medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2022, Número 1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2022; 25 (1)


Bacillus subtilis y Trichoderma: Características generales y su aplicación en la agricultura

González-León Y, Ortega-Bernal J, Anducho-Reyes MA, Mercado-Flores Y
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 95
Paginas: 1-14
Archivo PDF: 462.06 Kb.


PALABRAS CLAVE

agricultura, hongo benéfico, interacción planta-microorganismo, rizósfera, rizobacteria.

RESUMEN

La provisión de alimentos requiere, en la actualidad, de nuevas herramientas que ayuden a incrementar la productividad de los cultivos sin impactos negativos al medio ambiente. La rizósfera de las plantas, es la parte del suelo influenciada por las secreciones de las raíces, su alta actividad microbiana alberga diferentes microorganismos con importantes aplicaciones agrícolas, que pueden ser utilizados en el desarrollo de productos que contribuyan a enfrentar los retos de la agricultura actual, tal es el caso de la bacteria Bacillus subtilis y diferentes especies de hongos del género Trichoderma, los cuales han sido ampliamente estudiados y utilizados por ser benéficos para las plantas. En la presente revisión, se describen las características generales y las propiedades de estos microorganismos, que los convierten en una herramienta amigable con los agroecosistemas que ayude a lograr la soberanía alimentaria, sin recurrir a insumos químicos.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Adam, M., Heuer, H. & Hallmann, J. (2014). Bacterial antagonistsof fungal pathogens also control root-knot nematodes byinduced systemic resistance of tomato plants. PloS one,9, e90402. https://doi.org/10.1371/journal.pone.0090402

  2. Ahmad, M., Ahmad, I., Hilger, T. H., Nadeem, S. M., Akhtar,M. F., Jamil, M., Hussain, A. Z. A. & Zahir, M. (2018).Preliminary study on phosphate solubilizing Bacillus subtilisstrain Q3 and Paenibacillus sp. strain Q6 for improvingcotton growth under alkaline conditions. PeerJ., 6, e5122.http://doi.org/100.7717/peerj.5122

  3. Ahmad, I., Ahmad, M., Hussain, A. & Jamil, M. (2021).Integrated use of phosphate-solubilizing Bacillus subtilisstrain IA6 and zinc-solubilizing Bacillus sp. strain IA16:a promising approach for improving cotton growth. FoliaMicrobiológica, 66, 115–125. http://doi.org/10.1007/s12223-020-00831-3

  4. Alcaraz, L. D., Moreno-Hagelsieb, G., Eguiarte, L. E., Souza, V.,Herrera-Estrella, L. & Olmedo, G. (2010). Understandingthe evolutionary relationships and major traits of Bacillusthrough comparative genomics. BMC Genomics, 11, 332.http://doi.org/10.1186/1471-2164-11-332

  5. Alfiky, A. & Weisskopf, L. (2021). Deciphering Trichodermaplant-pathogen interactions for better development ofbiocontrol applications. Journal of Fungi. 7, 61. http://doi.org/10.3390/jof7010061

  6. Baccelli, I. (2015). Cerato-platanin family proteins: one functionfor multiple biological roles?. Frontiers in Plant Science.5, 769. http://doi.org/10.3389/fpls.2014.00769

  7. Beauregard, P. B., Chai, Y., Vlamakis, H., Losick, R. & Kolter,R. (2013). Bacillus subtilis biofilm induction by plantpolysaccharides. Proceedings of the National Academy ofSciences of the United States of America, 110, 1621–1630.http://doi.org/10.1073/pnas.1218984110

  8. Bononi, L., Chiaramonte, J. B., Pansa, C. C., Moitinho, M. A.& Melo, I. S. (2020). Phosphorus-solubilizing Trichodermaspp. from Amazon soils improve soybean plant growth.Scientific Reports, 10, 2858. https://doi.org/10.1038/s41598-020-59793-8

  9. Boonstra, M., de Jong, I. G., Scholefield, G., Murray, H.,Kuipers, O. P. & Veening, J. W. (2013). Spo0A regulateschromosome copy number during sporulation by directlybinding to the origin of replication in Bacillus subtilis.Molecular Microbiology, 87, 925–938. http://doi.org/10.1111/mmi.12141

