medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2022, Número 1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2022; 25 (1)


PTP-PEST: Vías de señalización y su importancia como blanco terapéutico en cáncer

Manzanita-Quintero K, Lee-Rivera I, López E, López-Colomé AM
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 76
Paginas: 1-13
Archivo PDF: 505.63 Kb.


PALABRAS CLAVE

cinasas, fosfatasas de tirosina, transducción de señales, adhesión focal, migración celular.

RESUMEN

La fosfatasa de tirosina PTP-PEST, también llamada PTPN12, es una proteína que se expresa de forma ubicua, y se regula por fosforilación en los residuos de serina y treonina. El gen PTPN12, en humanos, se localiza en el cromosoma 7q11.23. La proteína codificada está formada por una región N-terminal, seguida de un dominio catalítico de fosfatasa de tirosina (PTP, por sus siglas en inglés) y una cola C-terminal que contiene secuencias ricas en prolina, ácido glutámico, serina y treonina (PEST), así como, una secuencia NPLH (asparagina, prolina, leucina, histidina) que es un sitio de anclaje para las proteínas involucradas en la transducción de señales.
La PTP-PEST regula procesos fisiológicos como la migración celular, la respuesta inmune, y la actividad neuronal, a través de la desfosforilación de múltiples sustratos entre los que se cuentan proteínas adaptadoras del citoesqueleto como la paxilina, y otras involucradas en diferentes vías de señalización, algunas de las cuales aún no han sido completamente elucidadas.
Se ha demostrado la alteración de la PTP-PEST en diferentes enfermedades como el cáncer, por lo que se ha estudiado como un posible blanco terapéutico. Esta revisión se enfoca en la clasificación, estructura y el papel tanto fisiológico como patológico de la PTP-PEST.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Friedberg, I.,Osterman, A., Godzik, A., Hunter, T., Dixon, J. & Mustelin,T. (2004). Protein Tyrosine Phosphatases in the HumanGenome. Cell, 117(6), 699–711. https://doi.org/10.1016/j.cell.2004.05.018

  2. Andersen, J. N., Mortensen, O. H., Peters, G. H., Drake,P. G., Iversen, L. F., Olsen, O. H., Jansen, P. G.,Andersen, H. S., Tonks, N. K. & Møller, N. P. H. (2001).Structural and Evolutionary Relationships among ProteinTyrosine Phosphatase Domains. Molecular and CellularBiology, 21(21), 7117–7136. https://doi.org/10.1128/mcb.21.21.7117-7136.2001

  3. Angers-Loustau, A., Côté, J. F., Charest, A., Dowbenko, D.,Spencer, S., Lasky, L. A. & Tremblay, M. L. (1999).Protein tyrosine phosphatase-PEST regulates focal adhesiondisassembly, migration, and cytokinesis in fibroblasts.Journal of Cell Biology, 144(5), 1019–1031. https://doi.org/10.1083/jcb.144.5.1019

  4. Bordo, D. & Bork, P. (2002). The rhodanese/Cdc25 phosphatasesuperfamily. Sequence-structure-function relations. EMBOReports, 3(8), 741–746. https://doi.org/10.1093/emboreports/kvf150

  5. Brautigan, D. L. & Shenolikar, S. (2018). Protein Serine/Threonine Phosphatases: Keys to Unlocking Regulators andSubstrates. Annual Review of Biochemistry, 87, 921–964.https://doi.org/10.1146/annurev-biochem-062917-012332

  6. Chen, Z., Morales, J. E., Guerrero, P. A., Sun, H. & McCarty, J.H. (2018). PTPN12/PTP-PEST regulates phosphorylationdependentubiquitination and stability of focal adhesionsubstrates in invasive glioblastoma cells. Cancer Research, 78(14), 3809–3822. https://doi.org/10.1158/0008-5472.CAN-18-0085

