medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2022, Número 1

<< Anterior

TIP Rev Esp Cienc Quim Biol 2022; 25 (1)


La mineralización e inmovilización microbiana determinan la dinámica del azufre en el suelo

Paniagua-Vargas A, García-Oliva F
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 46
Paginas: 1-14
Archivo PDF: 487.96 Kb.


PALABRAS CLAVE

adquisición, comunidad microbiana del suelo, enzimas, transportadores de membrana, sulfato.

RESUMEN

El azufre (S) es un nutriente esencial para los seres vivos, sin embargo, existen pocos trabajos sobre su dinámica en el suelo y sobre la importancia de la intervención de los microorganismos en la transformación de las moléculas de S. Esta revisión tiene como objetivo analizar la trascendencia de dos procesos que regulan la dinámica de este elemento: la mineralización en la que intervienen diversas enzimas y la inmovilización que atañe a la adquisición de compuestos con azufre, ambos determinantes en la biodisponibilidad de este elemento, relativa a su abundancia y a sus propiedades, que en gran medida realiza la comunidad microbiana del suelo (CMS). Lo anterior, con la finalidad de mostrar además de los pormenores de la capacidad bioquímica de estos mecanismos, el valor de su función en la naturaleza y su relevancia para la conservación del suelo, a través de un manejo adecuado del mismo.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Autry, A. R. & Fitzgerald, J. W. (1990). Sulfonate S: A majorform of forest soil organic sulfur. Biol. Fertil. Soils, 10,50-56. http://dx.doi.org/0.1007/BF00336124

  2. Baptist, E. W. & Kredich, N. M. (1977). Regulation of L-cystinetransport in Salmonella typhimurium. J. Bacteriology,131(1), 111-118. http://dx.doi.org/10.1128/jb.131.1.111-118.1977

  3. Barber, S. A. (1995). Soil Nutrient Bioavailability: A MechanisticApproach (2da. Ed.). Nueva York: John Wiley & Sons, Inc.

  4. Blum, S. C., Lehmann, J. & Solomon, D. (2013). Sulfur formsin organic substrates affecting S mineralization in soil.Georderma, 200-201, 156-164. http://dx.doi.org/10.1016/j.geoderma.2013.02.003

  5. Bremner, J. M. & Steele, C. G. (1978). Role of microorganismsin the atmospheric sulfur cycle. En Alexander, M. (Ed.).Advances in Microbial Ecology (pp. 155-201). Boston:Springer.

  6. Brimblecombe, P. (2013).The Global Sulfur Cycle. En Turekian,K. & Holland, H. (eds.). Treatise on Geochemistry (pp.559-591). Elsevier Science. https://doi.org/10.1016/B978-0-08-095975-7.00814-7

  7. Bruce, J. S., McLean, M. W., Williamson, F. B. & Long, W.F. (1985). Flavobacterium heparinum 3-O-sulphatase forN-substituted glucosamine 3-O-sulphate. Eur. J. Biochem.,152(1), 75-82. https://doi.org/10.1111/j.1432-1033.1985.tb09165.x

  8. Castellano, S. D. & Dick, R. P. (1990). Cropping and sulfurfertilization influence on sulfur transformations in soil. SoilSci. Soc. Am. J., 51, 114-121.

  9. Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher,C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S.,Barry, C. E. & Tekaia, F. (1998). Deciphering the biologyof Mycobacterium tuberculosis from the completegenome sequence. Nature, 393, 537-544. https://doi.org/10.1038/31159

  10. Cook, A. M., Laue, H. & Junker, F. (1999). Microbialdesulfonation. FEMS Microbiology Reviews, 22, 399-419.https://doi.org/10.1111/j.1574-6976.1998.tb00378.x

  11. De Marco, P., Moradas Ferreira, P., Higgins, T. P., McDonald,I., Kenna, E. M. & Murrell, J. C. (1999). Molecular analysisof a novel methanesulfonic acid monooxygenase fromthe methylotroph Methylosulfonomonas methylovora.J. Bacteriol., 181, 2244–2251. https://doi.org/10.1128/JB.181.7.2244-2251.1999

  12. Eaton, S. V. (1922). Sulphur Content of Soils and Its Relationto Plant Nutrition. Botanical Gazette, 74(1), 32-58. http://www.jstor.org/stable/2470201

  13. Eichhorn, E., van der Ploeg, J. R., Kertesz, M. A. & Leisinger, T.(1997). Characterization of alpha-ketoglutarate-dependenttaurine dioxygenase from Escherichia coli. J. Biol.Chem., 272(37), 23031-23036. https://doi.org/10.1074/jbc.272.37.23031

  14. Eriksen, J., Lefroy, R. D. B. & Blair, G. (1995). Physicalprotection of soil organic S studied by extraction andfractionation of soil organic matter. Soil Biol. Biochem.,27(8), 1011-1016.

