medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2022, Número 1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2022; 25 (1)


El papel de los azúcares como moléculas de señalización en las plantas

Hernández-Bernal AF, Gregorio-Jorge J, León P
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 158
Paginas: 1-20
Archivo PDF: 485.16 Kb.


PALABRAS CLAVE

azúcares, Glc, HXK1, SnRK1, TOR.

RESUMEN

La conversión de la energía solar a energía química en las plantas se realiza a través de la fotosíntesis, que es el principal sostén para la vida en el planeta, ya que es en este proceso en el que se da la fijación del CO2 y como resultado final los azúcares, que son la fuente principal de energía para los tejidos no fotosintéticos de las plantas. Durante la evolución, los azúcares no solo fueron, sino son una fuente de energía para las plantas y adquirieron la función de moléculas señalizadoras; es decir, moléculas mensajeras que perciben y comunican las variaciones del estado energético de la planta a través de diversos receptores proteícos situados extracelular e intracelularmente. Tanto los monosacáridos (glucosa y fructosa) como los disacáridos (sacarosa y trehalosa) desencadenan diferentes vías de señalización que involucran la participación de diversas cinasas y factores de transcripción para modular la expresión de diversos genes relacionados con el crecimiento, desarrollo y respuesta al estrés de las plantas. El objetivo de esta revisión es proporcionar un panorama general de las fuentes que generan los azúcares, sus mecanismos de transporte, así como el conocimiento actual de la percepción y la señalización mediada por estos compuestos y su impacto en la vida de las plantas.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Albertorio, F., Chapa, V. A., Chen, X., Diaz, A. J. & Cremer,P. S. (2007). The alpha, alpha-(1-->1) linkage of trehaloseis key to anhydrobiotic preservation. J. Am. Chem. Soc.,129, 10567-10574. DOI.10.1021/ja0731266.

  2. Anderson, G. H., Veit, B. & Hanson, M. R. (2005). TheArabidopsisAtRaptor genes are essential for post-embryonicplant growth. BMC Biology, 3, 12. DOI.10.1186/1741-7007-3-12.

  3. Arnold, W. N. (1968). The selection of sucrose as thetranslocate of higher plants. J. Theoret. Biol., 21, 13-20.DOI.10.1016/0022-5193(68)90056-8.

  4. Aylett, C. H., Sauer, E., Imseng, S., Boehringer, D., Hall, M.N., Ban, N. & Maier, T. (2016). Architecture of humanmTOR complex 1. Science, 351, 48-52. DOI. 10.1126/science.aaa3870.

  5. Baena-Gonzalez, E., Rolland, F., Thevelein, J. M. & Sheen, J.(2007). A central integrator of transcription networks inplant stress and energy signalling. Nature, 448, 938-942.DOI.10.1038/nature06069.

  6. Baena-Gonzalez, E. & Sheen, J. (2008). Convergent energyand stress signaling. Trends Plant Sci., 13, 474-482.DOI.10.1016/j.tplants.2008.06.006.

  7. Baena-Gonzalez, E. & Hanson, J. (2017). Shaping plantdevelopment through the SnRK1-TOR metabolic regulators.Curr. Opin. Plant Biol., 35, 152-157. DOI.10.1016/j.pbi.2016.12.004.

  8. Baena-Gonzalez, E. & Lunn, J. E. (2020). SnRK1 and trehalose6-phosphate - two ancient pathways converge to regulateplant metabolism and growth. Curr. Opin. Plant Biol., 55,52-59. DOI.10.1016/j.pbi.2020.01.010.

  9. Begna, S. H., Dwyer, L. M., Cloutier, D., Assemat, L.,DiTommaso, A., Zhou, X., Prithiviraj, B. & Smith, D. L.(2002). Decoupling of light intensity effects on the growthand development of C3 and C4 weed species throughsucrose supplementation. J. Exp. Bot., 53, 1935-1940.DOI.10.1093/jxb/erf043.

  10. Bitrian, M., Roodbarkelari, F., Horvath, M. & Koncz, C. (2011).BAC-recombineering for studying plant gene regulation:developmental control and cellular localization of SnRK1kinase subunits. Plant J., 65, 829-842. DOI.10.1111/j.1365-313X.2010.04462.x.

  11. Blazquez, M. A., Santos, E., Flores, C. L., Martinez-Zapater,J. M., Salinas, J. & Gancedo, C. (1998). Isolation andmolecular characterization of the Arabidopsis TPS1 gene,encoding trehalose-6-phosphate synthase. Plant J., 13,685-689. DOI.10.1046/J.1365-313X.1998.00063.X.

  12. Broeckling, B. E., Watson, R. A., Steinwand, B. & Bush, D.R. (2016). Intronic sequence regulates sugar-dependentexpression of Arabidopsis thaliana production ofanthocyanin pigment-1/MYB75. PLoS One, 11(6),e0156673. DOI.10.1371/journal.pone.0156673.

  13. Broeckx, T., Hulsmans, S. & Rolland, F. (2016). The plantenergy sensor: evolutionary conservation and divergenceof SnRK1 structure, regulation, and function. J. Exp. Bot.,67, 6215-6252. DOI.10.1093/jxb/erw416.

  14. Buhler, M., Haas, W., Gygi, S. P. & Moazed, D. (2007). RNAidependentand -independent RNA turnover mechanismscontribute to heterochromatic gene silencing. Cell, 129,707-721. DOI.10.1016/j.cell.2007.03.038.

  15. Cabib, E. & Leloir, L. F. (1958). The biosynthesis of trehalosephosphate. J. Biol. Chem., 231, 259-275. DOI.10.1016/s0021-9258(19)77303-7.

  16. Cao, P., Kim, S. J., Xing, A., Schenck, C. A., Liu, L., Jiang, N.,Wang, J., Last, R. L. & Brandizzi, F. (2019). Homeostasis ofbranched-chain amino acids is critical for the activity of TORsignaling in Arabidopsis. Elife, 8, e50747. DOI.10.7554/eLife.50747.

  17. Carlson, M. (1999). Glucose repression in yeast. Curr.Opin. Microbiol., 2, 202-207. DOI.10.1016/S1369-5274(99)80035-6.

