medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2022, Número 1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2022; 25 (1)


Introducción a los sistemas CRISPR y sus aplicaciones en levaduras

Mendoza-Téllez B, Zamora-Bello A, Rosas-Paz M, Villarreal-Huerta D, de la Fuente I, Segal-Kischinevzky C, González J
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 78
Paginas: 1-21
Archivo PDF: 835.20 Kb.


PALABRAS CLAVE

CRISPR, Cas9, edición genética, levaduras, ingeniería genética, herramientas moleculares.

RESUMEN

El sistema de inmunidad adaptativa en bacterias y arqueas, encargado de reconocer las secuencias de DNA invasores, se caracteriza por tener grupos de secuencias palindrómicas cortas repetidas e intercaladas de manera regular por espaciadores (CRISPR). Las proteínas asociadas a CRISPR (Cas) y los RNAs guías complementarios a secuencias específicas del DNA blanco constituyen una de las herramientas de edición genética más utilizadas para modificar a los organismos. En los últimos años se ha incrementado la variedad de los sistemas CRISPR/Cas, adaptándose a microorganismos como las levaduras, que cuentan con potencial biotecnológico. El objetivo de esta revisión es facilitar la comprensión de los conceptos básicos del sistema CRISPR/Cas9 y reconocer algunas de las variedades de esta herramienta molecular que se han implementado de manera exitosa en distintas levaduras. Asimismo, se describen varias de las nuevas tecnologías basadas en CRISPR que están revolucionando la investigación.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Abdelrahman, M., Wei, Z., Rohila, J. S. & Zhao, K.(2021). Multiplex Genome-Editing Technologies forRevolutionizing Plant Biology and Crop Improvement.Frontiers in Plant Science, 12, 1-15. https://doi.org/10.3389/fpls.2021.721203

  2. Adiego-Pérez, B., Randazzo, P., Daran, J. M., Verwaal, R.,Roubos, J. A., Daran-Lapujade, P. & Van Der Oost, J.(2019). Multiplex genome editing of microorganisms usingCRISPR-Cas. FEMS microbiology letters, 366(8), 1-19.https://doi.org/10.1093/femsle/fnz086

  3. Arras, S. D. M., Chua, S. M. H., Wizrah, M. S. I., Faint, J. A.,Yap, A. S. & Fraser, J. A. (2016). Targeted Genome Editingvia CRISPR in the Pathogen Cryptococcus neoformans.PLoS One, 11(10), 1-18. https://doi.org/10.1371/journal.pone.0164322

  4. Bae, S. J., Park, B. G., Kim, B. G. & Hahn, J. S. (2020). MultiplexGene Disruption by Targeted Base Editing of Yarrowialipolytica Genome Using Cytidine Deaminase Combinedwith the CRISPR/Cas9 System. Biotechnology Journal,15(1), 1-10. https://doi.org/10.1002/biot.201900238

  5. Barrangou, R., Fremaux, C., Deveau, H., Richardss, M.,Boyaval, P., Moineau, S., Romero, D. A. & Horvath, P.(2007). CRISPR Provides Against Viruses in Prokaryotes.Science, 315(5819), 1709-1712. https://doi.org/10.1126/science.1138140

  6. Barrangou, R. & Horvath, P. (2017). A decade of discovery:CRISPR functions and applications. Nature Microbiology,2, 1-9. https://doi.org/10.1038/nmicrobiol.2017.92

  7. Branzei, D. & Foiani, M. (2008). Regulation of DNA repairthroughout the cell cycle. Nature Reviews Molecular CellBiology, 9, 297–308. https://doi.org/10.1038/nrm2351

  8. Caldecott, K. W. (2014). DNA single-strand break repair.Experimental Cell Research, 329(1), 2–8. https://doi.org/10.1016/j.yexcr.2014.08.027

  9. Cao, J., Xiao, Q. & Yan, Q. (2018). The multiplexed CRISPRtargeting platforms. Drug Discovery Today: Technologies,28, 53-61. https://doi.org/10.1016/j.ddtec.2018.01.001

