medigraphic.com
ENGLISH

Revista Cubana de Farmacia

ISSN 1561-2988 (Impreso)
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2021, Número 3

<< Anterior Siguiente >>

Rev Cubana Farm 2021; 54 (3)


Actualidad y perspectivas de los antimicrobianos naturales

Díaz PL, Suárez PY, Rubio OA, Travieso NMC
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 50
Paginas: 1-22
Archivo PDF: 527.27 Kb.


PALABRAS CLAVE

resistencia antimicrobiana, plantas, metabolitos secundarios, microorganismos.

RESUMEN

Introducción: La resistencia de los microorganismos a los antibióticos constituye uno de los más graves problemas de salud, por lo que la búsqueda de principios activos antimicrobianos constituye una prioridad de la investigación global. En este sentido, las fuentes naturales (plantas, microorganismos, algas, entre otros.) resultan de gran interés por la gran diversidad de compuestos químicos o metabolitos secundarios que ofrecen y por las probadas propiedades antimicrobianas que poseen muchos de ellos.
Objetivo: Realizar una actualización de los antimicrobianos naturales (derivados de plantas y microrganismos) como potenciales principios activos para el enfrentamiento de la resistencia antimicrobiana.
Métodos: Investigación cualitativa a partir de la revisión sistemática de la literatura científica, como la Web de la Ciencia y Pubmed, sobre la base de palabras clave relacionadas con la resistencia antimicrobiana y su impacto negativo en la salud mundial, además de los avances en la investigación de los productos naturales en la solución a esta problemática.
Conclusiones: Las plantas y los microorganismos están entre los biorecursos más estudiados en la búsqueda de antimicrobianos eficaces y seguros para contribuir a la solución del gran problema que representa la resistencia antimicrobiana, por poseer una gran variedad de compuestos químicos y metabolitos secundarios con probadas propiedades frente a una gran variedad de patógenos (bacterias, hongos y virus). El manejo y uso sostenible de estas fuentes naturales son de alta prioridad con vistas a su aprovechamiento industrial sin afectar el medio ambiente.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Bello FZ, Cozme RY, Pacheco PY, Mejías MC, Gallart CA. Resistenciaantimicrobiana de Staphylococcus coagulasa positiva en cultivo de lesión en niñosde Las Tunas. Revista Electrónica Dr. Zollo Marinello Vidaurreta. 2018 [acceso06/08/2019];43(2). Disponible en:http://www.revzoilomarinello.sld.cu/index.php/zmv/article/view/1277

  2. Quiñones PD. Resistencia antimicrobiana: evolución y perspectivas actualesante elenfoque "Una salud". Revista Cubana de Medicina Tropical. 2017 [acceso20/07/2019];69(3):1-17. Disponible en:http://revmedtropical.sld.cu/index.php/medtropical/article/view/263

  3. Gupta D, Chauhan P. Green Synthesis of Silver Nanoparticles Involving Extractof Plants of Different Taxonomic Groups. Journal of Nanomedicine Research.2017;5(2):00110. DOI: 10.15406/jnmr.2017.05.00110

  4. Serra MÁ. La resistencia microbiana en el contexto actual y la importancia delconocimiento y aplicación en la política antimicrobiana. Revista Habanera deCiencias Médicas. 2017 [acceso 26/10/2019];16(3):402-419. Disponible en:http://www.revhabanera.sld.cu/index.php/rhab/article/view/2013

  5. Macri M, Rubinstein A, Kaler M, de la Mota L. Guía de medicamentosesenciales para el PNA antimicrobianos. República de Argentina: CoberturaUniversal de Salud; 2017. p. 1-181

  6. World Health Organization. Worldwide country situation analysis: response toantimicrobial resistance Ginebra: WHO. página de inicio en internet . [acceso02/05/2019]. Disponible en: http://www.who.int/drugresistance/en/

  7. Fariña N. Resistencia bacteriana: un problema de salud pública mundial dedifícil solución. Memorias del Instituto de Investigaciones en Ciencia de la Salud.2016;14(1):4-5. DOI: 10.18004/Mem.iics/1812-9528/2016.014(01)04-005

  8. Angeles E. Uso racional de antimicrobianos y resistencia bacteriana ¿haciadóndevamos? Revista Médica Herediana. 2018;29(7):3-4. DOI: 10.20453/mh.v29i1.3253