  18. Chambers, J. K., Macdonald, L. E., Sarau, H. M., Ames, R.S., Freeman, K., Foley, J. J., Zhu, Y., McLaughlin, M. M.,Murdock, P., McMillan, L., Trill, J., Swift, A., Aiyar, N.,Taylor, P., Vawter, L., Naheed, S., Szekeres, P., Hervieu, G.,Scott, C., Watson, J. M., Murphy, A. J., Duzic, E., Klein,C., Bergsma, D. J., Wilson, S. & Livi, G. P. (2000). A Gprotein-coupled receptor for UDP-glucose. J. Biol. Chem.,275(15), 10767-10771. DOI.10.1074/jbc.275.15.10767.

  19. Chen, L. Q., Luo, J. H., Cui, Z. H., Xue, M., Wang, L., Zhang,X. Y., Pawlowski, W. P. & He, Y. (2017). ATX3, ATX4,and ATX5 Encode putative H3K4 methyltransferases andare critical for plant development. Plant Physiol., 174,1795-1806. DOI.10.1104/pp.16.01944.

  20. Chen, Q., Xu, X., Xu, D., Zhang, H., Zhang, C. & Li, G. (2019).WRKY18 and WRKY53 coordinate with HISTONEACETYLTRANSFERASE1 to regulate rapid responsesto sugar. Plant Physiol., 180, 2212-2226. DOI. 10.1104/pp.19.00511.

  21. Chen, Q., Zhand, J. & Li, G. (2021). Dynamic epigeneticmodifications in plant sugar signal transduction. Trendsin Plant Science, 27(4), 379-390. DOI.10.1016/j.tplants.2021.10.009.

  22. Cho, Y. H., Yoo, S. D. & Sheen, J. (2006). Regulatory functionsof nuclear hexokinase1 complex in glucose signaling. Cell,127, 579-589. DOI.10.1016/j.cell.2006.09.028.

  23. Cho, L. H., Pasriga, R., Yoon, J., Jeon, J. S. & An, G. (2018)Roles of sugars in controlling flowering time. JournalPlant Biol., 61, 121-130. DOI.10.1007/s12374-018-0081-z

  24. Ciereszko, I. (2018) Regulatory roles of sugars in plant growthand development. Acta Soc. Bot. Pol., 87(2), 3583. DOI:10.5586/asbp.3583

  25. Conde, C., Agasse, A., Glissant, D., Tavares, R., Geros, H.& Delrot, S. (2006). Pathways of glucose regulation ofmonosaccharide transport in grape cells. Plant Physiol.,141, 1563-1577. DOI.10.1104/pp.106.080804.

  26. Conway, T. (1992). The Entner-Doudoroff pathway: history,physiology and molecular biology. FEMS Microbiol. Rev.,9(1), 1-27. DOI.10.1111/j.1574-6968.1992.tb05822.x.

  27. Corbesier, L. & Coupland, G. (2006). The quest for florigen: areview of recent progress. J. Exp. Bot., 57(13), 3395-3403.DOI.10.1093/jxb/erl095.

  28. Crozet, P., Jammes, F., Valot, B., Ambard-Bretteville, F., Nessler,S., Hodges, M., Vidal, J. & Thomas, M. (2010). Crossphosphorylationbetween Arabidopsis thaliana sucrosenonfermenting 1-related protein kinase 1 (AtSnRK1)and its activating kinase (AtSnAK) determines theircatalytic activities. J. Biol. Chem., 285(16), 12071-12077.DOI.10.1074/jbc.M109.079194.

  29. Dale, S., Wilson, W. A., Edelman, A. M. & Hardie, D. G. (1995).Similar substrate recognition motifs for mammalian AMPactivatedprotein kinase, higher plant HMG-CoA reductasekinase-A, yeast SNF1, and mammalian calmodulindependentprotein kinase I. FEBS Lett., 361, 191-195.DOI.10.1016/0014-5793(95)00172-6.

  30. Debast, S., Nunes-Nesi, A., Hajirezaei, M. R., Hofmann,J., Sonnewald, U., Fernie, A. R. & Bornke, F. (2011).Altering trehalose-6-phosphate content in transgenic potatotubers affects tuber growth and alters responsiveness tohormones during sprouting. Plant Physiol., 156,1754-1771.DOI.10.1104/pp.111.179903.

  31. Deprost, D., Truong, H. N., Robaglia, C. & Meyer, C. (2005).An Arabidopsis homolog of RAPTOR/KOG1 is essentialfor early embryo development. Biochem. Biophys. Res.Commun., 326, 844-850. DOI.10.1016/j.bbrc.2004.11.117.

  32. Dietrich, K., Weltmeier, F., Ehlert, A., Weiste, C., Stahl, M.,Harter, K. & Droge-Laser, W. (2011). Heterodimers ofthe Arabidopsis transcription factors bZIP1 and bZIP53reprogram amino acid metabolism during low energy stress.Plant Cell, 23, 381-395. DOI.10.1105/tpc.110.075390.

  33. Dobrenel, T., Caldana, C., Hanson, J., Robaglia, C., Vincentz,M., Veit, B. & Meyer, C. (2016). TOR signaling and nutrientsensing. Annu. Rev. Plant Biol., 67, 261-285. DOI.10.1146/annurev-arplant-043014-114648.

  34. Dong, P., Xiong, F., Que, Y., Wang, K., Yu, L., Li, Z. & Ren, M.(2015). Expression profiling and functional analysis revealsthat TOR is a key player in regulating photosynthesis andphytohormone signaling pathways in Arabidopsis. Front.Plant Sci., 6, 677. DOI.10.3389/fpls.2015.00677.

  35. Dong, Y., Silbermann, M., Speiser, A., Forieri, I., Linster, E.,Poschet, G., Allboje Samami, A., Wanatabe, M., Sticht,C., Teleman, A. A., Deragon, J. M., Saito, K., Hell, R.& Wirtz, M. (2017). Sulfur availability regulates plantgrowth via glucose-TOR signaling. Nat. Commun., 8, 1174.DOI.10.1038/s41467-017-01224-w.