  10. de Puig, H., Lee, R. A., Najjar, D., Tan, X., Soenksen, L. R.,Angenent-Mari, N. M., Donghia, N. M., Weckman, N. E.,Ory, A., Ng, C. F., Nguyen, P. Q., Mao, A. S., Ferrante, T. C.,Lansberry, G., Sallum, H., Niemi, J. & Collins, J. J. (2021).Minimally instrumented SHERLOCK (miSHERLOCK) forCRISPR-based point-of-care diagnosis of SARS-CoV-2 andemerging variants. Science Advances, 7(32), 1-11. https://doi.org/10.1126/sciadv.abh2944

  11. DiCarlo, J. E., Norville, J. E., Mali, P., Ríos, X., Aach,J. & Church, G. M. (2013). Genome engineering inSaccharomyces cerevisiae using CRISPR-Cas systems.Nucleic Acids Research, 41(7), 4336-4343. https://doi.org/10.1093/nar/gkt135

  12. Doudna, J. A. & Charpentier, E. (2014). The new frontierof genome engineering with CRISPR-Cas9. Science,346(6213), 1-9. https://doi.org/10.1126/science.1258096

  13. Eisenstein, M. (2021). Fix the gene, cure the disease. Nature,596, S2-S4. https://doi.org/10.1038/d41586-021-02138-w

  14. Faure, G., Shmakov, S. A., Makarova, K. S., Wolf, Y. I., Crawley,A. B., Barrangou, R. & Koonin, E. V. (2019). Comparativegenomics and evolution of trans-activating RNAs in Class2 CRISPR-Cas systems. RNA Biology, 16(4), 435–448.https://doi.org/10.1080/15476286.2018.1493331

  15. Fraczek, M. G., Naseeb, S. & Delneri, D. (2018). History ofgenome editing in yeast. Yeast, 35(5), 361–368. https://doi.org/10.1002/yea.3308

  16. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V.(2012). Cas9-crRNA ribonucleoprotein complex mediatesspecific DNA cleavage for adaptive immunity in bacteria.Proceedings of the National Academy of Sciences of theUnited States of America, 109(39), E2579-E2586. https://doi.org/10.1073/pnas.1208507109

  17. Geurts, M. H., de Poel, E., Amatngalim, G. D., Oka, R., Meijers,F. M., Kruisselbrink, E., van Mourik, P., Berkers, G., deWinter-de Groot, K. M., Michel, S., Muilwijk, D., Aalbers,B. L., Mullenders, J., Boj, S. F., Suen, S. W., Brunsveld,J. E., Janssens, H. M., Mall, M. A., Graeber, S. Y., vanBoxtel, R., van der Ent, K. C., Beekman, J. & Clevers, H.(2020). CRISPR-Based Adenine Editors Correct NonsenseMutations in a Cystic Fibrosis Organoid Biobank. CellStem Cell, 26(4), 503–510.e7. https://doi.org/10.1016/j.stem.2020.01.019

  18. Grahl, N., Demers, E. G., Crocker, A. W. & Hogan, D. A. (2017).Use of RNA-protein complexes for genome editing in nonalbicansCandida species. mSphere, 2(3), 1-9. https://doi.org/10.1128/mSphere.00218-17

  19. González, J., Romero-Aguilar, L., Matus-Ortega, G., Pardo,J. P., Flores-Alanis, A. & Segal-Kischinevzky, C. (2020).Levaduras adaptadas al frío: el tesoro biotecnológicode la Antártica. TIP Revista Especializada en CienciasQuímico-Biológicas, 23, 1-14. https://doi.org/10.22201/fesz.23958723e.2020.0.267

  20. Groenen, P. M. A., Bunschoten, A. E, Van Soolingen, D. & vanEmbden, J. D. A. (1993). Nature of DNA polymorphismin the direct repeat cluster of Mycobacterium tuberculosis;application for strain differentiation by a novel typingmethod. Molecular Microbiology, 10(5), 1057-1065. https://doi.org/10.1111/j.1365-2958.1993.tb00976.x

