/mt.2013.112

  113. Liu YP, Suksanpaisan L, Steele MB, Russell SJ, et al. Inductionof antiviral genes by the tumor microenvironment confersresistance to virotherapy. Sci Rep 2013; 3: 2375. https://doi.org/10.1038/srep02375

  114. Garijo R, Hernández-Alonso P, Rivas C, Diallo JS, et al. Experimentalevolution of an oncolytic vesicular stomatitisvirus with increased selectivity for p53-deficient cells.PLoS One 2014; 9 (7): e102365. https://doi.org/10.1371/journal.pone.0102365

  115. Thomas DL, Fraser NW. HSV-1 therapy of primary tumors reducesthe number of metastases in an immune-competentmodel of metastatic breast cancer. Mol Ther 2003; 8 (4):543-51. https://doi.org/10.1016/s1525-0016(03)00236-3

  116. Liu R, Martuza RL, Rabkin SD. Intracarotid delivery of oncolyticHSV vector G47Delta to metastatic breast cancerin the brain. Gene Ther 2005; 12 (8): 647-54. https://doi.org/10.1038/sj.gt.3302445

  117. Liu RB, Rabkin SD. Oncolytic herpes simplex virus vectorsfor the treatment of human breast cancer. Chin Med J (Engl)2005; 118 (4): 307-12.

  118. Fu X, Tao L, Cai R, Prigge J, et al. A mutant type 2 herpessimplex virus deleted for the protein kinase domain of theICP10 gene is a potent oncolytic virus. Mol Ther 2006; 13(5): 882-90. https://doi.org/10.1016/j.ymthe.2006.02.007

  119. Greco O, Joiner MC, Doleh A, Powell AD, et al. Hypoxia- andradiation-activated Cre/loxP 'molecular switch' vectors forgene therapy of cancer. Gene Ther 2006; 13 (3): 206-15.https://doi.org/10.1038/sj.gt.3302640

  120. Menotti L, Cerretani A, Campadelli-Fiume G. A herpessimplex virus recombinant that exhibits a single-chainantibody to HER2/neu enters cells through the mammarytumour receptor, independently of the gD receptors. JVirol 2006; 80 (11): 5531-39. https://doi.org/10.1128/JVI.02725-05

  121. Stiles BM, Adusumilli PS, Stanziale SF, Eisenberg DP, etal. Estrogen enhances the efficacy of an oncolytic HSV-1mutant in the treatment of estrogen receptor-positivebreast cancer. Int J Oncol 2006; 28 (6): 1429-39. https://doi.org/10.3892/ijo.28.6.1429

  122. Li H, Dutuor A, Fu X, Zhang X. Induction of strong antitumorimmunity by an HSV-2-based oncolytic virus in a murinemammary tumor model. J Gene Med 2007; 9 (3): 161-69.https://doi.org/10.1002/jgm.1005

  123. Israyelyan A, Chouljenko VN, Baghian A, David AT, et al.Herpes simplex virus type-1(HSV-1) oncolytic and highlyfusogenic mutants carrying the NV1020 genomic deletioneffectively inhibit primary and metastatic tumors inmice. Virol J 2008; 5: 68. https://doi.org/10.1186/1743-422X-5-68

  124. Israyelyan A, Shannon EJ, Baghian A, Kearney MT, et al.Thalidomide suppressed the growth of 4T1 cells into solidtumors in Balb/c mice in a combination therapy with theoncolytic fusogenic HSV-1 OncdSyn. Cancer ChemotherPharmacol 2009; 64 (6): 1201-10. https://doi.org/10.1007/s00280-009-0987-8

  125. Fasullo M, Burch AD, Britton A. Hypoxia enhances thereplication of oncolytic herpes simplex virus in p53- breastcancer cells. Cell Cycle 2009; 8 (14): 2194-97. https://doi.org/10.4161/cc.8.14.8934

  126. Walker JD, Sehgal I, Kousoulas KG. Oncolytic herpes simplexvirus 1 encoding 15-prostaglandin dehydrogenase mitigatesimmune suppression and reduces ectopic primaryand metastatic breast cancer in mice. J Virol 2011; 85 (14):7363-71. https://doi.org/10.1128/JVI.00098-11

  127. Li J, Zeng W, Huang Y, Zhang Q, et al. Treatment of breastcancer stem cells with oncolytic herpes simplex virus.Cancer Gene Ther 2012; 19 (10): 707-14. https://doi.org/10.1038/cgt.2012.49

  128. Wang J, Hu P, Zeng M, Rabkin SD, Liu R. Oncolytic herpessimplex virus treatment of metastatic breast cancer. IntJ Oncol 2012; 40 (3): 757-63. https://doi.org/10.3892/ijo.2011.1266

  129. Zeng W, Hu P, Wu J, Wang J, et al. The oncolytic herpessimplex virus vector G47Δ effectively targets breast cancerstem cells. Oncol Rep 2013; 29 (3): 1108-14. https://doi.org/10.3892/or.2012.2211

  130. Zeng WG, Li JJ, Hu P, Lei L, Wang JN, et al. An oncolytic herpessimplex virus vector, G47Δ, synergizes with paclitaxelin the treatment of breast cancer. Oncol Rep 2013; 29 (6):2355-61. https://doi.org/10.3892/or.2013.2359