  36. Eastmond, P. J. & Graham, I. A. (2003). Trehalose metabolism:a regulatory role for trehalose-6-phosphate?. Curr.Opin. Plant Biol., 6(3), 231-235. DOI.10.1016/s1369-5266(03)00037-2.

  37. Eastmond, P. J., van Dijken, A. J., Spielman, M., Kerr, A.,Tissier, A. F., Dickinson, H. G., Jones, J. D., Smeekens, S.C. & Graham, I. A. (2002). Trehalose-6-phosphate synthase1, which catalyses the first step in trehalose synthesis, isessential for Arabidopsis embryo maturation. Plant J.,29(2), 225-235. DOI.10.1046/j.1365-313x.2002.01220.x.

  38. Elbein, A. D., Pan, Y. T., Pastuszak, I. & Carroll, D. (2003).New insights on trehalose: a multifunctional molecule.Glycobiology, 13(4), 17R-27R. DOI.10.1093/glycob/cwg047.

  39. Emanuelle, S., Hossain, M. I., Moller, I. E., Pedersen, H. L., vande Meene, A. M., Doblin, M. S., Koay, A., Oakhill, J. S.,Scott, J. W., Willats, W. G., Kemp, B. E., Bacic, A., Gooley,P. R. & Stapleton, D.I. (2015). SnRK1 from Arabidopsisthaliana is an atypical AMPK. Plant J., 82(2), 183-192.DOI.10.1111/tpj.12813.

  40. Feng, J., Zhao, S., Chen, X., Wang, W., Dong, W., Chen, J.,Shen, J. R., Liu, L., & Kuang, T. (2015). Biochemicaland structural study of Arabidopsis hexokinase 1. ActaCrystallogr. Sect. D Biol. Crystallogr., 71, 367-375.DOI.10.1107/S1399004714026091.

  41. Fragoso, S., Espindola, L., Paez-Valencia, J., Gamboa, A.,Camacho, Y., Martinez-Barajas, E. & Coello, P. (2009).SnRK1 isoforms AKIN10 and AKIN11 are differentiallyregulated in Arabidopsis plants under phosphatestarvation. Plant Physiol., 149, 1906-1916. DOI.10.1104/pp.108.133298.

  42. Franklin, K. A. & Quail, P. H. (2010). Phytochrome functionsin Arabidopsis development. J. Exp. Bot., 61, 11-24.DOI.10.1093/jxb/erp304.

  43. Gancedo, J.M. (1998). Yeast carbon catabolite repression.Microbiol. Mol. Biol. Rev., 62, 334-361. DOI.10.1128/MMBR.62.2.334-361.1998.

  44. Gibson, S. I. (2005). Control of plant development and geneexpression by sugar signaling. Curr. Opin. Plant Biol., 8,93-102. DOI. 10.1016/j.pbi.2004.11.003.

  45. Gonzalez, A. & Hall, M. N. (2017). Nutrient sensing and TORsignaling in yeast and mammals. EMBO J., 36, 397-408.DOI.10.15252/embj.201696010.

  46. Graham, I. A., Denby, K. J. & Leaver, C. J. (1994). Carboncatabolite repression regulates glyoxylate cycle geneexpression in cucumber. Plant Cell, 6, 761-772.DOI.10.1105/tpc.6.5.761.

  47. Granot, D., David-Schwartz, R. & Kelly, G. (2013). Hexosekinases and their role in sugar-sensing and plantdevelopment. Front. Plant Sci., 4, 44. DOI.10.3389/fpls.2013.00044.

  48. Granot, D., Kelly, G., Stein, O. & David-Schwartz, R. (2014).Substantial roles of hexokinase and fructokinase in theeffects of sugars on plant physiology and development. J.Exp. Bot., 65, 809-819. DOI.10.1093/jxb/ert400.

  49. Griffiths, C. A., Paul, M. J. & Foyer, C. H. (2016). Metabolitetransport and associated sugar signalling systemsunderpinning source/sink interactions. Biochim. Biophys.Acta, 1857, 1715-1725. DOI.10.1016/j.bbabio.2016.07.007.

  50. Halford, N. G., Hey, S., Jhurreea, D., Laurie, S., McKibbin, R.S., Paul, M. & Zhang, Y. (2003). Metabolic signalling andcarbon partitioning: role of Snf1-related (SnRK1) proteinkinase. J. Exp. Bot., 54(382), 467-475. DOI.10.1093/jxb/erg038.

  51. Han, L., Li, J. L., Jin, M. & Su, Y. H. (2015). Transcriptomeanalysis of Arabidopsis seedlings responses to highconcentrations of glucose. Genet. Mol. Res., 14(2), 4784-4801. DOI.10.4238/2015.May.11.11.

  52. Hanson, R. W. (2000). Nutrient control of gene transcriptionminireview reries. J. Biol. Chem., 275, 30747. DOI.10.1074/jbc.R000014200

  53. Hardie, D. G., Ross, F. A. & Hawley, S. A. (2012). AMPK:a nutrient and energy sensor that maintains energyhomeostasis. Nat. Rev. Mol. Cell Biol., 13, 251-262.DOI.10.1038/nrm3311.

  54. Hardie, D. G., Schaffer, B. E. & Brunet, A. (2016). AMPK:an energy-sensing pathway with multiple inputs andoutputs. Trends Cell Biol., 26(3), 190-201. DOI.10.1016/j.tcb.2015.10.013.

  55. Harthill, J. E., Meek, S. E., Morrice, N., Peggie, M. W., Borch,J., Wong, B. H. & Mackintosh, C. (2006). Phosphorylationand 14-3-3 binding of Arabidopsis trehalose-phosphatesynthase 5 in response to 2-deoxyglucose. Plant J., 47,211-223. DOI.10.1111/j.1365-313X.2006.02780.x.

  56. He, W., Li, X. & Xia, S. (2018). Lupeol triterpene exhibits potentantitumor effects in A427 human lung carcinoma cells viamitochondrial mediated apoptosis, ROS generation, lossof mitochondrial membrane potential and downregulationof m-TOR/PI3Ksol;AKT signalling pathway. J. BUON,23(3), 635-640.