  7. Côté, J.-F., Charest, A., Wagner, J. & Tremblay, M. L. (1998).Combination of Gene Targeting and Substrate Trapping toIdentify Substrates of Protein Tyrosine Phosphatases UsingPTP-PEST as a Model. Biochemistry, 37(38), 13128–13137.https://doi.org/10.1021/bi981259l. Davidson, D. (2001). PTP-PEST, a scaffold protein tyrosinephosphatase, negatively regulates lymphocyte activationby targeting a unique set of substrates. The EMBOJournal, 20(13), 3414–3426. https://doi.org/10.1093/emboj/20.13.3414

  8. Davidson, D., Shi, X., Zhong, M. C., Rhee, I. & Veillette, A.(2010). The Phosphatase PTP-PEST Promotes SecondaryT Cell Responses by Dephosphorylating the ProteinTyrosine Kinase Pyk2. Immunity, 33(2), 167–180. https://doi.org/10.1016/j.immuni.2010.08.001

  9. Day, B. W., Stringer, B. W., Al-Ejeh, F., Ting, M. J., Wilson,J., Ensbey, K. S., Jamieson, P. R., Bruce, Z. C., Lim, Y. C.,Offenhäuser, C., Charmsaz, S., Cooper, L. T., Ellacott, J. K.,Harding, A., Leveque, L., Inglis, P., Allan, S., Walker, D. G.,Lackmann, M., Osborne, G., Khanna, K. K., Reynolds, B.A., Lickliter, J. D., Boyd, A. W. (2013). EphA3 maintainstumorigenicity and is a therapeutic target in glioblastomamultiforme. Cancer Cell, 23(2), 238–248. https://doi.org/10.1016/j.ccr.2013.01.007

  10. de Melo Gagliato, D., Fontes Jardim, D. L., Marchesi, M. S. P.& Hortobagyi, G. N. (2016). Mechanisms of resistance andsensitivity to anti-HER2 therapies in HER2+ breast cancer.Oncotarget, 7(39), 64431–64446. https://doi.org/10.18632/oncotarget.7043

  11. Eleniste, P. P., Du, L., Shivanna, M. & Bruzzaniti, A. (2012).Dynamin and PTP-PEST cooperatively regulate Pyk2dephosphorylation in osteoclasts. International Journalof Biochemistry and Cell Biology, 44(5), 790–800. https://doi.org/10.1016/j.biocel.2012.01.022

  12. Ersahin, T., Tuncbag, N. & Cetin-Atalay, R. (2015). The PI3K/AKT/mTOR interactive pathway. Molecular BioSystems,11(7), 1946–1954. https://doi.org/10.1039/C5MB00101C

  13. Espejo, R., Jeng, Y., Paulucci-Holthauzen, A., Rengifo-Cam,W., Honkus, K., Anastasiadis, P. Z. & Sastry, S. K. (2014).PTP-PEST targets a novel tyrosine site in p120 catenin tocontrol epithelial cell motility and Rho GTPase activity.Journal of Cell Science, 127(3), 497–508. https://doi.org/10.1242/jcs.120154

  14. Espejo, R., Rengifo-Cam, W., Schaller, M. D., Evers, B. M.& Sastry, S. K. (2010). PTP-PEST controls motility,adherens junction assembly, and Rho GTPase activity incolon cancer cells. American Journal of Physiology - CellPhysiology, 299(2), 454–463. https://doi.org/10.1152/ajpcell.00148.2010

  15. Feller, S. M. (2001). Crk family adaptors-signalling complexformation and biological roles. Oncogene, 20(44), 6348–6371. https://doi.org/10.1038/sj.onc.1204779

  16. Fernández, R. A. H. (2012). Kinasas y fosfatasas: el yin y elyan de la vida. Revista Habanera de Ciencias Medicas,11(1), 15–24.