  21. He, S. (2020). The first human trial of CRISPR-based cell therapyclears safety concerns as new treatment for late-stage lungcancer. Signal Transduction and Targeted Therapy, 5(168),1-2. https://doi.org/10.1038/s41392-020-00283-8

  22. Hille, F., Richter, H., Wong, S. P., Bratovič, M., Ressel, S.& Charpentier, E. (2018). The Biology of CRISPR-Cas:Backward and Forward. Cell, 172(6), 1239–1259. https://doi.org/10.1016/j.cell.2017.11.032

  23. Horwitz, A. A., Walter, J. M., Schubert, M. G., Kung, S. H.,Hawkins, K., Platt, D. M., Hernday, A. D., Mahatdejkul-Meadows, T., Szeto, W., Chandran, S. S. & Newman, J.D. (2015). Efficient Multiplexed Integration of SynergisticAlleles and Metabolic Pathways in Yeasts via CRISPRCas.Cell Systems, 1(1), 88-96. https://doi.org/10.1016/j.cels.2015.02.001

  24. Hou, S., Qin, Q. & Dai, J. (2018). Wicket: a versatile tool forthe integration and optimization of exogenous pathwaysin Saccharomyces cerevisiae. ACS Synthetic Biology, 7(3),782-788. https://doi.org/10.1021/acssynbio.7b00391

  25. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. &Nakatura, A. (1987). Nucleotide sequence of the iap gene,responsible for alkaline phosphatase isoenzyme conversionin Escherichia coli, and identification of the gene product.Journal of Bacteriology, 169(12), 5429-5433. https://doi.org/10.1128/jb.169.12.5429-5433.1987

  26. Jansen, R., Van Embden, J. D. A., Gaastra, W. & Schouls, L.M. (2002). Identification of genes that are associated withDNA repeats in prokaryotes. Molecular Microbiology,43(6), 1565–1575. https://doi.org/10.1046/j.1365-2958.2002.02839.x

  27. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A.& Charpentier, E. (2012). A programmable dual-RNAguided DNA endonuclease in adaptive bacterial immunity.Science, 337(6096), 816–821. https://doi.org/10.1126/science.1225829

  28. Kaiser, J. (2021). CRISPR helps a blind woman see, but doesn’thelp all patients. Science, Disponible en linea: https://doi.org/10.1126/science.acx9258 (acceso en mayo de 2022)

  29. Kaminski, M.M., Abudayyeh, O.O., Gootenberg, J.S., Zhang,F. & Collins, J. J. (2021). CRISPR-based diagnostics.Nature Biomedical Engineering, 5, 643–656. https://doi.org/10.1038/s41551-021-00760-7

  30. Katti, A., Diaz, B.J., Caragine, C.M., Sanjana, N. E. & Dow, L.E. (2022). CRISPR in cancer biology and therapy. NatureReviews Cancer, 22, 259–279. https://doi.org/10.1038/S41568-022-00441-W

  31. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu,D. R. (2016). Programmable editing of a target base ingenomic DNA without double-stranded DNA cleavage.Nature, 533, 420–424. https://doi.org/10.1038/nature17946

  32. Koonin, E. V. & Makarova, K. S. (2019) Origins and evolutionof CRISPR-Cas systems. Philosophical Transactions of theRoyal Society B, 374(1772), 1-16. https://doi.org/10.1098/rstb.2018.0087

  33. Lau, C.-H. (2018). Applications of CRISPR-Cas inBioengineering, Biotechnology, and TranslationalResearch. The CRISPR Journal, 1(6), 379–404. https://doi.org/10.1089/crispr.2018.0026

  34. Ledford, H. (2020). CRISPR treatment inserted directly intothe body for first time. Experiment tests a gene-editingtherapy for a hereditary blindness disorder. Nature, 579,185. https://doi.org/10.1038/d41586-020-00655-8