  57. Heitman, J., Movva, N. R., Hiestand, P. C. & Hall, M. N. (1991).FK 506-binding protein proline rotamase is a target forthe immunosuppressive agent FK 506 in Saccharomycescerevisiae. Proc. Natl. Acad. Sci. U.S.A., 88, 1948-1952.DOI.10.1073/pnas.88.5.1948.

  58. Helliwell, S. B., Schmidt, A., Ohya, Y. & Hall, M. N. (1998).The Rho1 effector Pkc1, but not Bni1, mediates signallingfrom Tor2 to the actin cytoskeleton. Curr. Biol., 8, 1211-1214. DOI.10.1016/s0960-9822(07)00511-8.

  59. Hincha, D. K. & Crowe, J. H. (1998). Trehalose increasesfreeze-thaw damage in liposomes containing chloroplastglycolipids. Cryobiology, 36, 245-249. DOI.10.1006/cryo.1998.2074.

  60. Hohmann-Marriott, M. F. & Blankenship, R. E. (2011).Evolution of photosynthesis. Annu. Rev. Plant Biol., 62,515-548. DOI.10.1146/annurev-arplant-042110-103811.

  61. Iturriaga, G., Suarez, R. & Nova-Franco, B. (2009). Trehalosemetabolism: from osmoprotection to signaling. Int. J. Mol.Sci., 10, 3793-3810. DOI.10.3390/ijms10093793.

  62. Jacinto, E., Loewith, R., Schmidt, A., Lin, S., Ruegg, M. A.,Hall, A. & Hall, M. N. (2004). Mammalian TOR complex 2controls the actin cytoskeleton and is rapamycin insensitive.Nat. Cell Biol., 6, 1122-1128. DOI.10.1038/ncb1183.

  63. Jamsheer, K. M. & Laxmi, A. (2015). Expression of ArabidopsisFCS-Like Zinc finger genes is differentially regulated bysugars, cellular energy level, and abiotic stress. Front. PlantSci., 6, 746. DOI.10.3389/fpls.2015.00746.

  64. Jang, J. C. & Sheen, J. (1994). Sugar sensing in higher plants.Plant Cell, 6, 1665-1679. DOI.10.1105/tpc.6.11.1665.

  65. Jang, J. C., Leon, P., Zhou, H. & Sheen, J. (1997). Hexokinaseas a sugar sensor in higher plants. Plant Cell, 9, 5-19.DOI.10.1105/tpc.9.1.5.

  66. Karve, A., Rauh, B. L., Xia, X., Kandasamy, M., Meagher,R. B., Sheen, J. & Moore, B. D. (2008). Expression andevolutionary features of the hexokinase gene family inArabidopsis. Planta, 228, 411-425. DOI.10.1007/s00425-008-0746-9.

  67. Karve, R., Lauria, M., Virnig, A., Xia, X., Rauh, B. L. &Moore, B. (2010). Evolutionary lineages and functionaldiversification of plant hexokinases. Mol. Plant, 3(2), 334-346. DOI.10.1093/mp/ssq003.

  68. Kim, S. G., Hoffman, G. R., Poulogiannis, G., Buel, G. R.,Jang, Y. J., Lee, K. W., Kim, B. Y., Erikson, R. L., Cantley,L. C., Choo, A. Y. & Blenis, J. (2013). Metabolic stresscontrols mTORC1 lysosomal localization and dimerizationby regulating the TTT-RUVBL1/2 complex. Mol. Cell, 49,172-185. DOI.10.1016/j.molcel.2012.10.003.

  69. Koch, K. E. (1996). Carbohydrate-modulated gene expressionin plants. Ann. Rev. Plant Physiol. Plant Mol. Biol., 47,509-540. DOI.10.1146/annurev.arplant.47.1.509.

  70. Kunz, J., Henriquez, R., Schneider, U., Deuter-Reinhard, M.,Movva, N. R. & Hall, M. N. (1993). Target of rapamycinin yeast, TOR2, is an essential phosphatidylinositol kinasehomolog required for G1 progression. Cell, 73, 585-596.DOI.10.1016/0092-8674(93)90144-f.

  71. Leivar, P. & Quail, P. H. (2011). PIFs: pivotal componentsin a cellular signaling hub. Trends Plant Sci., 16, 19-28.DOI.10.1016/j.tplants.2010.08.003.

  72. Leivar, P. & Monte, E. (2014). PIFs: systems integrators inplant development. Plant Cell, 26, 56-78. DOI.10.1105/tpc.113.120857.

  73. Lejay, L., Gansel, X., Cerezo, M., Tillard, P., Muller, C., Krapp,A., von Wiren, N., Daniel-Vedele, F. & Gojon, A. (2003).Regulation of root ion transporters by photosynthesis:functional importance and relation with hexokinase. PlantCell, 15, 2218-2232. DOI.10.1105/tpc.013516.

  74. Lejay, L., Wirth, J., Pervent, M., Cross, J. M., Tillard, P. &Gojon, A. (2008). Oxidative pentose phosphate pathwaydependentsugar sensing as a mechanism for regulationof root ion transporters by photosynthesis. Plant Physiol.,146, 2036-2053. DOI.10.1104/pp.107.114710.

  75. León, P. & Sheen, J. (2003). Sugar and hormone connections.Trends in Plant Sci., 8(3), 110-116. DOI. 10.1016/S1360-1385(03)00011-6.

  76. Li, X., Cai, W., Liu, Y., Li, H., Fu, L., Liu, Z., Xu, L., Liu, H.,Xu, T. & Xiong, Y. (2017). Differential TOR activation andcell proliferation in Arabidopsis root and shoot apexes. Proc.Natl. Acad. Sci. U.S.A., 114(10), 2765-2770. DOI.10.1073/pnas.1618782114.

  77. Lister, R., O’Malley, R. C., Tonti-Filippini, J., Gregory, B. D.,Berry, C. C., Millar, A. H. & Ecker, J. R. (2008). Highlyintegrated single-base resolution maps of the epigenomein Arabidopsis. Cell, 133, 523-536. DOI.10.1016/j.cell.2008.03.029.