  17. Frame, M. C., Fincham, V. J., Carragher, N. O. & Wyke, J. A.(2002). v-SRC’S hold over actin and cell adhesions. NatureReviews Molecular Cell Biology, 3(4), 233–245. https://doi.org/10.1038/nrm779

  18. Garton, A. J., Burnham, M. R., Bouton, A. H. & Tonks, N. K.(1997). Association of PTP-PEST with the SH3 domain ofp130cas; a novel mechanism of protein tyrosine phosphatasesubstrate recognition. Oncogene, 15(8), 877–885. https://doi.org/10.1038/sj.onc.1201279

  19. Garton, A. J., Flint, A. J. & Tonks, N. K. (1996). Identificationof p130(cas) as a substrate for the cytosolic proteintyrosine phosphatase PTP-PEST. Molecular and CellularBiology, 16(11), 6408–6418. https://doi.org/10.1128/MCB.16.11.6408

  20. Garton, A. J. & Tonks, N. K. (1999). Regulation of fibroblastmotility by the protein tyrosine phosphatase PTP-PEST.The Journal of Biological Chemistry, 274(6), 3811–3818.https://doi.org/10.1074/jbc.274.6.3811Gerson, J. N., Skariah, S., Denlinger, C. S. & Astsaturov, I.(2017). Perspectives of HER2-targeting in gastric andesophageal cancer. Expert Opinion on InvestigationalDrugs, 26(5), 531–540. https://doi.org/10.1080/13543784.2017.1315406

  21. González, J. (2000). [Phosphorylation in eukaryotic cells. Roleof phosphatases and kinases in the biology, pathogenesisand control of intracellular and bloodstream protozoa].Revista Medica de Chile, 128(10), 1150–1160. http://www.ncbi.nlm.nih.gov/pubmed/11349516

  22. Guo, W. & Giancotti, F. G. (2004). Integrin signalling duringtumour progression. Nature Reviews. Molecular CellBiology, 5(10), 816–826. https://doi.org/10.1038/nrm1490

  23. Hanks, S. K. & Hunter, T. (1995). Protein kinases 6. Theeukaryotic protein kinase superfamily: kinase (catalytic)domain structure and classification. FASEB Journal :Official Publication of the Federation of American Societiesfor Experimental Biology, 9(8), 576–596. http://www.ncbi.nlm.nih.gov/pubmed/7768349

  24. Hendriks, W. J. A. J., Elson, A., Harroch, S. & Stoker, A.W. (2008). Protein tyrosine phosphatases: functionalinferences from mouse models and human diseases. FEBSJournal, 275(5), 816–830. https://doi.org/10.1111/j.1742-4658.2008.06249.x

  25. Humphries, J. D., Wang, P., Streuli, C., Geiger, B., Humphries,M. J. & Ballestrem, C. (2007). Vinculin controls focaladhesion formation by direct interactions with talin andactin. The Journal of Cell Biology, 179(5), 1043–1057.https://doi.org/10.1083/jcb.200703036

  26. Imoto, M., Kakeya, H., Sawa, T., Hayashi, C., Hamada, M.,Takekuchi, T. & Umezawa, K. (1993). Dephostatin, anovel protein tyrosine phosphatase inhibitor produced byStreptomyces. I. Taxonomy,isolation, and characterization.The Journal of Antibiotics, 46(9), 1342–1346. https://doi.org/10.7164/antibiotics.46.1342

  27. Jamieson, J. S., Tumbarello, D. A., Hallé, M., Brown, M. C.,Tremblay, M. L. & Turner, C. E. (2005). Paxillin is essentialfor PTP-PEST-dependent regulation of cell spreading andmotility: A role for paxillin kinase linker. Journal of CellScience, 118(24), 5835–5847. https://doi.org/10.1242/jcs.02693

  28. Kania, A. & Klein, R. (2016). Mechanisms of ephrin-Ephsignalling in development, physiology and disease. NatureReviews. Molecular Cell Biology, 17(4), 240–256. https://doi.org/10.1038/nrm.2015.16

  29. Karakas, C., Biernacka, A., Bui, T., Sahin, A. A., Yi, M., Akli,S., Schafer, J., Alexander, A., Adjapong, O., Hunt, K. K. &Keyomarsi, K. (2016). Cytoplasmic Cyclin E and Phospho-Cyclin-Dependent Kinase 2 Are Biomarkers of AggressiveBreast Cancer. The American Journal of Pathology, 186(7),1900–1912. https://doi.org/10.1016/j.ajpath.2016.02.024

  30. Khalife, J., Freville, A., Vandomme, A. & Pierrot, C. (2020).Encyclopedia of Malaria. Encyclopedia of Malaria, May2015. https://doi.org/10.1007/978-1-4614-8757-9