  15. Fitzgerald, J. W. (1976). Sulfate Ester Formation and Hydrolysis:a Potentially Important Yet Often Ignored Aspect of theSulfur Cycle of Aerobic Soils. Bacteriological Reviews,40(3), 696-721. DOI: 10.1128/br.40.3.698-721.1976

  16. Ghani, A., Mc Laren, R. G. & Swift, R. S. (1992). Sulphurmineralisation and transformations in soils as influencedby additions of carbon, nitrogen and Sulphur. Soil Biol.Biochem., 24(4), 331-341. https://doi.org/10.1016/0038-0717(92)90193-2

  17. Goh, K. & Gregg, P. (1982). Field studies on the fate of radioactivesulphur fertilizer applied to pastures. Fertilizer Research,3(4), 337–351. https://doi.org/10.1007/bf01048938.

  18. Gries, C., Nash, T. H. & Kesselmeier, J. (1994). Exchange ofreduced sulfur gases between Lichens and the atmosphere.Biogeochemistry, 26(1), 23-39. https://www.jstor.org/stable/1469237

  19. Holmes, A. J., Kelly, D. P., Baker, S. C., Thompson, A. S.,De Marco, P., Kenna, E. M. & Murrell, J. C. (1997).Methylosulfonomonas methylovora gen. nov., sp. nov., andMarinosulfonomonas methylotropha gen. nov., sp. nov.Novel methylotrophs able to grow on methanesulfonic acid.Arch. Microbiol. 167, 46-53. DOI:10.1007/s002030050415

  20. Hryniewicz, M., Sirko, A., Pałucha, A., Böck, A. & Hulanicka,D. (1990). Sulfate and thiosulfate transport in Escherichiacoli K-12: identification of a gene encoding a novel proteininvolved in thiosulfate binding. Journal of Bacteriology,172(6), 3358-3366. DOI:10.1128/jb.172.6.3358-3366.1990

  21. Hummerjohann, J., Laudenbach, S., Retey, J., Leisinger, T. &Kertesz, M. A. (2000). The Sulfur-Regulated ArylsulfataseGene Cluster of Pseudomonas aeruginosa, a New Memberof the cys Regulon. Journal of Bacteriology, 182(7), 2055–2058. https://doi.org/10.1128/JB.182.7.2055-2058.2000.

  22. Jørgensen, B. B., Findlay, A. J. & Pellerin, A. (2019). TheBiogeochemical Sulfur Cycle of Marine Sediments.Front. Microbiol., 10(849), 1-27. https://doi.org/10.3389/fmicb.2019.00849.

  23. Junker, F., Field, J. A., Bangerter, F., Ramsteiner, K., Kohler,H. P., Joannou, C. L., Mason, J. R., Leisinger, T. & Cook,A. M. (1994). Oxigenation and spontaneous deaminationof 2-aminobenzenesulphonic acid in Alcaligenes sp. StrainO-1 with subsequent meta ring cleavage and spontaneousdesulphunation to 2-hydroxymuconic acid. BiochemicalJournal, 300(2), 429-436. https://doi.org/10.1042/bj3000429.

  24. Kellogg, W. W., Cadle, R. D., Allen, E. R., Lazrus, A. L. &Martell, E. A. (1972). The Sulfur Cycle. Science, 175(4022),587-596. DOI: 10.1126/science.175.4022.587

  25. Kertesz, M. A. (1999). Riding the sulfur cycle - metabolismof sulfonates and sulfate esters in Gram-negative bacteria.FEM Microbiology Reviews, 24, 135-175. DOI: 10.1016/S0168-6445(99)00033-9

  26. Kertesz, M. A. (2001). Bacterial transporters for sulfate andorganosulfur compounds. Res. Microbiol., 152, 279-290.https://doi.org/10.1016/S0923-2508(01)01199-8.

  27. Kertesz, M. A., Fellows, E. & Schmalenberger, A. (2007).Rhizobacteria and Plant Sulfur Supply. Advances in AppliedMicrobiology, 62, 235-268. https://doi.org/10.1016/S0065-2164(07)62008-5.

  28. Kertesz, M. A. & Mirleau, P. (2004). The role of soil microbesin plant sulphur nutrition. Journal of Experimental Botany,55(404), 1939-1945. https://doi.org/10.1093/jxb/erh176.

  29. Ma, Q., Kuzyakow, Y., Pan, W., Tang, S., Chadwick, D. R.,Wen, Y., Hill, P. W., Macdonald, A., Ge, T., Si, L., Wu, L.& Jones, D. (2021). Substrate control of sulphur utilisationand microbial stoichiometry in soil: Result of 13C, 15N,14C and 35S quad labelling. The ISME Journal, 15, 3148-3158. https://doi.org/10.1038/s41396-021-00999-7.