  10. Calvio, C., Celandroni, F., Ghelardi, E., Amati, G., Salvetti, S.,Ceciliani, F., Galizzi, A. & Senesi, S. (2005). Swarmingdifferentiation and swimming motility in Bacillus subtilisare controlled by swrA, a newly identified dicistronicoperon. Journal of Bacteriology, 187, 5356–5366. http://doi.org/0.1128/JB.187.15.5356-5366.2005

  11. Camp, A. H. & Losick, R. (2009). A feeding tube model foractivation of a cell-specific transcription factor duringsporulation in Bacillus subtilis. Genes and Development,23, 1014–1024. http://doi.org/10.1101/gad.1781709

  12. Castillo, A. G., Puig, C. G. & Cumagun, C. (2019). Nonsynergisticeffect of Trichoderma harzianum and Glomusspp. in reducing infection of Fusarium wilt in banana.Pathogens, 8, 43. http://doi.org/10.3390/pathogens8020043

  13. Caulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C.& Mahillon, J. (2019). Overview of the antimicrobialcompounds produced by members of the Bacillus subtilisgroup. Frontiers in Microbiology, 10, 302. http://doi.org/10.3389/fmicb.2019.00302

  14. Chen, H., Wang, L., Su, C. X., Gong, G. H., Wang, P. & Yu,Z. L. (2008). Isolation and characterization of lipopeptideantibiotics produced by Bacillus subtilis. Letters in AppliedMicrobiology, 47, 180–186. http://doi.org/10.1111/j.1472-765X.2008.02412.x

  15. Chen, Y. H., Lee, P. C. & Huang, T. P. (2021). Biological controlof collar rot on passion fruits via induction of apoptosis in thecollar rot pathogen by Bacillus subtilis. Phytopathology, 111,627–638. http://doi.org/10.1094/PHYTO-02-20-0044-R

  16. Chirinos, J., Leal, A. & Montilla, J. (2006). Uso de insumosbiológicos como alternativa para la agricultura sostenibleen la zona sur del Estado Anzoátegui. Revista DigitalCeniap, 11, 1–7.

  17. Cunningham, K. A. & Burkholder, W. F. (2009). The histidinekinase inhibitor Sda binds near the site of autophosphorylationand may sterically hinder autophosphorylation andphosphotransfer to Spo0F. Molecular Microbiology, 71,659–677. http://doi.org/10.1111/j.1365-2958.2008.06554.x

  18. Earl, A. M., Losick, R. & Kolter, R. (2008). Ecology andgenomics of Bacillus subtilis. Trends in Microbiology, 16,269c275. http://doi.org/10.1016/j.tim.2008.03.004

  19. Errington, J. & Wu, L. J. (2017). Cell Cycle Machinery inBacillus subtilis. Sub-cellular Biochemistry, 84, 67–101.http://doi.org/10.1007/978-3-319-53047-5_3

  20. Espinoza-Ahumada, C. A., Gallegos-Morales, G., Hernández-Castillo, F. D., Ochoa-Fuentes, Y. M., Cepeda-Siller, M.& Castillo-Reyes, F. (2019). Antagonistas microbianos aFusarium spp., como agente causal de pudrición de raícesy tallo en melón. Ecosistemas y Recursos Agropecuarios,6, 45–55. http://doi.org/10.19136/era.a6n16.1843

  21. Fiche, J. B., Cattoni, D. I., Diekmann, N., Langerak, J. M., Clerte,C., Royer, C. A., Margeat, E., Doan, T. & Nöllmann, M.(2013). Recruitment, assembly, and molecular architectureof the SpoIIIE DNA pump revealed by superresolutionmicroscopy. PLoS Biology, 11, e1001557. http://doi.org/10.1371/journal.pbio.1001557

  22. Garrido, R. M. & Vilela, S. N. (2019). Capacidad antagónicade Trichoderma harzianum frente a Rhizoctonia, Nakateasigmoidea y Sclerotium rolfsii y su efecto en cepas nativasde Trichoderma aisladas de cultivos de arroz. ScientiaAgropecuaria, 10, 199–206. http://doi.org/10.17268/sci.agropecu.2019.02.05