  131. Cody JJ, Markert JM, Hurst DR. Histone deacetylase inhibitorsimprove the replication of oncolytic herpes simplexvirus in breast cancer cells. PLoS One 2014; 9 (3): e92919.https://doi.org/10.1371/journal.pone.0092919

  132. Gholami S, Marano A, Chen NG, Aguilar RJ, et al. A novelvaccinia virus with dual oncolytic and anti-angiogenictherapeutic effects against triple-negative breast cancer.Breast Cancer Res Treat 2014; 148 (3): 489-99. https://doi.org/10.1007/s10549-014-3180-7 Erratum in: BreastCancer Res Treat. 2016;156(3):607-608.

  133. Meisen WH, Dubin S, Sizemore ST, Mathsyaraja H, et al.Changes in BAI1 and nestin expression are prognosticindicators for survival and metastases in breast cancerand provide opportunities for dual targeted therapies.Mol Cancer Ther 2015; 14 (1): 307-14. https://doi.org/10.1158/1535-7163.MCT-14-0659

  134. Kuruppu D, Tanabe KK. HSV-1 as a novel therapy for breastcancer meningeal metastases. Cancer Gene Ther 2015; 22(10): 506-8. https://doi.org/10.1038/cgt.2015.43

  135. Leoni V, Gatta V, Palladini A, Nicoletti G, et al. Systemic deliveryof HER2-retargeted oncolytic-HSV by mesenchymalstromal cells protects from lung and brain metastases. Oncotarget2015; 6 (33): 34774-87. https://doi.org/10.18632/oncotarget.5793

  136. Cuddington BP, Verschoor M, Ashkar A, Mossman KL. Enhancedefficacy with azacytidine and oncolytic BHV-1 in atolerized cotton rat model of breast adenocarcinoma. MolTher Oncolytics 2015; 2: 15004. https://doi.org/10.1038/mto.2015.4

  137. Workenhe ST, Ketela T, Moffat J, Cuddington BP, et al.Genome-wide lentiviral shRNA screen identifies serine/arginine-rich splicing factor 2 as a determinant of oncolyticvirus activity in breast cancer cells. Oncogene 2016; 35 (19):2465-74. https://doi.org/10.1038/onc.2015.303

  138. Chen X, Han J, Chu J, Zhang L, et al. A combinational therapyof EGFR-CAR NK cells and oncolytic herpes simplex virus1 for breast cancer brain metastases. Oncotarget. 2016; 7(19): 27764-77. https://doi.org/10.18632/oncotarget.8526

  139. Pourchet A, Fuhrmann SR, Pilones KA, Demaria S, et al.CD8(+) T-cell Immune Evasion Enables Oncolytic VirusImmunotherapy. EBioMedicine 2016; 5: 59-67. https://doi.org/10.1016/j.ebiom.2016.01.022

  140. Cheng L, Jiang H, Fan J, Wang J, Hu P, Ruan Y, Liu R. A noveloncolytic herpes simplex virus armed with the carboxylterminusof murine MyD116 has enhanced anti-tumourefficacy against human breast cancer cells. Oncol Lett 2018;15 (5): 7046-52. doi: 10.3892/ol.2018.8247

  141. Weiland T, Lampe J, Essmann F, Venturelli S, et al. Enhancedkilling of therapy-induced senescent tumor cells byoncolytic measles vaccine viruses. Int J Cancer 2014; 134(1): 235-43. https://doi.org/10.1002/ijc.28350

  142. Tai CJ, Liu CH, Pan YC, Wong SH, et al. ChemovirotherapeuticTreatment Using Camptothecin Enhances OncolyticMeasles Virus-Mediated Killing of Breast Cancer Cells. SciRep. 2019; 9 (1): 6767.https://doi.org/10.1038/s41598-019-43047-3

  143. Lal G, Rajala MS. Combination of oncolytic measles virusarmed With BNiP3, a pro-apoptotic gene and paclitaxelinduces breast cancer cell death. Front Oncol 2019; 8: 676.https://doi.org/10.3389/fonc.2018.00676

  144. Wang H, Chen NG, Minev BR, Szalay AA. Oncolytic vacciniavirus GLV-1h68 strain shows enhanced replicationin human breast cancer stem-like cells in comparison tobreast cancer cells. J Transl Med 2012; 10: 167. https://doi.org/10.1186/1479-5876-10-167

  145. Gholami S, Chen CH, Lou E, De Brot M, et al. Vaccinia virusGLV-1h153 is effective in treating and preventing metastatictriple-negative breast cancer. Ann Surg 2012; 256 (3):437-45. https://doi.org/10.1097/SLA.0b013e3182654572

  146. Kochneva G, Sivolobova G, Tkacheva A, GrazhdantsevaA, et al. Engineering of double recombinant vacciniavirus with enhanced oncolytic potential for solid tumorvirotherapy. Oncotarget 2016; 7 (45): 74171-188. https://doi.org/10.18632/oncotarget.12367




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Ginecol Obstet Mex. 2023;91

ARTíCULOS SIMILARES

CARGANDO ...