  78. Liu, K. H., Niu, Y., Konishi, M., Wu, Y., Du, H., Sun Chung,H., Li, L., Boudsocq, M., McCormack, M., Maekawa, S.,Ishida, T., Zhang, C., Shokat, K., Yanagisawa, S. & Sheen,J.. (2017). Discovery of nitrate-CPK-NLP signalling incentral nutrient-growth networks. Nature, 545, 311-316.DOI.10.1038/nature22077.

  79. Liu, Y., Duan, X., Zhao, X., Ding, W., Wang, Y. & Xiong, Y.(2021). Diverse nitrogen signals activate convergent ROP2-TOR signaling in Arabidopsis. Dev. Cell, 56(9), 1283-1295.DOI.10.1016/j.devcel.2021.03.022.

  80. Liu, Y., Wang, J., Yin, H., Zhang, A., Huang, S., Wang, T. J.,Meng, Q., Nan, N., Wu, Y., Guo, P., Ahmad, R., Liu, B. &Xu, Z. Y. (2018). Trithorax-group proteins ATX5 mediatesthe glucose response via impacting the HY1-ABI4 signalingmodule. Plant Mol. Biol., 98(6), 495-506. DOI.10.1007/s11103-018-0791-0.

  81. Lu, C. A., Lin, C. C., Lee, K. W., Chen, J. L., Huang, L. F.,Ho, S. L., Liu, H .J., Hsing, Y. I. & Yu, S. M. (2007). TheSnRK1A protein kinase plays a key role in sugar signalingduring germination and seedling growth of rice. Plant Cell,19, 2484-2499. DOI. 10.1105/tpc.105.037887.

  82. Lunn, J. E., Feil, R., Hendriks, J. H., Gibon, Y., Morcuende,R., Osuna, D., Scheible, W. R., Carillo, P., Hajirezaei,M. R. & Stitt, M. (2006). Sugar-induced increases intrehalose 6-phosphate are correlated with redox activationof ADPglucose pyrophosphorylase and higher rates ofstarch synthesis in Arabidopsis thaliana. Biochem. J., 397,139-148. DOI.10.1042/BJ20060083.

  83. Mair, A., Pedrotti, L., Wurzinger, B., Anrather, D., Simeunovic,A., Weiste, C., Valerio, C., Dietrich, K., Kirchler, T., Nagele,T., Vicente-Carbajosa, J., Hanson, J., Baena-González, E.,Chaban, C., Weckwerth, W., Dröge-Laser, W. & Teige, M..(2015). SnRK1-triggered switch of bZIP63 dimerizationmediates the low-energy response in plants. Elife, 4, e05828.DOI.10.7554/eLife.05828.

  84. Martinez-Barajas, E., Delatte, T., Schluepmann, H., de Jong,G. J., Somsen, G. W., Nunes, C., Primavesi, L. F., Coello,P., Mitchell, R. A. & Paul, M. J. (2011). Wheat graindevelopment is characterized by remarkable trehalose6-phosphate accumulation pregrain filling: tissuedistribution and relationship to SNF1-related proteinkinase1 activity. Plant Physiol., 156, 373-381. DOI.10.1104/pp.111.174524.

  85. Medina, A. & Sols, A. (1956). A specific fructokinase in peas.Biochim. Biophys Acta, 19, 378-379. DOI.10.1016/0006-3002(56)90445-0.

  86. Menand, B., Desnos, T., Nussaume, L., Berger, F., Bouchez, D.,Meyer, C. & Robaglia, C. (2002). Expression and disruptionof the Arabidopsis TOR (target of rapamycin) gene. Proc.Natl. Acad. Sci. U.S.A., 99(9), 6422-6427. DOI.10.1073/pnas.092141899.

  87. Miao, H., Cai, C., Wei, J., Huang, J., Chang, J., Qian, H., Zhang,X., Zhao, Y., Sun, B., Wang, B. & Wang,Q. (2016). Glucoseenhances indolic glucosinolate biosynthesis withoutreducing primary sulfur assimilation. Sci. Rep., 6, 31854.DOI.10.1038/srep31854.

  88. Moore, B., Zhou, L., Rolland, F., Hall, Q., Cheng, W. H., Liu,Y. X., Hwang, I., Jones, T. & Sheen, J. (2003). Role of theArabidopsis glucose sensor HXK1 in nutrient, light, andhormonal signaling. Science, 300, 332-336. DOI. 10.1126/science.1080585.

  89. Moreau, M., Azzopardi, M., Clement, G., Dobrenel, T.,Marchive, C., Renne, C., Martin-Magniette, M.L., Taconnat,L., Renou, J. P., Robaglia, C. & Meyer, C. (2012). Mutationsin the Arabidopsis homolog of LST8/GbetaL, a partnerof the target of Rapamycin kinase, impair plant growth,flowering, and metabolic adaptation to long days. PlantCell, 24, 463-481. DOI.10.1105/tpc.111.091306.

  90. Morikami, A., Matsunaga, R., Tanaka, Y., Suzuki, S., Mano,S. & Nakamura, K. (2005). Two cis-acting regulatoryelements are involved in the sucrose-inducible expressionof the sporamin gene promoter from sweet potato intransgenic tobacco. Mol. Genet. Genomics, 272(6), 690-699. DOI.10.1007/s00438-004-1100-y.

  91. Morsy, M. R., Jouve, L., Hausman, J. F., Hoffmann, L.& Stewart, J. M. (2007). Alteration of oxidative andcarbohydrate metabolism under abiotic stress in tworice (Oryza sativa L.) genotypes contrasting in chillingtolerance. J. Plant Physiol., 164, 157-167. DOI.10.1016/j.jplph.2005.12.004.

  92. Nilsson, A., Olsson, T., Ulfstedt, M., Thelander, M. &Ronne, H. (2011). Two novel types of hexokinases in themoss Physcomitrella patens. BMC Plant Biol., 11, 32.DOI.10.1186/1471-2229-11-32.

  93. Nukarinen, E., Nagele, T., Pedrotti, L., Wurzinger, B., Mair,A., Landgraf, R., Bornke, F., Hanson, J., Teige, M.,Baena-Gonzalez, E. Dröge-Laser, W. & Weckwerth, W.(2016). Quantitative phosphoproteomics reveals the roleof the AMPK plant ortholog SnRK1 as a metabolic masterregulator under energy deprivation. Sci. Rep., 6, 31697.DOI.10.1038/srep31697.