  23. Ghazy, N. & El-Nahrawy, S. (2021). Siderophore productionby Bacillus subtilis MF497446 and Pseudomonas koreensisMG209738 and their efficacy in controlling Cephalosporiummaydis in maize plant. Archives of Microbiology, 203,1195–1209. http://doi.org/10.1007/s00203-020-02113-5

  24. Gimeno, A., Kägi, A., Drakopoulos, D., Bänziger, I., Lehmann,E., Forrer, H.R., Keller, B. & Vogelgsang, S. (2020). Fromlaboratory to the field: biological control of Fusariumgraminearum on infected maize crop residues. Journalof Applied Microbiology, 129, 680–694. http://doi.org/10.1111/jam.14634

  25. Glekas, G. D., Mulhern, B. J., Kroc, A., Duelfer, K. A.,Lei, V., Rao, C. V. & Ordal, G. W. (2012). The Bacillussubtilis chemoreceptor McpC senses multiple ligandsusing two discrete mechanisms. The Journal of BiologicalChemistry, 287, 39412–39418. http://doi.org/10.1074/jbc.M112.413518

  26. Glick, B. R. (2020). Beneficial plant-bacterial interactions.Switzerland: Springer Nature Press. http://doi.org/10.1007/978-3-030-44368-9

  27. González-León, Y., Anducho-Reyes, M. A., Cartagena-Luna,A. & Mercado-Flores, Y. (2020). Capítulo 10. Agriculturasostenible: herramienta para la soberanía alimentaria. En:Marroquín, J. A., Olivares-Ramírez, J. M., Cruz-Carpio,L. E. & Bautista-Jiménez, A. (Eds). Mujeres en la Ciencia,Handbooks T-VIII. (pp. 142-152). México: ECORFANMexico,S. C. http://doi.org/10.35429/H.2020.8.142.153

  28. Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H.S. & Patra, J. K. (2018). Revitalization of plant growthpromoting rhizobacteria for sustainable development inagriculture. Microbiological Research, 206, 131–140.http://doi.org/10.1016/j.micres.2017.08.016

  29. Guzmán-Guzmán, P., Porras-Troncoso, M. D., Olmedo-Monfil,V. & Herrera-Estrella, A. (2019). Trichoderma species:versatile plant symbionts. Phytopathology, 109, 6–16. http://doi.org/10.1094/PHYTO-07-18-0218-RVW

  30. Hashem, A., Tabassum, B. & Fathi Abd Allah, E. (2019). Bacillussubtilis: A plant-growth promoting rhizobacterium that alsoimpacts biotic stress. Saudi Journal of Biological Sciences,26, 1291–1297. http://doi.org/10.1016/j.sjbs.2019.05.004

  31. Hermosa, R., Botella, L., Keck, E., Jiménez, J. A., Montero-Barrientos, M., Arbona, V., Gómez-Cadenas, A., Monte, E.& Nicolás, C. (2011). The overexpression in Arabidopsisthaliana of a Trichoderma harzianum gene that modulatesglucosidase activity and enhances tolerance to salt andosmotic stresses. Journal of Plant Physiology, 168,1295–1302. http://doi.org/10.1016/j.jplph.2011.01.027

  32. Hernández-Melchor, D. J., Ferrera-Cerrato, R. & Alarcón, A.(2019). Trichoderma: agricultural and biotechnologicalimportance, and fermentation systems for producingbiomass and enzymes of industrial interest. Chilean Journalof Agricultural y Animal Sciences, 35, 98–112. http://doi.org/0.4067/S0719-38902019005000205

  33. Herrera-Téllez, V. I., Cruz-Olmedo, A. K., Plasencia, J.,Gavilanes-Ruíz, M., Arce-Cervantes, O., Hernández-León,S. & Saucedo-García, M. (2019). The protective effect ofTrichoderma asperellum on tomato plants against Fusariumoxysporum and Botrytis cinerea diseases involves inhibitionof reactive oxygen species production. International Journalof Molecular Sciences, 20, 2007. http://doi.org/10.3390/ijms20082007