  35. Ledford, H. & Callaway, E. (2020). Pioneers of revolutionaryCRISPR gene editing win chemistry Nobel. Nature, 586,346-347. https://doi.org/10.1038/d41586-020-02765-9

  36. Liu, M., Rehman, S., Tang, X., Gu, K., Fan, Q., Chen, D. & Ma,W. (2019). Methodologies for improving HDR efficiency.Frontiers in Genetics, 9, 1-9. https://doi.org/10.3389/fgene.2018.00691

  37. Liu, T. Y., Knott, G. J., Smock, D. C. J., Desmarais, J. J., Son,S., Bhuiya, A., Jakhanwal, S., Prywes, N., Agrawal, S.,Díaz De León Derby, M., Switz, N. A., Armstrong, M.,Harris, A. R., Charles, E. J., Thornton, B. W., Fozouni, P.,Shu, J., Stephens, S. I., Kumar, G. R., Zhao, C., Mok, A., T.lavarone, A., Escajeda, A., McIntosh, R., Kim, S., Dugan,E., IGI testing Consortium, Polland, K., Tan, M., Ott, M.,Fletcher, D., Lareau, L., Hsu, P., Savage, D & Doudna, J. A.(2021). Accelerated RNA detection using tandem CRISPRnucleases. Nature Chemical Biology, 17, 982–988. https://doi.org/10.1038/s41589-021-00842-2

  38. Löbs, A. K, Schwartz, C. & Wheeldon, I. (2017). Genomeand metabolic engineering in non-conventional yeasts:Current advances and applications. Synthetic and SystemsBiotechnology, 2(3), 198-207. https://doi.org/10.1016/j.synbio.2017.08.002

  39. Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I.& Koonin, E. V. (2006). A putative RNA-interferencebasedimmune system in prokaryotes: computationalanalysis of the predicted enzymatic machinery, functionalanalogies with eukaryotic RNAi, and hypotheticalmechanisms of action. Biology Direct, 1(7), 1-26. https://doi.org/10.1186/1745-6150-1-7

  40. Makarova, K. S., Wolf, Y. I., Alkhnbashi, O. S., Costa, F.,Shah, S. A., Saunders, S. J., Barrangou, R., Brouns, S. J.J., Charpentier, E., Haft, D. H., Horvath, P., Moineau, S.,Mojica, F. J. M., Terns, R. M., Terns, M. P., White, M. F.,Yakunin, A. F., Garrett, R. A., van der Oost, J. Backofen, R. &Koonin, E. V. (2015). An updated evolutionary classificationof CRISPR–Cas systems. Nature Reviews Microbiology,13, 722–736. https://doi.org/10.1038/nrmicro3569

  41. Makarova, K. S., Wolf, Y. I., Iranzo, J., Shmakov, S. A.,Alkhnbashi, O. S., Brouns, S. J. J., Charpentier, E., Cheng,D., Haft, D. H., Horvath, P., Moineau, S., Mojica, F. J. M.,Scott, D., Shah, S. A., Siksnys, V., Terns, M. P., Venclovas,Č., White, M. F., Yakunin, A. F., Yan, W., Zhang, F.,Garret, R. A., Backofen, R., van der Oost, J., Barrangou,R. & Koonin, E. V. (2020). Evolutionary classificationof CRISPR–Cas systems: a burst of class 2 and derivedvariants. Nature Reviews Microbiology, 18, 67–83. https://doi.org/10.1038/s41579-019-0299-x

  42. Malcı, K., Walls, L. E. & Rios-Solis, L. (2020). Multiplex genomeengineering methods for yeast cell factory development.Frontiers in Bioengineering and Biotechnology, 8, 1-21.https://doi.org/10.3389/fbioe.2020.589468

  43. McCarty, N. S., Graham, A. E., Studená, L. & Ledesma-Amaro, R. (2020). Multiplexed CRISPR technologiesfor gene editing and transcriptional regulation. NatureCommunications, 11, 1-13. https://doi.org/10.1038/s41467-020-15053-x