  94. Nunes, C., Primavesi, L. F., Patel, M. K., Martinez-Barajas, E.,Powers, S. J., Sagar, R., Fevereiro, P. S., Davis, B. G. & Paul,M. J. (2013). Inhibition of SnRK1 by metabolites: tissuedependenteffects and cooperative inhibition by glucose1-phosphate in combination with trehalose 6-phosphate.Plant Physiol. Biochem., 63, 89-98. DOI.10.1016/j.plaphy.2012.11.011.

  95. O’Hara, L. E., Paul, M. J. & Wingler, A. (2013). How do sugarsregulate plant growth and development? New insight intothe role of trehalose-6-phosphate. Mol. Plant, 6, 261-274.DOI.10.1093/mp/sss120.

  96. Olsson, T., Thelander, M. & Ronne, H. (2003). A novel typeof chloroplast stromal hexokinase is the major glucosephosphorylatingenzyme in the moss Physcomitrellapatens. J. Biol. Chem., 278, 44439-44447. DOI.10.1074/jbc.M306265200.

  97. Orzechowski, S. (2008). Starch metabolism in leaves.Acta Biochim. Pol., 55(3), 435-445. DOI.10.18388/abp.2008_3049

  98. Park, J. I., Ishimizu, T., Suwabe, K., Sudo, K., Masuko, H.,Hakozaki, H., Nou, I. S., Suzuki, G. & Watanabe, M.(2010). UDP-glucose pyrophosphorylase is rate limitingin vegetative and reproductive phases in Arabidopsisthaliana. Plant Cell Physiol., 51(6), 981-996. DOI.10.1093/pcp/pcq057.

  99. Paul, M. J., Primavesi, L. F., Jhurreea, D. & Zhang, Y.(2008). Trehalose metabolism and signaling. Annu.Rev. Plant Biol., 59, 417-441. DOI.10.1146/annurev.arplant.59.032607.092945.

  100. Pfluger, J. & Wagner, D. (2007). Histone modifications anddynamic regulation of genome accessibility in plants.Curr. Opin. Plant Biol., 10, 645-652. DOI.10.1016/j.pbi.2007.07.013.

  101. Pierre, M., Traverso, J. A., Boisson, B., Domenichini,S., Bouchez, D., Giglione, C. & Meinnel, T. (2007).N-myristoylation regulates the SnRK1 pathway inArabidopsis. Plant Cell, 19, 2804-2821. DOI.10.1105/tpc.107.051870.

  102. Poethig, R. S. (2013). Vegetative phase change and shootmaturation in plants. Curr. Top. Dev. Biol., 105,125-152.DOI.10.1016/B978-0-12-396968-2.00005-1.

  103. Polge, C. & Thomas, M. (2007). SNF1/AMPK/SnRK1 kinases,global regulators at the heart of energy control?. TrendsPlant Sci., 12, 20-28. DOI.10.1016/j.tplants.2006.11.005.

  104. Polge, C., Jossier, M., Crozet, P., Gissot, L. & Thomas, M.(2008). Beta-subunits of the SnRK1 complexes sharea common ancestral function together with expressionand function specificities; physical interaction withnitrate reductase specifically occurs via AKINbeta1-subunit. Plant Physiol., 148, 1570-1582. DOI.10.1104/pp.108.123026.

  105. Ponnu, J., Wahl, V. & Schmid, M. (2011). Trehalose-6-phosphate: connecting plant metabolism and development.Front. Plant Sci., 2, 70. DOI.10.3389/fpls.2011.00070.

  106. Price, J., Laxmi, A., St Martin, S. K. & Jang, J. C. (2004).Global transcription profiling reveals multiple sugar signaltransduction mechanisms in Arabidopsis. Plant Cell, 16,2128-2150. DOI.10.1105/tpc.104.022616.

  107. Price, N. P. (2004). Acylic sugar derivatives for GC/MS analysisof 13C-enrichment during carbohydrate metabolism. AnalChem., 76, 6566-6574. DOI.10.1021/ac049198m.

  108. Ramon, M., Dang, T. V. T., Broeckx, T., Hulsmans, S., Crepin,N., Sheen, J. & Rolland, F. (2019). Default activationand nuclear translocation of the plant cellular energysensor SnRK1 regulate metabolic stress responses anddevelopment. Plant Cell, 31, 1614-1632. DOI.10.1105/tpc.18.00500.

  109. Razin, A. & Riggs, A.D. (1980). DNA methylation and genefunction. Science, 210(4470), 604-610. DOI.10.1126/science.6254144.

  110. Reda, M. (2015). Response of nitrate reductase activity and NIAgenes expression in roots of Arabidopsis hxk1 mutant treatedwith selected carbon and nitrogen metabolites. Plant Sci.,230, 51-58. DOI.10.1016/j.plantsci.2014.10.008.

  111. Ren, M., Venglat, P., Qiu, S., Feng, L., Cao, Y., Wang, E.,Xiang, D., Wang, J., Alexander, D., Chalivendra, S. Logan,D., Mattoo, A., Selvaraj, G. & Datla, R. (2012). Targetof rapamycin signaling regulates metabolism, growth,and life span in Arabidopsis. Plant Cell, 24, 4850-4874.DOI.10.1105/tpc.112.107144.

  112. Riou-Khamlichi, C., Menges, M., Healy, J. M. & Murray, J. A.(2000). Sugar control of the plant cell cycle: differentialregulation of Arabidopsis D-type cyclin gene expression.Mol. Cell Biol., 20(13), 4513-4521. DOI.10.1128/MCB.20.13.4513-4521.2000.

  113. Robaglia, C., Thomas, M. & Meyer, C. (2012). Sensingnutrient and energy status by SnRK1 and TOR kinases.Curr. Opin. Plant Biol., 15(3), 301-307. DOI.10.1016/j.pbi.2012.01.012.

  114. Rolland, F., Winderickx, J. & Thevelein, J. M. (2001). Glucosesensingmechanisms in eukaryotic cells. Trends Biochem.Sci., 26, 310-317. DOI.10.1016/s0968-0004(01)01805-9.