  34. Jamali, H., Sharma, A., Roohi, & Srivastava, A. K. (2020).Biocontrol potential of Bacillus subtilis RH5 against sheathblight of rice caused by Rhizoctonia solani. Journal ofBasic Microbiology, 60, 268–280. http://doi.org/10.1002/jobm.201900347

  35. Jangir, M., Pathak, R. & Sharma, S. (2017). Trichoderma and itspotential applications. En: Singh, D., Singh, H. & Prabha,R. (Eds). Plant-Microbe Interactions. Perspectives of Agroecological.(pp: 323–339) Singapore: Springer. http://doi.org/10.1007/978-981-10-6593-4_13

  36. Jayaraj, J., Yi, H. & Liang, G. H. (2004). Foliar application ofBacillus subtilis AUBS1 reduces sheath blight and triggersdefense mechanisms in rice. Journal of Plant Diseasesand Protection, 111, 115–125. http://doi.org/10.1007/BF03356138

  37. Jiang, Y., Wang, J. L., Chen, J., Mao, L. J., Feng, X. X.,Zhang, C. L. & Lin, F.C. (2016). Trichoderma biodiversityof agricultural fields in east China reveals a gradientdistribution of species. PloS One, 11, e160613. http://doi.org/10.1371/journal.pone.0160613

  38. Kai, M. (2020). Diversity and distribution of volatile secondarymetabolites throughout Bacillus subtilis isolates. Frontiersin Microbiology, 11, 559. http://doi.org/10.3389/fmicb.2020.00559

  39. Kashyap, P. L, Rai, P., Srivastava, A. K. & Kumar, S. (2017).Trichoderma for climate resilient agriculture. World Journalof Microbiology and Biotechnology, 33, 155. http://doi.org/10.1007/s11274-017-2319-1

  40. Kearns, D. B. (2010). A field guide to bacterial swarmingmotility. Nature Reviews Microbiology, 8, 634–644. http://doi.org/10.1038/nrmicro2405

  41. Kearns, D. B. & Losick, R. (2003). Swarming motilityin undomesticated Bacillus subtilis. MolecularMicrobiology, 49, 581–590. http://doi.org/10.1046/j.1365-2958.2003.03584.x

  42. Khan, R., Najeeb, S., Hussain, S., Xie, B. & Li, Y. (2020).Bioactive secondary metabolites from Trichoderma spp.against phytopathogenic fungi. Microorganisms, 8, 817.http://doi.org/10.3390/microorganisms8060817

  43. Kovács, A. T. & Dragoš, A. (2019). Evolved biofilm: reviewon the experimental evolution studies of Bacillus subtilispellicles. Journal of Molecular Biology, 431, 4749–4759.http://doi.org/10.1016/j.jmb.2019.02.005

  44. Kuan, K. B., Othman, R., Abdul, Rahim, K. & Shamsuddin, Z. H.(2016). Plant growth-promoting rhizobacteria inoculation toenhance vegetative growth, nitrogen fixation and nitrogenremobilisation of maize under greenhouse conditions.PloS One, 11, e0152478. http://doi.org/10.1371/journal.pone.0152478

  45. Lastochkina, O., Baymiev, A., Shayahmetova, A., Garshina, D.,Koryakov, I., Shpirnaya, I., Pusenkova, L., Mardanshin,I., Kasnak, C. & Palamutoglu, R. (2020). Effects ofendophytic Bacillus subtilis and salicylic acid on postharvestdiseases (Phytophthora infestans, Fusarium oxysporum)development in stored potato tubers. Plants, 9, 76. http://doi.org/10.3390/plants9010076

  46. Lemfack, M. C., Gohlke, B. O., Toguem, S., Preissner, S.,Piechulla, B. & Preissner, R. (2018). mVOC 2.0: a databaseof microbial volatiles. Nucleic Acids Research, 46, 1261–1265. http://doi.org/10.1093/nar/gkx1016