  44. Min, K., Ichikawa, Y., Woolford, C. A. & Mitchell, A. P. (2016).Candida albicans gene deletion with a transient CRISPRCas9system. mSphere, 1(3), 1-9. https://doi.org/10.1128/mSphere.00130-16

  45. Minkenberg, B., Wheatley, M. & Yang, Y. (2017). CRISPR/Cas9-Enabled Multiplex Genome Editing and ItsApplication. En: Weeks, D. P & Yang, B. (eds.) GeneEditing in Plants. Progress in Molecular Biologyand Translational Science, 149, 111–132. https://doi.org/10.1016/bs.pmbts.2017.05.003

  46. Mojica, F. J. M., Díez-Villaseñor, C., García-Martínez, J. &Soria, E. (2005). Intervening sequences of regularly spacedprokaryotic repeats derive from foreign genetic elements.Journal of Molecular Evolution, 60, 174–182. https://doi.org/10.1007/s00239-004-0046-3

  47. Mojica, F. J. M., Juez, G. & Rodriguez-Valera, F. (1993).Transcription at different salinities of Haloferaxmediterranei sequences adjacent to partially modified PstIsites. Molecular Microbiology, 9(3), 613–621. https://doi.org/10.1111/j.1365-2958.1993.tb01721.x

  48. Montecillo, J. A. V., Chu, L. L. & Bae, H. (2020). CRISPR-Cas9system for plant genome editing: Current approaches andemerging developments. Agronomy, 10(7), 1-41. https://doi.org/10.3390/agronomy10071033

  49. Nambu-Nishida, Y., Nishida, K., Hasunuma, T. & Kondo,A. (2017). Development of a comprehensive set of toolsfor genome engineering in a cold- and thermo-tolerantKluyveromyces marxianus yeast strain. Scientific Reports,7, 1-8. https://doi.org/10.1038/s41598-017-08356-5

  50. Nishida, K., Arazoe, T., Yachie, N., Banno, S., Kakimoto, M.,Tabata, M., Mochizuki, M., Miyabe, A., Araki, M., Hara, K.Y., Shimatani, Z. & Kondo, A. (2016). Targeted nucleotideediting using hybrid prokaryotic and vertebrate adaptiveimmune systems. Science, 353(6305), 1-8. https://doi.org/10.1126/science.aaf8729

  51. Norton, E. L., Sherwood, R. K. & Bennett, R. J. (2017).Development of a CRISPR-Cas9 system for efficientgenome editing of Candida lusitaniae. mSphere, 2(3), 1-10.https://doi.org/10.1128/mSphere.00217-17

  52. Otoupal, P. B., Ito, M., Arkin, A. P., Magnuson, J. K.,Gladden, J. M. & Skerker, J. M. (2019). MultiplexedCRISPR-Cas9-based genome editing of Rhodosporidiumtoruloides. mSphere, 4(2), 1-13. https://doi.org/10.1128/mSphere.00099-19

  53. Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman,J. S., Arkin, A. P. & Lim, W. A. (2013). Repurposing CRISPRas an RNA-guided platform for sequence-specific controlof gene expression. Cell, 152(5), 1173-1183. https://doi.org/10.1016/j.cell.2013.02.022

  54. Raschmanová, H., Weninger, A., Glieder, A., Kovar, K. &Vogl, T. (2018). Implementing CRISPR-Cas technologiesin conventional and non-conventional yeasts: Currentstate and future prospects. Biotechnology Advances, 36(3),641–665. https://doi.org/10.1016/j.biotechadv.2018.01.006

  55. Román, E., Coman, I., Prieto, D., Alonso-Monge, R. & Pla,J. (2019). Implementation of a CRISPR-based system forgene regulation in Candida albicans. mSphere, 4(1), 1-13.https://doi.org/10.1128/mSphere.00001-19

  56. Satomura, A., Nishioka, R., Mori, H., Sato, K., Kuroda, K. &Ueda, M. (2017). Precise genome-wide base editing bythe CRISPR Nickase system in yeast. Scientific Reports,7, 1-10. https://doi.org/10.1038/s41598-017-02013-7