  115. Rolland, F., Moore, B. & Sheen, J. (2002). Sugar sensing andsignaling in plants. Plant Cell, 14, S185-S205. DOI.10.1105/tpc.010455.

  116. Rolland, F., Baena-Gonzalez, E. & Sheen, J. (2006). Sugarsensing and signaling in plants: Conserved and NovelMechanisms. Annu. Rev. Plant Biol., 57, 675-709. DOI.10.1146/annurev.arplant.57.032905.105441.

  117. Romano, A. H. & Conway, T. (1996). Evolution of carbohydratemetabolic pathways. Res. Microbiol., 147, 448-455.DOI.10.1016/0923-2508(96)83998-2.

  118. Rook, F., Gerrits, N., Kortstee, A., van Kampen, M., Borrias,M., Weisbeek, P. & Smeekens, S. (1998). Sucrose-specificsignalling represses translation of the Arabidopsis ATB2bZIP transcription factor gene. Plant J., 15(2), 253-263.DOI.10.1046/j.1365-313x.1998.00205.x.

  119. Roth, M. S., Westcott, D. J., Iwai, M. & Niyogi, K .K.(2019). Hexokinase is necessary for glucose-mediatedphotosynthesis repression and lipid accumulation in agreen alga. Commun. Biol., 2, 347. DOI.10.1038/s42003-019-0577-1.

  120. Rottmann, T., Zierer, W., Subert, C., Sauer, N. & Stadler, R.(2016). STP10 encodes a high-affinity monosaccharidetransporter and is induced under low-glucose conditions inpollen tubes of Arabidopsis. J. Exp. Bot., 67, 2387-2399.DOI.10.1093/jxb/erw048.

  121. Sakr, S., Wang, M., Dedaldechamp, F., Perez-Garcia, M. D.,Oge, L., Hamama, L. & Atanassova, R. (2018). The Sugar-Signaling Hub: Overview of Regulators and Interactionwith the Hormonal and Metabolic Network. Int. J. Mol.Sci., 19(9), 2506 . DOI.10.3390/ijms19092506.

  122. Sami, F., Yusuf, M., Faizan, M., Faraz, A. & Hayat, S. (2016).Role of sugars under abiotic stress. Plant Physiol. Biochem.,109, 54-61. DOI.10.1016/j.plaphy.2016.09.005.

  123. Saxton, R. A. & Sabatini, D. M. (2017). mTOR signaling ingrowth, metabolism, and disease. Cell, 169(6), 361-371.DOI.10.1016/j.cell.2017.02.004.

  124. Schepetilnikov, M., Dimitrova, M., Mancera-Martinez, E.,Geldreich, A., Keller, M. & Ryabova, L. A. (2013). TOR andS6K1 promote translation reinitiation of uORF-containingmRNAs via phosphorylation of eIF3h. EMBO J., 32(8),1087-1102. DOI.10.1038/emboj.2013.61.

  125. Schepetilnikov, M., Makarian, J., Srour, O., Geldreich, A., Yang,Z., Chicher, J., Hammann, P. & Ryabova, L. A. (2017).GTPase ROP2 binds and promotes activation of target ofrapamycin, TOR, in response to auxin. EMBO J., 36(7),886-903. DOI.10.15252/embj.201694816.

  126. Schmelzle, T. & Hall, M. N. (2000). TOR, a central controllerof cell growth. Cell, 103(2), 253-262. DOI.10.1016/s0092-8674(00)00117-3.

  127. Schulze, W., Stitt, M., Schulze, E. D., Neuhaus, H. E. & Fichtner,K. (1991). A quantification of the significance of assimilatorystarch for growth of Arabidopsis thaliana L. Heynh. PlantPhysiol., 95(3), 890-895. DOI.10.1104/pp.95.3.890.

  128. Sheen, J. (1990). Metabolic repression of transcription inhigher plants. Plant Cell, 2, 1027-1038. DOI.10.1105/tpc.2.10.1027.

  129. Sheen, J., Zhou, L. & Jang, J. C. (1999). Sugars as signalingmolecules. Curr. Op. Plant Biol., 2(5), 410-418.DOI.10.1016/s1369-5266(99)00014-x.

  130. Shi, L., Wu, Y. & Sheen, J. (2018). TOR signaling in plants:conservation and innovation. Development, 145(13),dev160887. DOI.10.1242/dev.160887.

  131. Siddiqui, H., Sami, F. & Hayat, S. (2020). Glucose: Sweetor bitter effects in plants-a review on current and futureperspective. Carbohydr. Res., 487, 107884. DOI.10.1016/j.carres.2019.107884.

  132. Smeekens, S. (2000). Sugar-induced signal transduction inplants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 51, 49-81. DOI.10.1146/annurev.arplant.51.1.49.

  133. Stewart, J. L., Maloof, J. N. & Nemhauser, J. L. (2011). PIFgenes mediate the effect of sucrose on seedling growthdynamics. PLoS One, 6(5), e19894. DOI.10.1371/journal.pone.0019894.

  134. Stulke, J. & Hillen, W. (1999). Carbon catabolite repressionin bacteria. Curr. Opin. Microbiol., 2(2), 195-201.DOI.10.1016/S1369-5274(99)80034-4.

  135. Sun, J. Y., Chen, Y. M., Wang, Q. M., Chen, J. & Wang, X. C.(2006). Glucose inhibits the expression of triose phosphate/phosphate translocator gene in wheat via hexokinasedependentmechanism. Int. J. Biochem. Cell Biol., 38(7),1102-1113. DOI.10.1016/j.biocel.2005.11.013.

  136. Teng, S., Keurentjes, J., Bentsink, L., Koornneef, M. &Smeekens, S. (2005). Sucrose-specific induction ofanthocyanin biosynthesis in Arabidopsis requires theMYB75/PAP1 gene. Plant Physiol., 139(4), 1840-1852.DOI.10.1104/pp.105.066688.

  137. Toroser, D., Plaut, Z. & Huber, S. C. (2000). Regulation of aplant SNF1-related protein kinase by glucose-6- phosphate.Plant Physiol., 123, 403-412. DOI. 10.1104/pp.123.1.403.