  47. Li, M. F., Li, G. H. & Zhang, K. Q. (2019a). Non-volatilemetabolites from Trichoderma spp. Metabolites, 9, 58.http://doi.org/10.3390/metabo9030058

  48. Li, N., Islam, M. T. & Kang, S. (2019b). Secreted metabolitemediatedinteractions between rhizosphere bacteria andTrichoderma biocontrol agents. PloS One, 14, 227–228.http://doi.org/10.1371/journal.pone.0227228

  49. Li, Y., Sun, R., Yu, J., Saravanakumar, K. & Che, J. (2016).Antagonistic and biocontrol potential of Trichodermaasperellum ZJSX5003 against the maize stalk rot pathogenFusarium graminearum. Indian Journal of Microbiology,56, 318–327. http://doi.org/10.1007/s12088-016-0581-9

  50. Lian, L., Xie, L., Zheng, L. & Lin, Q. (2011). Induction ofsystemic resistance in tobacco against Tobacco Mosaic Virusby Bacillus spp. Biocontrol Science and Technology, 21,281–292. http://doi.org/10.1080/09583157.2010.543667

  51. Liu, D., Li, K., Hu, J., Wang, W., Liu, X. & Gao, Z.(2019a). Biocontrol and action mechanism of Bacillusamyloliquefaciens and Bacillus subtilis in soybeanPhytophthora Blight. International Journal of MolecularSciences, 20, 2908. https://doi.org/10.3390/ijms20122908

  52. Liu, N., Luo, X., Tian, Y., Lai, D., Zhang, L., Lin, F. & Xu,H. (2019b). The stereoisomeric Bacillus subtilis HN09metabolite 3,4-dihydroxy-3-methyl-2-pentanone inducesdisease resistance in Arabidopsis via different signalingpathways. BMC Plant Biology, 19, 384. http://doi.org/10.1186/s12870-019-1985-6

  53. Liu, W. T., Yang, Y. L., Xu, Y., Lamsa, A., Haste, N. M., Yang,J. Y., Ng, J., González, D., Ellermeier, C. D., Straight, P.H., Pevzner, P. A., Pogliano, J., Nizet, V., Pogliano, K. &Dorrestein, P. C. (2010). Imaging mass spectrometry ofintraspecies metabolic exchange revealed the cannibalisticfactors of Bacillus subtilis. Proceedings of the NationalAcademy of Sciences of the United States of America, 107,16286–16290. http://doi.org/10.1073/pnas.1008368107

  54. Lugtenberg, B. & Kamilova, F. (2009). Plant-growth-promotingrhizobacteria. Annual Review of Microbiology, 63, 541–556.http://doi.org/10.1146/annurev.micro.62.081307.162918

  55. Martínez, B., Infante, D. & Reyes, Y. (2013). Trichoderma spp.y su función en el control de plagas en los cultivos. Revistade Protección Vegetal, 28, 1–11.

  56. Martínez-Canto, O. J., Cristóbal-Alejo, J., Tun-Suárez, J. M.& Reyes-Ramírez, A. (2021). Detección de genes Epl1y Sm1 en Trichoderma spp. antagonistas contra hongosfitopatógenos. Ecosistemas y Recursos Agropecuarios, 8,e2791. http://doi.org/10.19136/era.a8n2.2791

  57. Matiru, V. N. & Dakora, F. D. (2004). Potential use of rhizobialbacteria as promoters of plant growth for increasedyield in landraces of African cereal crops. AfricanJournal of Biotechnology, 3, 1–7. http://doi.org/10.5897/AJB2004.000-2002

  58. McArthur, J. W. & McCord, G. C. (2017), Fertilizinggrowth: Agricultural inputs and their effects in economicdevelopment. Journal of Development Economics, 127,133–152. http://doi.org/10.1016/j.jdeveco.2017.02.007

  59. McKenney, P. T., Driks, A. & Eichenberger, P. (2013). TheBacillus subtilis endospore: assembly and functions ofthe multilayered coat. Nature Reviews Microbiology, 11,33–44. http://doi.org/10.1038/nrmicro2921