  57. Sauer, B. (1987). Functional expression of the cre-lox sitespecificrecombination system in the yeast Saccharomycescerevisiae. Molecular and Cellular Biology, 7(6), 2087–2096. https://doi.org/10.1128/mcb.7.6.2087-2096.1987

  58. Segal-Kischinevzky, C., Romero-Aguilar, L., Alcaraz, L.D.,López-Ortiz, G., Martínez-Castillo, B., Torres-Ramírez,N., Sandoval, G. & González, J. (2022). Yeasts InhabitingExtreme Environments and Their BiotechnologicalApplications. Microorganisms, 10(4), 1-26. https://doi.org/10.3390/microorganisms10040794

  59. Semighini, C. P., Savoldi, M., Goldman, G. H. & Harris, S.D. (2006). Functional characterization of the putativeAspergillus nidulans poly(ADP-ribose) polymerasehomolog PrpA. Genetics, 173(1), 87–98. https://doi.org/10.1534/genetics.105.053199

  60. Shan L., Dai Z. & Wang Q. (2021). Advances and Opportunitiesof CRISPR/Cas Technology in Bioengineering NonconventionalYeasts. Front Bioeng. Biotechnol., 9, 1-10.https://doi.org/10.3389/fbioe.2021.765396

  61. Shmakov, S., Smargon, A., Scott, D., Cox, D., Pyzocha, N.,Yan, W., Abudayyeh, O. O., Gootenberg, J. S., Makarova,K. S., Wolf, Y. I., Severinov, K., Zhang, F. & Koonin, E.V. (2017). Diversity and evolution of class 2 CRISPRCassystems. Nature Reviews Microbiology, 15, 169–182.https://doi.org/10.1038/nrmicro.2016.184

  62. Smith, A. M. C., Takeuchi, R., Pellenz, S., Davis, L., Maizels,N., Monnat, R. J. & Stoddard, B. L. (2009). Generation of anicking enzyme that stimulates site-specific gene conversionfrom the I-Anil LAGLIDADG homing endonuclease.Proceedings of the National Academy of Sciences of theUnited States of America, 106(13), 5099–5104. https://doi.org/10.1073/pnas.0810588106

  63. Spasskaya, D. S., Kotlov, M. I., Lekanov, D. S., Tutyaeva,V. V., Snezhkina, A. V., Kudryavtseva, A. V., Karpov,V. L. & Karpov, D. S. (2021). CRISPR/Cas9-MediatedGenome Engineering Reveals the Contribution of the 26SProteasome to the Extremophilic Nature of the Yeast. ACSSynthetic Biology, 10(2), 297–308. https://doi.org/10.1021/acssynbio.0c00426

  64. Stadtmauer, E. A., Fraietta, J. A., Davis, M. M., Cohen, A. D.,Weber, K. L., Lancaster, E., Mangan, P. A., Kulikovskaya,I., Gupta, M., Chen, F., Tian, L., Gonzalez, V. E., Xu, J.,Jung, I. Y., Melenhorst, J. J., Plesa, G., Shea, J., Matlawski,T., Cervini, A., Gaymon, A. L., Desjardins, S., Lamontagne,A., Salas-Mckee, J., Fesnak, A., Siegel, D. L., Levine, B. L.,Jadlowsky, J. K., Young, R. M., Chew, A., Hwang, W.-T.,Hexner, E. O., Carreno, B. M., Nobles, C. L., Bushman, F.D., Parker, K. R., Qi, Y., Satpathy, A. T., Chang, H. Y., Zhao,Y., Lacey, S. F. & June, C. H. (2020). CRISPR-engineered Tcells in patients with refractory cancer. Science, 367(6481),1-12. https://doi.org/10.1126/science.aba7365

  65. Sternberg, S. H. & Doudna, J. A. (2015). Expanding the Biologist’sToolkit with CRISPR-Cas9. Molecular Cell, 58(4), 568–574. https://doi.org/10.1016/j.molcel.2015.02.032