  138. Tsai, A. Y. & Gazzarrini, S. (2012). AKIN10 and FUSCA3interact to control lateral organ development and phasetransitions in Arabidopsis. Plant J., 69(5), 809-821.DOI.10.1111/j.1365-313X.2011.04832.x.

  139. van Dijken, A. J., Schluepmann, H. & Smeekens, S. C. (2004).Arabidopsis trehalose-6-phosphate synthase 1 is essentialfor normal vegetative growth and transition to flowering.Plant Physiol., 135, 969-977. DOI.10.1104/pp.104.039743.

  140. Vernon, L.P. & Avron, M. (1965). Photosynthesis. Annu.Rev. Biochem., 34, 269-296. DOI.10.1146/annurev.bi.34.070165.001413.

  141. Vogel, G., Aeschbacher, R. A., Muller, J., Boller, T. &Wiemken, A. (1998). Trehalose-6-phosphate phosphatasesfrom Arabidopsis thaliana: identification by functionalcomplementation of the yeast tps2 mutant. Plant J., 13(5),673-683. DOI.10.1046/j.1365-313x.1998.00064.x.

  142. Vothknecht, U. C. & Westhoff, P. (2001). Biogenesis and originof thylakoid membranes. Biochem. Biophys. Acta, 1541,91-101. DOI. 10.1016/s0167-4889(01)00153-7.

  143. Wai, C. M., Zhang, J., Jones, T. C., Nagai, C. & Ming, R. (2017).Cell wall metabolism and hexose allocation contribute tobiomass accumulation in high yielding extreme segregantsof a Saccharum interspecific F2 population. BMC Genomics,18, 773. DOI.10.1186/s12864-017-4158-8.

  144. Weber, H., Buchner, P., Borisjuk, L. & Wobus, U. (1996). Sucrosemetabolism during cotyledon development of Vicia fabaL. is controlled by the concerted action of both sucrosephosphate synthase and sucrose synthase: expressionpatterns, metabolic regulation and implications for seeddevelopment. Plant J., 9, 841-850. DOI.10.1046/j.1365-313x.1996.9060841.x.

  145. Wiese, A., Elzinga, N., Wobbes, B. & Smeekens, S. (2005).Sucrose-induced translational repression of plant bZIP-typetranscription factors. Biochem. Soc. Trans., 33, 272-275.DOI. 10.1042/BST0330272.

  146. Wingler, A. (2018). Transitioning to the next phase: the roleof sugar signaling throughout the plant life cycle. PlantPhysiol., 176, 1075-1084. DOI.10.1104/pp.17.01229.

  147. Winter, H. & Huber, S. C. (2000). Regulation of sucrosemetabolism in higher plants: Localization and regulationof activity of key enzymes. Crit. Rev. Plant Sci., 19, 1,31-67. DOI.10.1080/07352680091139178.

  148. Xiao, G., Zhou, J., Lu, X., Huang, R. & Zhang, H. (2018).Excessive UDPG resulting from the mutation of UAP1causes programmed cell death by triggering reactive oxygenspecies accumulation and caspase-like activity in rice. NewPhytol., 217, 332-343. DOI.10.1111/nph.14818.

  149. Xiao, W., Sheen, J. & Jang, J.C. (2000). The role ofhexokinase in plant sugar signal transduction andgrowth and development. Plant Mol. Biol., 44, 451-461.DOI.10.1023/A:1026501430422.

  150. Xiong, Y. & Sheen, J. (2012). Rapamycin and glucose-targetof rapamycin (TOR) protein signaling in plants. J. Biol.Chem., 287(4), 2836-2842. DOI.10.1074/jbc.M111.300749.

  151. Xiong, Y. & Sheen, J. (2013). Moving beyond translation:Glucose-TOR signaling in the transcriptional control ofcell cycle. Cell Cycle, 12(13), 1989-1990. DOI.10.4161/cc.25308.

  152. Xiong, Y. & Sheen, J. (2015). Novel links in the plant TORkinase signaling network. Curr. Opin. Plant Biol., 28, 83-91. DOI.10.1016/j.pbi.2015.09.006.

  153. Yang, Z., Zhang, L., Diao, F., Huang, M. & Wu, N. (2004).Sucrose regulates elongation of carrot somatic embryoradicles as a signal molecule. Plant Mol. Biol., 54, 441-459.DOI.10.1023/B:PLAN.0000036375.40006.d3.

  154. Zhai, Z., Keereetaweep, J., Liu, H., Feil, R., Lunn, J.E. & Shanklin, J. (2018). Trehalose 6-PhosphatePositively Regulates Fatty Acid Synthesis by StabilizingWRINKLED1. Plant Cell, 30, 2616-2627. DOI.10.1105/tpc.18.00521.

  155. Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S.W., Chen, H., Henderson, I. R., Shinn, P., Pellegrini,M., Jacobsen, S. E. & Ecker, J. R. (2006). Genomewidehigh-resolution mapping and functional analysis ofDNA methylation in Arabidopsis. Cell, 126, 1189-1201.DOI.10.1016/j.cell.2006.08.003.

  156. Zhang, Y., Primavesi, L. F., Jhurreea, D., Andralojc, P. J.,Mitchell, R. A., Powers, S. J., Schluepmann, H., Delatte,T., Wingler, A. & Paul, M. J. (2009). Inhibition of SNF1-related protein kinase1 activity and regulation of metabolicpathways by trehalose-6-phosphate. Plant Physiol., 149,1860-1871. DOI.10.1104/pp.108.133934.

  157. Zhu, T., Li, L., Feng, L., Mo, H. & Ren, M. (2020). Target ofrapamycin regulates genome methylation reprogrammingto control plant Growth in Arabidopsis. Front. Genet., 11,186. DOI.10.3389/fgene.2020.00186.

  158. Zourelidou, M., de Torres-Zabala, M., Smith, C. & Bevan, M.W.(2002). Storekeeper defines a new class of plant-specificDNA-binding proteins and is a putative regulator of patatinexpression. Plant J., 30(4), 489-497. DOI.10.1046/j.1365-313x.2002.01302.x.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2022;25

ARTíCULOS SIMILARES

CARGANDO ...