  60. Mercado-Flores, Y., Cárdenas-Álvarez, I. O., Rojas-Olvera, A.V., Pérez-Camarillo, J. P., Leyva-Mir, S. G. & Anducho-Reyes, M. A. (2014), Application of Bacillus subtilisin the biological control of the phytopathogenic fungusSporisorium reilianum. Biological Control, 76, 36–40.http://doi.org/10.1016/j.biocontrol.2014.04.011

  61. Mesa-Vanegas, A. M., Marin, A. & Calle-Osorno, J. (2019).Metabolitos secundarios en Trichoderma spp. y susaplicaciones biotecnológicas agrícolas. ActualidadesBiológicas, 41, 32–44. http://doi.org/10.17533/udea.acbi.v41n111a02

  62. Morán-Diez, M. E., Martínez de Alba, Á. E., Rubio, M. B.,Hermosa, R. & Monte, E. (2021). Trichoderma and theplant heritable priming responses. Journal of Fungi, 7,318–325. http://doi.org/10.3390/jof7040318

  63. Mpanga, I. K., Nkebiwe, P. M., Kuhlmann, M., Cozzolino,V., Piccolo, A., Geistlinger, J., Berger, N., Ludewig, U. &Neumann, G. (2019). The form of N supply determinesplant growth promotion by P-solubilizing microorganismsin maize. Microorganisms, 7, 38. http://doi.org/10.3390/microorganisms7020038

  64. Nagórska, K., Bikowski, M. & Obuchowski, M. (2007).Multicellular behaviour and production of a wide varietyof toxic substances support usage of Bacillus subtilis asa powerful biocontrol agent. Acta Biochimica Polonica,54, 495–508.

  65. Newton, R., Amstutz, J. & Patrick, J. E. (2020). Biofilmformation by Bacillus subtilis is altered in the presenceof pesticides. Access Microbiology, 2, 175. http://doi.org/10.1099/acmi.0.000175

  66. Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A.,Joris, B., Arpigny, J. L. & Thonart, P. (2007). Surfactinand fengycin lipopeptides of Bacillus subtilis as elicitorsof induced systemic resistance in plants. EnvironmentalMicrobiology, 9, 1084–1090. http://doi.org/10.1111/j.1462-2920.2006.01202.x

  67. Palyzová, A., Svobodová, K., Sokolová, L., Novák, J. & Novotný,Č. (2019). Metabolic profiling of Fusarium oxysporumconglutinans race 2 in dual cultures with biocontrol agentsBacillus amyloliquefaciens, Pseudomonas aeruginosa,and Trichoderma harzianum. Folia Microbiológica, 64,779–787. http://doi.org/10.1007/s12223-019-00690-7

  68. Pérez-Morales, T. G., Ho, T. D., Liu, W. T., Dorrestein, P. C.& Ellermeier, C. D. (2013). Production of the cannibalismtoxin SDP is a multistep process that requires SdpA andSdpB. Journal of Bacteriology, 195, 324–351. http://doi.org/10.1128/JB.00407-13

  69. Petatán-Sagahón, I., Anducho-Reyes, M. A., Silva-Rojas, H.V., Arana-Cuenca, A., Téllez-Jurado, A., Cárdenas-Álvarez,I. O. & Mercado-Flores, Y. (2011). Isolation of bacteriawith antifungal activity against the phytopathogenic fungiStenocarpella maydis and Stenocarpella macrospora.International Journal of Molecular Sciences, 12, 5522–5537. http://doi.org/10.3390/ijms12095522

  70. Rahn-Lee, L., Merrikh, H., Grossman, A. D. & Losick, R.(2011). The sporulation protein SirA inhibits the bindingof DnaA to the origin of replication by contacting a patchof clustered amino acids. Journal of Bacteriology, 193,1302–1307. http://doi.org/10.1128/JB.01390-10

  71. Ramírez-Valdespino, C. A., Casas-Flores, S. & Olmedo-Monfil,V. (2019), Trichoderma as a model to study effector-likemolecules. Frontiers in Microbiology, 10, 1030. http://doi.org/10.3389/fmicb.2019.01030