  31. Kim, S. J., Masuda, N., Tsukamoto, F., Inaji, H., Akiyama, F.,Sonoo, H., Kurebayashi, J., Yoshidome, K., Tsujimoto,M., Takei, H., Masuda, S., Nakamura, S. & Noguchi, S.(2014). The cell cycle profiling-risk score based on CDK1and 2 predicts early recurrence in node-negative, hormonereceptor-positive breast cancer treated with endocrinetherapy. Cancer Letters, 355(2), 217–223. https://doi.org/10.1016/j.canlet.2014.08.042

  32. Kim, S. J., Nakayama, S., Shimazu, K., Tamaki, Y., Akazawa, K.,Tsukamoto, F., Torikoshi, Y., Matsushima, T., Shibayama,M., Ishihara, H. & Noguchi, S. (2012). Recurrence riskscore based on the specific activity of CDK1 and CDK2predicts response to neoadjuvant paclitaxel followed by5-fluorouracil, epirubicin and cyclophosphamide in breastcancers. Annals of Oncology, 23(4), 891–897. https://doi.org/10.1093/annonc/mdr340

  33. Kuban-Jankowska, A., Gorska, M., Knap, N., Cappello, F.& Wozniak, M. (2015). Protein tyrosine phosphatases inpathological process. Frontiers in Bioscience - Landmark,20(2), 377–388. https://doi.org/10.2741/4314

  34. Larsen, M., Tremblay, M. L. & Yamada, K. M. (2003).Phosphatases in cell-matrix adhesion and migration. NatureReviews Molecular Cell Biology, 4(9), 700–711. https://doi.org/10.1038/nrm1199

  35. Lee, C. & Rhee, I. (2019). Important roles of proteintyrosine phosphatase PTPN12 in tumor progression.Pharmacological Research, 144(March), 73–78. https://doi.org/10.1016/j.phrs.2019.04.011

  36. Li, H., Yang, D., Ning, S., Xu, Y., Yang, F., Yin, R., Feng, T., Han,S., Guo, L., Zhang, P., Qu, W., Guo, R., Song, C., Xiao, P.,Zhou, C., Xu, Z., Sun, J. P. & Yu, X. (2018). Switching of thesubstrate specificity of protein tyrosine phosphatase N12 bycyclin-dependent kinase 2 phosphorylation orchestrating 2oncogenic pathways. FASEB Journal, 32(1), 73–82. https://doi.org/10.1096/fj.201700418R

  37. Li, H., Yang, F., Liu, C., Xiao, P., Xu, Y., Liang, Z., Liu, C.,Wang, H., Wang, W., Zheng, W., Zhang, W., Ma, X., He, D.,Song, X., Cui, F., Xu, Z., Yi, F., Sun, J. P. & Yu, X. (2016).Crystal Structure and Substrate Specificity of PTPN12.Cell Reports, 15(6), 1345–1358. https://doi.org/10.1016/j.celrep.2016.04.016

  38. Liang, T., Li, L., Cheng, Y., Ren, C. & Zhang, G. (2016). MicroRNA -194 promotes the growth, migration, and invasionof ovarian carcinoma cells by targeting protein tyrosinephosphatase nonreceptor type 12. OncoTargets and Therapy,9, 4307–4315. https://doi.org/10.2147/OTT.S90976

  39. López-Colomé, A. M., Lee-Rivera, I., Benavides-Hidalgo, R.& López, E. (2017). Paxillin: A crossroad in pathologicalcell migration. Journal of Hematology and Oncology,10(1), 1–15. https://doi.org/10.1186/s13045-017-0418-y

  40. Lukic, N., Lapetina, S., Grobe, H., Srikanth, K. D., Twafra,S., Solomon, J., Sneh, T., Gendler, M. & Zaidel-bar, R.(n.d.). Pyk2 regulates cell-edge protrusion dynamics byinteracting with Crk.