  9. CDC. Antibiotic Resistance Threats in the United States, 2019 Atlanta, GA:U.S. Department of Health and Human Services, 2019 [acceso 23/09/2020].Disponible en: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-arthreats-report-508.pdf

  10. Organización de las Naciones Unidas para la Alimentación y la Agricultura. Elplan de acción de la FAO sobre la Resistencia a los Antimicrobianos 2016-2020;2016. p. 1-14 [acceso 22/07/2019]. Disponible en:http://www.fao.org/3/i5996s/i5996s.pdf

  11. Puig PY, Leyva CV, Aportela LN, Camejo JA, Tejedor AR. Resistenciaantimicrobiana en bacterias aisladas de pescados y mariscos. Revista Habanerade Ciencias Médicas. 2019 [acceso 02/05/2020];18(3):500-12. Disponible en:http://www.revhabanera.sld.cu/index.php/rhab/article/view/2440

  12. Organización Mundial de Sanidad Animal. Lista de agentes antimicrobianosimportantes para la medicina veterinaria. Francia: OIE; 2019. p. 1-9 [acceso04/06/2020]. Disponible en:https://www.oie.int/fileadmin/Home/esp/Our_scientific_expertise/docs/pdf/AMR/E_OIE_Lista_antimicrobianos_Julio2019.pdf

  13. Travieso MC, Rubio OA, Pino PO. Las nanopartículas a partir de plantas comobase para el diseño de nuevos antimicrobianos. Rev Cubana Farm. 2017 [acceso09/05/2019];51(4):1-20. Disponible en:http://www.revfarmacia.sld.cu/index.php/far/article/view/263/178

  14. World Health Organization. 2019 Antibacterial Agents in Clinical Developmentananalisis of the antibacterial clinical development pipeline. Geneva: WHO; 2019[acceso 11/05/2020]. Disponible en: https://www.who.int/publications-detailredirect/9789240000193

  15. Abdalla MA, McGaw LJ. Bioprospecting of South African Plants as a UniqueResource for Bioactive Endophytic Microbes. Frontiers Pharmacology.2018;9(456):1-18. DOI: 10.3389/fphar.2018.00456

  16. Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. Analysis oftherapeutic argets for SARS-CoV-2 and discovery of potential drugs bycomputational methods. Acta Pharmaceutica Sinica B. 2020;10(5):766-88. DOI:10.1016/j.apsb.2020.02.008

  17. Maldonado C, Paniagua ZN, Bussmann RW, Zentero RF, Fuentes AF. Laimportancia de las plantas medicinales, su taxonomía y la búsqueda de la cura ala enfermedad que causa el coronavirus (COVID-19). Ecología en Bolivia. 2020[acceso 08/11/2020];55(1):1-5. Disponible en:http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S1605-25282020000100001&lng=es

  18. Espada DL, Ferrer SA, Padró RL, Arias RL, León DL. Dendropanax arboreus:estudio fitoquímico de la savia del tronco. Revista Cubana de Química. 2020[acceso 23/11/2020];32(1):74-87. Disponible en:http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-54212020000100074&lng=es&tlng=es

  19. Ahn K. The worldwide trend of using botanical drugs and strategies fordeveloping global drugs. BMB Reports. 2017;50(3):111-16. DOI:10.5483/bmbrep.2017.50.3.221

  20. Sierra BE, León PM. Terapia antibacteriana : origen y evolución en el tiempo.Rev Méd Electrón. 2019 [acceso 02/05/2020];41:1300-09. Disponible en:http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1684-18242019000501300

  21. Tambo E, Khater EI, Chen J, Bergquist R, Zhou X. Nobel prize for theartemisinin and ivermectin discoveries : a great boost towards elimination of theglobal infectious diseases of poverty. Infectious Diseases of Poverty.2015;4(58):1-8. DOI: 10.1186/s40249-015-0091-8

  22. Su X, Miller LH. The discovery of artemisinin and the Nobel Prize inPhysiology or Medicine. Science China Life Sciences. 2015;58(11):1175-79. DOI:10.1007/s11427-015-4948-7

  23. Shen B. A New Golden Age of Natural Products Drug Discovery. Cell.2015;163(6):1297-1300. DOI: 10.1016/j.cell.2015.11.031

  24. Jackson N, Czaplewski L, Piddock LJ V. Discovery and development of newantibacterial drugs: learning from experience? Journal of AntimicrobialChemotherapy. 2018;73:1452-59. DOI: 10.1093/jac/dky019