  72. Ravel, J. & Fraser, C. M. (2005). Genomics at the genus scale.Trends in Microbiology, 13, 95–97. http://doi.org/10.1016/j.tim.2005.01.004

  73. Regan, G., Itaya, M. & Piggot, P. J. (2012). Coupling of σGactivation to completion of engulfment during sporulationof Bacillus subtilis survives large perturbations to DNAtranslocation and replication. Journal of Bacteriology, 194,6264–6271. http://doi.org/10.1128/JB.01470-12

  74. Rivera-Cruz, M. C., Trujillo-Narcía, A., Córdova-Ballona, G.,Kohler, J., Fuensanta, C. & Roldán, A. (2008). Poultrymanure and banana waste are effective biofertilizer carriersfor promoting plant growth and soil sustainability in bananacrops. Soil Biology and Biochemistry, 12, 134–156. http://doi.org/10.1016/j.soilbio.2008.09.003

  75. Rizzi, A., Roy, S., Bellenger, J. P. & Beauregard, P. B.(2019). Iron homeostasis in Bacillus subtilis requiressiderophore production and biofilm formation. Appliedand Environmental Microbiology, 85, 243–258. http://doi.org/10.1128/AEM.02439-18

  76. Sallam, N., Eraky, A. & Sallam, A. (2019). Effect of Trichodermaspp. on Fusarium wilt disease of tomato. Molecular BiologyReports, 46, 4463– 4470. http://doi.org/10.1007/s11033-019-04901-9

  77. Samaras, A., Roumeliotis, E., Ntasiou, P. & Karaoglanidis, G.(2021). Bacillus subtilis MBI600 promotes growth of tomatoplants and induces systemic resistance contributing to thecontrol of soilborne pathogens. Plants, 10, 1113. http://doi.org/10.3390/plants10061113

  78. Saravanakumar, K., Li, Y., Yu, C., Wang, Q. Q., Wang, M., Sun,J., Gao, J. X. & Chen, J. (2017). Effect of Trichodermaharzianum on maize rhizosphere microbiome and biocontrolof Fusarium stalk rot. Scientific Reports, 7, 1771. http://doi.org/10.1038/s41598-017-01680-w

  79. Schoch, C. L., Ciufo, S., Domrachev, M., Hotton, C. L., Kannan,S., Khovanskaya, R., LeipeMcveigh, D. R., O’Neill, K.,Robbertse, B., Sharma, S., Soussov, V., Sullivan, J. P.,Sun, L., Turner, S. & Karsch-Mizrachi, I. (2020). NCBITaxonomy: a comprehensive update on curation, resourcesand tools. Database (Oxford). 2020, baaa062. http://doi.org/10.1093/database/baaa062

  80. Siahmoshteh, F., Siciliano, I., Banani, H., Hamidi-Esfahani,Z., Razzaghi-Abyaneh, M., Gullino, M. L., & Spadaro,D. (2017). Efficacy of Bacillus subtilis and Bacillusamyloliquefaciens in the control of Aspergillus parasiticusgrowth and aflatoxins production on pistachio. InternationalJournal of Food Microbiology, 254, 47–53. https://doi.org/10.1016/j.ijfoodmicro.2017.05.011

  81. Silva, R. N., Monteiro, V. N., Steindorff, A. S., Gomes, E.V., Noronha, E. F. & Ulhoa, C. J. (2019). Trichoderma/pathogen/plant interaction in pre-harvest food security.Fungal Biology, 123, 565–583. https://doi.org/10.1016/j.funbio.2019.06.010

  82. Skerman, V. B. D., McGowan, V. & Sneath, P. H. A. (1980).Approved lists of bacterial names. International Journal ofSystematic and Evolutionary Microbiology, 30, 225–420.http://doi.org/10.1099/00207713-30-1-225

  83. Sood, M., Kapoor, D., Kumar, V., Sheteiwy, M. S.,Ramakrishnan, M., Landi, M., Araniti, F. & Sharma, A.(2020). Trichoderma: The “Secrets” of a multitalentedbiocontrol agent. Plants, 9, 762. http://doi.org/10.3390/plants9060762