  41. Mansour, M., Nievergall, E., Gegenbauer, K., Llerena, C.,Atapattu, L., Hallé, M., Tremblay, M. L., Janes, P. W.& Lackmann, M. (2016). PTP-PEST controls EphA3activation and ephrin-induced cytoskeletal remodelling.Journal of Cell Science, 129(2), 277–289. https://doi.org/10.1242/jcs.174490

  42. Moorhead, G. B. G., Trinkle-Mulcahy, L. & Ulke-Lemée, A.(2007). Emerging roles of nuclear protein phosphatases.Nature Reviews Molecular Cell Biology, 8(3), 234–244.https://doi.org/10.1038/nrm2126

  43. Mustelin, T. (2007). A brief introduction to the proteinphosphatase families. Methods in Molecular Biology, 365,9–22. https://doi.org/10.1385/1-59745-267-X:9

  44. Nakamura, K., Palmer, H. E. F., Ozawa, T. & Mashima, K.(2010). Protein phosphatase 1 associates with proteintyrosine phosphatase-PEST inducing dephosphorylationof phospho-serine 39. Journal of Biochemistry, 147(4),493–500. https://doi.org/10.1093/jb/mvp191

  45. Nguyen, L. K., Kholodenko, B. N. & von Kriegsheim, A.(2018). Rac1 and RhoA: Networks, loops and bistability.Small GTPases, 9(4), 316–321. https://doi.org/10.1080/21541248.2016.1224399

  46. Östman, A., Hellberg, C. & Böhmer, F. D. (2006). Proteintyrosinephosphatases and cancer. Nature Reviews Cancer,6(4), 307–320. https://doi.org/10.1038/nrc1837

  47. Paul, S. & Lombroso, P. J. (2003). Receptor and nonreceptorprotein tyrosine phosphatases in the nervous system.Cellular and Molecular Life Sciences, 60(11), 2465–2482.https://doi.org/10.1007/s00018-003-3123-7

  48. Piao, Y., Liu, X., Lin, Z., Jin, Z., Jin, X., Yuan, K. & Wu,W. (2015). Decreased expression of protein tyrosinephosphatase non‑receptor type 12 is involved in theproliferation and recurrence of bladder transitional cellcarcinoma. Oncology Letters, 10(3), 1620–1626. https://doi.org/10.3892/ol.2015.3454

  49. Pulido, R. (1998). PTP-SL and STEP protein tyrosine phosphatasesregulate the activation of the extracellular signal-regulatedkinases ERK1 and ERK2 by association through a kinaseinteraction motif. The EMBO Journal, 17(24), 7337–7350.https://doi.org/10.1093/emboj/17.24.7337

  50. Qu, X., Liu, J., Zhong, X., Li, X. & Zhang, Q. (2015). PIWIL2promotes progression of non-small cell lung cancer byinducing CDK2 and Cyclin A expression. Journal ofTranslational Medicine, 13, 301. https://doi.org/10.1186/s12967-015-0666-y

  51. Rayapureddi, J. P., Kattamuri, C., Steinmetz, B. D., Frankfort,B. J., Ostrin, E. J., Mardon, G. & Hegde, R. S. (2003). Eyesabsent represents a class of protein tyrosine phosphatases.Nature, 426(6964), 295–298. https://doi.org/10.1038/nature02093

  52. Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A.,Ginsberg, M. H., Borisy, G., Parsons, J. T. & Horwitz, A.R. (2003). Cell migration: integrating signals from frontto back. Science (New York, N.Y.), 302(5651), 1704–1709.https://doi.org/10.1126/science.1092053

  53. Sastry, S. K., Rajfur, Z., Liu, B. P., Cote, J.-F., Tremblay, M.L. & Burridge, K. (2006). PTP-PEST couples membraneprotrusion and tail retraction via VAV2 and p190RhoGAP.The Journal of Biological Chemistry, 281(17), 11627–11636. https://doi.org/10.1074/jbc.M600897200

  54. Shen, N., Li, L., Xu, W., Tian, J., Yang, Y., Zhu, Y., Gong, Y.,Ke, J., Gong, J., Chang, J., Zhong, R. & Miao, X. (2019).A missense variant in PTPN12 associated with the risk ofcolorectal cancer by modifying Ras/MEK/ERK signaling.Cancer Epidemiology, 59(January), 109–114. https://doi.org/10.1016/j.canep.2019.01.013