  25. Chassagne F, Samarakoon T, Porras G, Lyles J, Dettweiler M, Marquez L, etal. A Systematic Review of Plants with Antibacterial Activities: A Taxonomic andPhylogenetic Perspective. Frontiers in Pharmacology. 2021;11:1–29. DOI:10.3389/fphar.2020.586548

  26. Rubio OA, Travieso NMC, Riverón AY, Martínez VA, Peña RJ, Espinosa CI, etal. Actividad antibacteriana de aceites esenciales de plantas cultivadas en Cubasobre cepas de Salmonella enterica. Rev Salud Anim. 2018 [acceso09/09/2019];40(3):1-10. Disponible en:http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0253-570X2018000300004&lng=es

  27. Belén VM, Serra M, Andreatta AE. Actividad antimicrobiana de diversosaceites esenciales en bacterias benéficas ,patógenas y alterantes de alimentosantimicrobial. Revista Tecnología y Ciencia. 2020;92(37):92-100. DOI:10.33414/rtyc.37.92-100.2020

  28. Chandrasekaran R, Gnanasekar S, Seetharaman P, Keppanan R, ArockiaswamyW, Sivaperumal S. Formulation of Carica papaya latex-functionalized silvernanoparticles for its improved antibacterial and anticancer applications. Journalof Molecular Liquids. 2016;219:232-38. DOI: 10.1016/j.molliq.2016.03.038

  29. Untol PR, Zavaleta EG, Saldaña JJ, Blas CW. Efecto in vitro de extractoshidroalcohólicos de Mangifera indica, Tamarindus indica y Cassia angustifoliasobre elcrecimiento de Salmonella typhi y Escherichia coli. Arnaldoa. 2019;26(2):713-24.DOI: https://doi.org/10.22497/arnaldoa.262.26213

  30. Maldonado C, Barnes CJ, Cornett C, Holmfred E. Phylogeny Predicts theQuantity of Antimalarial Alkaloids within the Iconic Yellow Cinchona Bark(Rubiaceae: Cinchona calisaya). Frontiers in Plant Science. 2017;8(391):1-16.DOI: https://doi.org/10.3389/fpls.2017.0039

  31. Moromi NH, Ramos PD, Villavicencio GJ, Martínez CE, Mendoza RA, ChavezAE, et al. Estudio in vitro del Efecto Antibacteriano de la Oleorresina deCopaifera reticulata y el Aceite Esencial de Origanum majoricum Frente aStreptococcus mutans y Enterococcus Faecalis Bacterias de Importancia enPatologías Orales. International Journal of Odontostomatology. 2018 [acceso02/10/2020];12(4):355-61. Disponible en:http://www.ijodontostomatology.com/wpcontent/uploads/2018/12/2018_v12n4_004.pdf

  32. Pastorino G, Cornara L, Rodrigues F, Oliveira MB. Liquorice (Glycyrrhizaglabra): A phytochemical and pharmacological review. Phytotherapy Research.2018;32:2323-39. DOI: 10.1002/ptr.6178

  33. Chen H, Muhammad I, Zhang Y, Ren Y, Zhang R, Huang X, et al. AntiviralActivity Against Infectious Bronchitis Virus and Bioactive Components ofHypericum perforatum L. Frontiers in Pharmacology. 2019;10(1272):1-22. DOI:https://doi.org/10.3389/fphar.2019.01272

  34. Al-Snafi AE. A review on Lawsonia inermis : a potential medicinal plant.International Journal of Current Pharmaceutical Research. 2019;11(5):1-13. DOI:10.22159/ijcpr.2019v11i5.35695

  35. Aballa RM, Elfadil AA. Antibacterial Activity and Phytochemical Constituentsof Cinnamomum verum and Matricaria chamomilla from Sudan. Bio Bulletin.2016;2(2):08-12.