  30. McGill, W. B. & Cole, C. V. (1981). Comparative aspects ofcycling of organic C, N, S and P through soil organic matter.Geoderma, 26, 267-286. https://doi.org/10.1016/0016-7061(81)90024-0

  31. McLean, M. W., Bruce, J. S., Long, W. F. & Williamson,F. (1984). Flavobacterium heparinum 2-O-sulphatasefor 2-O-sulphatodelta 4, 5-glycuronate-terminatedoligosaccharides from heparin. Eur. J. Biochem., 145(3),607-615. https://doi.org/10.1111/j.1432-1033.1984.tb08600.x

  32. Plante, A. F. (2007). Soil Biogeochemical Cycling or InorganicNutrients and Metals. EnPaul, E. A. (Ed.), Soil Microbiologyand Biochemistry (pp. 389-430). United States of America:Elsevier, Inc.

  33. Roberts, D. P., Dery, P. D., Yucel, I., Buyer, J., Holtman,M. A. & Kobayashi, D. Y. (1999). Role of pfkA andGeneral Carbohydrate Catabolism in Seed Colonizationby Enterobacter cloacae. Applied and EnvironmentalMicrobiology, 65(6), 2513–2519. doi:10.1128/AEM.65.6.2513-2519.1999

  34. Saggar, S., Bettany, J. R. & Stewart, J. W. B. (1981). Sulfurtransformations in relation to carbon and nitrogen inincubated soils. Soil Biology and Biochemistry, 13(6),499–511. https://doi.org/10.1016/0038-0717(81)90041-9

  35. Santana, M. M., Dias, T. M., Gonzalez, J. M. & Cruz, C. (2021).Transformation of organic and inorganic sulfur–addingperspectives to new player in soil and rhizosphere. SoilBiology and Biochemistry, 160 (108306), 1-13. https://doi.org/10.1016/j.soilbio.2021.108306

  36. Scherer, H. W. (2009). Sulfur in soils. J. Plant Nutr. Soil Sci.,172, 326-335. https://doi.org/10.1002/jpln.200900037

  37. Sirko, A., Zatyka, M., Sadowy, E. & Hulanicka, D. (1995). Sulfateand thiosulfate transport in Escherichia coli K-12: evidencefor a functional overlapping of sulfate- and thiosulfatebindingproteins. Journal of Bacteriology, 177(14), 4134–4136. https://doi.org/10.1128/jb.177.14.4134-4136.1995

  38. Stryer, L., Berg, J. M. & Tymoczko, J. L. (2012). Bioquímicacon aplicaciones clínicas (7ª ed.). Barcelona: Reverté.

  39. Tabatabai, M. A. & Freney, J. R. (1986). Forms and Reactions ofOrganic Sulfur Compounds in Soils. Agronomy Monograph,27, 207-232. https://doi.org/10.2134/agronmonogr27.c6.van der Ploeg, J. R., Weiss, M. A., Saller, E., Nashimoto, H., Saito,N., Kertesz, M., A. & Leisinger, T. (1996). Identification ofsulfate starvation-regulated genes in Escherichia coli: a genecluster involved in the utilization of taurine as a sulfur source.Journal of Bacteriology, 178(18), 5438–5446. https://doi.org/10.1128/jb.178.18.5438-5446.1996

  40. van der Ploeg, J. R., Cummings, N. J., Leisinger, T. & Connerton,I. F. (1998). Bacillus subtilis genes for the utilization ofsulfur from aliphatic sulfonates. Microbiology, 144, 2555-2561. DOI: 10.1099/00221287-144-9-2555

  41. van der Ploeg, J. R., Iwanicka-Nowicka, R., Bykowski, T.,Hryniewicz, M. & Leisinger, T. (1999). The Cbl-regulatedssuEADCB gene cluster is required for aliphatic sulfonatesulfurutilization in Escherichia coli. J. Biol. Chem., 174,29358–29365. DOI: 10.1074/jbc.274.41.29358

  42. Vermeij, P., Wietek, C., Kahnert, A., Wüest, T. & Kertesz,M. A., (1999). Genetic organization of sulfur-controlledaryl desulfonation in Pseudomonas putida S-313.Molec. Microbiol., 32, 913–926. DOI: 10.1046/j.1365-2958.1999.01398.x

  43. Wang, J., Solomon, D., Lehmann, J., Zhang, X. & Amelung,W. (2006). Soil organic sulfur forms and dynamics in theGreat Plains of NorthAmerica as influenced by long-termcultivation and climate. Geoderma, 133, 160–172. https://doi.org/10.1016/j.geoderma.2005.07.003

  44. Warneck, P. (1999). Chemistry of the natural atmosphere (2aed.). Academic Press.

  45. White, G. F., Dogson, K. S., Davier, I., Matts, P. J., Shapleigh,J. P. & Payne, W. J. (1978). Bacterial utilization of shortchainprimary alkyl sulphate esters. FEMS Microbiol.,40, 173-177.

  46. Zehnder, A. J. B. & Zinder, S. H. (1980). The sulfur cycle. EnHutzinger, O. (Ed.). The Natural Environment and theBiogeochemical Cycles (pp. 105-145). Berlin: Springer.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2022;25

ARTíCULOS SIMILARES

CARGANDO ...