  55. Shen, Y., Lyons, P., Cooley, M., Davidson, D., Veillette, A.,Salgia, R., Griffin, J. D. & Schaller, M. D. (2000). TheNoncatalytic Domain of Protein-tyrosine Phosphatase-PEST Targets Paxillin for Dephosphorylation in vivo.Journal of Biological Chemistry, 275(2), 1405–1413.https://doi.org/10.1074/jbc.275.2.1405

  56. Shen, Y., Schneider, G., Cloutier, J. F., Veillette, A. & Schaller,M. D. (1998). Direct association of protein-tyrosinephosphatase PTP-PEST with paxillin. The Journal ofBiological Chemistry, 273(11), 6474–6481. https://doi.org/10.1074/jbc.273.11.6474

  57. Sirois, J., Côté, J. F., Charest, A., Uetani, N., Bourdeau,A., Duncan, S. A., Daniels, E. & Tremblay, M. L.(2006). Essential function of PTP-PEST during mouseembryonic vascularization, mesenchyme formation,neurogenesis and early liver development. Mechanisms ofDevelopment, 123(12), 869–880. https://doi.org/10.1016/j.mod.2006.08.011

  58. Stiegler, A. L. & Boggon, T. J. (2018). PseudoGTPase domains inp190RhoGAP proteins: a mini-review. Biochemical SocietyTransactions, 46(6), 1713–1720. https://doi.org/10.1042/BST20180481

  59. Stoker, A. W. (2005). Protein tyrosine phosphatases andsignalling. Journal of Endocrinology, 185(1), 19–33. https://doi.org/10.1677/joe.1.06069

  60. Sun, T., Aceto, N., Meerbrey, K. L., Kessler, J. D., Zhou, C.,Migliaccio, I., Nguyen, D. X., Pavlova, N. N., Botero,M., Huang, J., Bernardi, R. J., Schmitt, E., Hu, G., Li, M.Z., Dephoure, N., Gygi, S. P., Rao, M., Creighton, C. J.,Hilsenbeck, S. G., Shaw, C. A., Muzny, D., Gibbs, R. A.,Wheeler, D. A., Osborne, C. K., Schiff, R., Bentires-Alj,M., Elledge, S. J., Westbrook, T. F. (2011). Activation ofmultiple proto-oncogenic tyrosine kinases in breast cancervia loss of the PTPN12 phosphatase. Cell, 144(5), 703–718.https://doi.org/10.1016/j.cell.2011.02.003

  61. Takekawa, M., Itoh, F., Hinoda, Y., Arimura, Y., Toyota, M.,Sekiya, M., Adachi, M., Imai, K. & Yachi, A. (1992).Cloning and characterization of a human cDNA encodinga novel putative cytoplasmic protein-tyrosine-phosphatase.Biochemical and Biophysical Research Communications,189(2), 1223–1230. https://doi.org/10.1016/0006-291X(92)92335-U

  62. Tonks, N. K. (2006). Protein tyrosine phosphatases: From genes,to function, to disease. Nature Reviews Molecular CellBiology, 7(11), 833–846. https://doi.org/10.1038/nrm2039

  63. Vail, M. E., Murone, C., Tan, A., Hii, L., Abebe, D., Janes, P. W.,Lee, F.-T., Baer, M., Palath, V., Bebbington, C., Yarranton,G., Llerena, C., Garic, S., Abramson, D., Cartwright, G.,Scott, A. M. & Lackmann, M. (2014). Targeting EphA3inhibits cancer growth by disrupting the tumor stromalmicroenvironment. Cancer Research, 74(16), 4470–4481.https://doi.org/10.1158/0008-5472.CAN-14-0218

  64. Vallés, A. M., Beuvin, M. & Boyer, B. (2004). Activation ofRac1 by paxillin-Crk-DOCK180 signaling complex isantagonized by Rap1 in migrating NBT-II cells. The Journalof Biological Chemistry, 279(43), 44490–44496. https://doi.org/10.1074/jbc.M405144200