  36. Malik MA, Bhat SA, Rehman MU, Sidique S, Akhoon ZA, Shrivastava P.Phytochemical analysis and antimicrobial activity of Rheum emodi (Rhubarb)rhizomes. The Pharma Innovation Journal. 2018 [acceso 03/10/2019];7(5):17-20.Disponible en:https://www.thepharmajournal.com/archives/2018/vol7issue5/PartA/7-4-126-289.pdf

  37. Heredia OC, Orozco GM, Pérez RC, Martín GD. Actividad antibacteriana deextractos alcohólicos de hojas de Solanum dolichosepalum (Bitter). InformadorTécnico. 2019;83(2):121-30. DOI: 10.23850/22565035.2061

  38. Jackson N, Czaplewski L, Piddock LJ. Discovery and development of newantibacterial drugs: learning from experience? Journal of AntimicrobialChemotherapy. 2018;73:1452-59. DOI: 10.1093/jac/dky019

  39. Uribe MS, Durán LM, Caraballo MR. Evaluación de la actividad in vitro decombinaciones antibacterianas frente a Staphylococcus aureus meticilinoresistente. Rev Cubana Farm. 2020 [acceso 22/11/2020];53(1):1-16. Disponibleen: www.revfarmacia.sld.cu/index.php/far/article/view/109

  40. Fajardo CA, Urbieta SE, Gallego MC. Dalbavancina en el tratamiento de lainfección de piel y tejidos blandos. Farmacia Hospitalaria. 2017;41(5):642-3. DOI:10.7399/fh.10800

  41. Battaglini D, Motos A, Li Bassi G, Yang H, Pagliara F, Yang M, et al. Efficacyof telavancin in comparison to linezolid in a porcine model of severe methicillinresistantStaphylococcus aureus (MRSA) pneumonia. Antimicrobial Agents andChemotherapy. 2020;16;65(1):e01009-20 DOI: 10.1128/AAC.01009-20

  42. Hise NW Van, Chundi V, Didwania V, Anderson M, Mckinsey D, Roig I, et al.Treatment of acute osteomyelitis with once weekly Oritavancin: A two year ,multicenter, retrospective study. Drugs - Real World Outcomes. 2020 [acceso02/10/2020];7(1):41-5. DOI: 10.1007/s40801-020-001957

  43. Koch E, Vogel S, inventors. Dr Willmar Schwabe GmbH and Co KG assigne.Extracts made from seeds of Aframomum species and their use. European PatentOffice patent EP3299026A1. 2016. 22 sep. 2016 [acceso 22/10/2020] Disponibleen: https://patents.google.com/patent/EP3299026A1/en

  44. Seongpil K, Myung-seon K, Hee-sun K, Seul J, inventors. The composition ofbotanical preservatives which consist of White Willow Bark, Aspen Bark,Azadirachta Indica Leaf and Atremisia Annua extracts. South Korea patentKR101818146B1. 01 dic. 2018. [acceso 22/10/2020]. Disponible en:https://patents.google.com/patent/KR101818146B1/en

  45. Bunka D, Hikari SD, Hikari SR, inventors. Antimicrobial herbal composition,method for producing and using the same. Japan patent JP6626902B2. 2019. 25dic. 2019 [acceso 22/10/2020]. Disponible en:https://patents.google.com/patent/JP6626902B2

  46. Pandey K, Shevkar C, Bairwa K, Kate AS. Pharmaceutical perspective onbioactives from Alstoniascholaris: ethnomedicinal knowledge, phytochemistry,clinical status, patent space, and future directions. Phytochemistry Reviews.2020;19:191-233. DOI: 10.1007/s11101-020-09662-z

  47. Mandhare A, Banerjee P, Pande A, Gondkar A. Jackfruit (Artocarpusheterophyllus): A Comprehensive Patent Review. Current Nutrition & FoodScience. 2020;16(5):644-65. DOI:https://doi.org/10.2174/1573401315666190730120759

  48. Matthew WC. Teixobactin: a novel anti-infective agent. Expert Review ofAnti-infective Therapy. 2019 [acceso 06/02/2020];17(1):1-3. DOI:10.1080/14787210.2019.1550357

  49. Roggia RA, Menezes BP, Mateus MI, Rejame AA, Mayumi NV, Rodrigues DA, etal. Flavones biotransformation of citrus by-prducts improves antioxidant and ACEinhibitory activities in vitro. Food Bioscience. 2020 [acceso 22/10/2020]. DOI:10.1016/j.fbio.2020.100787

  50. Nahar K, Aziz S, Shahriar BM, Haque MA, Al-Reza S. Synthesis andcharacterization of Silver nanoparticles from Cinnamomum tamala leaf extractand its antibacterial potential. International Journal Nanomedicie Dimensional.2020 [acceso 22/03/2020];11(1):88-98. Disponible en:http://www.ijnd.ir/article_667484.html




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Farm. 2021;54

ARTíCULOS SIMILARES

CARGANDO ...