  66. Storici, F., Lewis, L. K & Resnick, M. A. (2001) In vivosite-directed mutagenesis using oligonucleotides. NatureBiotechnology, 19, 773–776. https://doi.org/10.1038/90837

  67. Strucko, T., Andersen, N.,L. Mahler, M.,R. Martínez J., L.,Uffe H. & Mortensen, A. (2021) CRISPR/Cas9 methodfacilitates efficient oligo-mediated gene editing inDebaryomyces hansenii. Synthetic Biology, 6(1), 1-9.https://doi.org/10.1093/synbio/ysab031

  68. Utomo, J. C., Hodgins, C. L. & Ro, D. K. (2021). MultiplexGenome Editing in Yeast by CRISPR/Cas9–A Potent andAgile Tool to Reconstruct Complex Metabolic Pathways.Frontiers in Plant Science, 12, 1-15. https://doi.org/10.3389/fpls.2021.719148

  69. Vriend, L. E. M. & Krawczyk, P. M. (2017). Nick-initiatedhomologous recombination: Protecting the genome,one strand at a time. DNA Repair, 50, 1–13. https://doi.org/10.1016/j.dnarep.2016.12.005

  70. Vyas, V. K., Barrasa, M. I. & Fink, G. R. (2015). A Candidaalbicans CRISPR system permits genetic engineering ofessential genes and gene families. Science Advances, 1(3),1-6. doi: 10.1126/sciadv.1500248

  71. Wach, A., Brachat, A., Pöhlmann, R. & Philippsen, P. (1994).New heterologous modules for classical or PCR-based genedisruptions in Saccharomyces cerevisiae. Yeast, 10(13),1793-1808. https://doi.org/10.1002/yea.320101310

  72. Wagner, J.M. & Alper, H. S. (2016). Synthetic biology andmolecular genetics in non-conventional yeasts: Currenttools and future advances. Fungal Genetics and Biology,89, 126–136. https://doi.org/10.1016/j.fgb.2015.12.001

  73. Wang, P. (2018). Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans andRelated Species. mSphere, 3(3), 1-9. https://doi.org/10.1128/mspheredirect.00208-18

  74. Zaidi, S. SeA., Mahas, A., Vanderschuren, H. & Magdy, M.M. (2020). Engineering crops of the future: CRISPRapproaches to develop climate-resilient and disease-resistantplants. Genome Biology, 21, 1-19. https://doi.org/10.1186/s13059-020-02204-y

  75. Zalatan, J. G., Lee, M. E., Almeida, R., Gilbert, L. A., Whitehead,E. H., La Russa, M., Tsai, J. C., Weissman, J. S., Dueber,J. E., Qi, L. S. & Lim, W. A. (2015). Engineering complexsynthetic transcriptional programs with CRISPR RNAscaffolds. Cell, 160, 339-350. https://doi.org/10.1016/j.cell.2014.11.052

  76. Zetsche, B., Heidenreich, M., Mohanraju, P., Fedorova, I.,Kneppers, J., DeGennaro, E. M., Winblad, N., Choudhury,S. R., Abudayyeh, O. O., Gootenberg, J. S., Wu, W. Y.,Scott, D. A., Severinov, K., van der Oost, J. & Zhang, F.(2017). Multiplex gene editing by CRISPR–Cpf1 using asingle crRNA array. Nature Biotechnology, 35(1), 31-34.https://doi.org/10.1038/nbt.3737

  77. Zhang, Y., Wu, Y., Wu, Y., Chang, Y. & Liu, M. (2021).CRISPR-Cas systems: From gene scissors to programmablebiosensors. Trends in Analytical Chemistry, 137, 1-18.https://doi.org/10.1016/j.trac.2021.116210

  78. Zheng, Y., Su, T. & Qi, Q. (2019). Microbial CRISPRi andCRISPRa systems for metabolic engineering. Biotechnologyand Bioprocess Engineering, 24, 579-591. https://doi.org/10.1007/s12257-019-0107-5




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2022;25

ARTíCULOS SIMILARES

CARGANDO ...