  84. Sorokan, A., Veselova, S., Benkovskaya, G. & Maksimov, I.(2021). Endophytic strain Bacillus subtilis 26D increaseslevels of phytohormones and repairs growth of potato plantsafter Colorado potato beetle damage. Plants, 10, 923. http://doi.org/10.3390/plants10050923

  85. Stein. T. (2005). Bacillus subtilis antibiotics: structures, synthesesand specific functions. Molecular Microbiology, 56,845–857. http://doi.org/10.1111/j.1365-2958.2005.04587.x

  86. Stummer, B. E., Zhang, Q., Zhang, X., Warren, R. A. & Harvey,P. R. (2020). Quantification of Trichodermaafroharzianum,Trichoderma harzianum and Trichoderma gamsii inoculantsin soil, the wheat rhizosphere and in planta suppression ofthe crown rot pathogen Fusarium pseudograminearum.Journal of Applied Microbiology, 129, 971–990. http://doi.org/10.1111/jam.14670

  87. Su, Y., Liu, C., Fang, H. & Zhang, D. (2020). Bacillus subtilis: auniversal cell factory for industry, agriculture, biomaterialsand medicine. Microbial Cell Factories, 19, 173. http://doi.org/10.1186/s12934-020-01436-8

  88. Swarnalakshmi, K., Yadav, V., Tyagi, D., Dhar, D. W.,Kannepalli, A. & Kumar, S. (2020). Significance of plantgrowth promoting rhizobacteria in grain legumes: growthpromotion and crop production. Plants, 9, 1596. http://doi.org/10.3390/plants9111596

  89. Tan, I. S. & Ramamurthi, K. S. (2014). Spore formation inBacillus subtilis. Environmental Microbiology Reports, 6,212–225. http://doi.org/10.1111/1758-2229.12130

  90. Tseng, Y. H., Rouina, H., Groten, K., Rajani, P., Furch, A. C.U., Reichelt, M., Baldwin, I. T., Nataraja, K. N., Shaanker,R. U. & Oelmüller, R. (2020). An endophytic Trichodermastrain promotes growth of its hosts and defends againstpathogen attack. Frontiers in Plant Science, 11, 573–670.http://doi.org/10.3389/fpls.2020.573670

  91. Villarreal-Delgado, M. F., Villa-Rodríguez, E. D., Cira-Chávez,L. A., Estrada-Alvarado, M. I., Parra-Cota, F. I. & Santos-Villalobos, S. (2018). El género Bacillus como agente decontrol biológico y sus implicaciones en la bioseguridadagrícola. Revista Mexicana de Fitopatología, 36, 95–130.http://doi.org/10.18781/r.mex.fit.1706-5

  92. Wang, H., Shi, Y., Wang, D., Yao, Z., Wang, Y., Liu, J.,Zhang, S., & Wang, A. (2018). A biocontrol strain ofBacillus subtilis WXCDD105 used to control tomatoBotrytis cinerea and Cladosporium fulvum cooke andpromote the growth of seedlings. International Journalof Molecular Sciences, 19, 1371. https://doi.org/10.3390/ijms19051371

  93. Yang, Y., Pollard, A. M., Höfler, C., Poschet, G., Wirtz, M.,Hell, R. & Sourjik, V. (2015). Relation between chemotaxisand consumption of amino acids in bacteria. MolecularMicrobiology, 96, 1272–1282. http://doi.org/10.1111/mmi.13006

  94. Zaidi, A. & Khan, M. S. (2006). Co-inoculation effects ofphosphate solubilizing microorganisms and Glomusfasciculatum on green gram-Bradyrhizobium symbiosis.Turkish Journal of Agriculture and Forestry, 30, 223–230.

  95. Zhou, C., Zhu, J., Qian, N., Guo, J. & Yan, C. (2021).Bacillus subtilis SL18r induces tomato resistance againstBotrytis cinerea, involving activation of long non-codingRNA, MSTRG18363, to decoy miR1918. Frontiersin Plant Science, 11, 634–819. http://doi.org/10.3389/fpls.2020.634819




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2022;25

ARTíCULOS SIMILARES

CARGANDO ...