  65. Veillette, A., Rhee, I., Souza, C. M. & Davidson, D. (2009).PEST family phosphatases in immunity, autoimmunity,and autoinflammatory disorders. Immunological Reviews,228(1), 312–324. https://doi.org/10.1111/j.1600-065X.2008.00747.x

  66. Villa-Moruzzi, E. (2013). PTPN12 controls PTEN and the AKTsignalling to FAK and HER2 in migrating ovarian cancercells. Molecular and Cellular Biochemistry, 375(1–2),151–157. https://doi.org/10.1007/s11010-012-1537-y

  67. Wehrle-Haller, B. (2012). Structure and function of focaladhesions. Current Opinion in Cell Biology, 24(1), 116–124.https://doi.org/10.1016/j.ceb.2011.11.001

  68. Wimmer-Kleikamp, S. H., Nievergall, E., Gegenbauer, K.,Adikari, S., Mansour, M., Yeadon, T., Boyd, A. W., Patani,N. R. & Lackmann, M. (2008). Elevated protein tyrosinephosphatase activity provokes Eph/ephrin-facilitatedadhesion of pre-B leukemia cells. Blood, 112(3), 721–732.https://doi.org/10.1182/blood-2007-11-121681

  69. Xu, Y., Taylor, P., Andrade, J., Ueberheide, B., Shuch, B., Glazer,P. M., Bindra, R. S., Moran, M. F., Linehan, W. M. & Neel,B. G. (2018). Pathologic Oxidation of PTPN12 UnderliesABL1 Phosphorylation in Hereditary Leiomyomatosis andRenal Cell Carcinoma. Cancer Research, 78(23), 6539–6548. https://doi.org/10.1158/0008-5472.CAN-18-0901

  70. Yaffe, M. B. & Smerdon, S. J. (2001). PhosphoSerine/threoninebinding domains: you can’t pSERious? Structure (London,England : 1993), 9(3), R33-8. https://doi.org/10.1016/s0969-2126(01)00580-9

  71. Yamashita, M. (2021). Auranofin: Past to Present, andrepurposing. International Immunopharmacology, 101(PtB), 108272. https://doi.org/10.1016/j.intimp.2021.108272

  72. Yang, C. F., Chen, Y. Y., Singh, J. P., Hsu, S. F., Liu, Y. W., Yang,C. Y., Chang, C. W., Chen, S. N., Shih, R. H., Hsu, S. T. D.,Jou, Y. S., Cheng, C. F. & Meng, T. C. (2020). Targetingprotein tyrosine phosphatase PTP-PEST (PTPN12) fortherapeutic intervention in acute myocardial infarction.Cardiovascular Research, 116(5), 1032–1046. https://doi.org/10.1093/cvr/cvz165

  73. Yang, Q., Co, D., Sommercorn, J. & Tonks, N. K. (1993).Cloning and expression of PTP-PEST. A novel, human,nontransmembrane protein tyrosine phosphatase. TheJournal of Biological Chemistry, 268(23), 17650. http://www.ncbi.nlm.nih.gov/pubmed/8349645

  74. Zhang, Z.-Y. (2017). Drugging the Undruggable: TherapeuticPotential of Targeting Protein Tyrosine Phosphatases.Accounts of Chemical Research, 50(1), 122–129. https://doi.org/10.1021/acs.accounts.6b00537

  75. Zhangyuan, G., Yin, Y., Zhang, W., Yu, W. W., Jin, K., Wang, F.,Huang, R., Shen, H., Wang, X. & Sun, B. (2018). PrognosticValue of Phosphotyrosine Phosphatases in HepatocellularCarcinoma. Cellular Physiology and Biochemistry, 46(6),2335–2346. https://doi.org/10.1159/000489625

  76. Zheng, Y. & Lu, Z. (2013). Regulation of tumor cell migrationby protein tyrosine phosphatase (PTP)-proline-, glutamate-,serine-,and threonine-rich sequence (PEST). ChineseJournal of Cancer, 32(2), 75–83. https://doi.org/10.5732/cjc.012.10084




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2022;25

ARTíCULOS SIMILARES

CARGANDO ...