medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2023, Número 1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2023; 26 (1)


Control de fitopatógenos con extractos de biomasa de chile y de maíz

Jiménez-Ortega LA, Valdez-Baro O, Heredia-Bátiz JM, García-Estrada RS, Basilio HJ
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 63
Paginas: 1-11
Archivo PDF: 359.87 Kb.


PALABRAS CLAVE

bioplaguicidas, ácidos fenólicos, Disolventes Eutécticos Profundos, Lactobacillus plantarum, fitopatógenos.

RESUMEN

México es uno de los principales productores de chile y de maíz a nivel mundial. Actividad de la que se originan grandes cantidades de biomasa y subproductos agrícolas, los cuales se pretende que sean valorizados para mitigar el daño al medio ambiente y generar así un valor agregado. El objetivo de este estudio fue obtener fitoquímicos con actividad antibacteriana y antifúngica de biomasa de chile y de maíz contra fitopatógenos de importancia económica para la agricultura, al emplear métodos de extracción basados en la química verde. Para la extracción de los fitoquímicos se dispuso de dos tipos de Disolventes Eutécticos Profundos (DES), y una fermentación láctica con Lactobacillus plantarum. Los extractos se evaluaron in vitro e in vivo contra Clavibacter michiganensis subsp. michiganensis, Xanthomonas vesicatoria, Ralstonia solanacearum, Fusarium oxysporum f. sp. licopersici, Colletotrichum gloeosporioides, Botrytis cinerea y Alternaria solani. Los resultados in vitro demostraron que los extractos obtenidos con los DES fueron efectivos contra las bacterias, a diferencia de las pruebas in vivo que inhibieron el crecimiento de los hongos. El potencial de los extractos de las biomasas contra los microorganismos fitopatógenos, las señala como una herramienta de biocontrol agrícola, que asegura la sustentabilidad y se aprovecha el beneficio de los DES que son eficientes, biodegradables, inocuos, y con capacidad de extracción de fitoquímicos antimicrobianos y antifúngicos.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Abirami, S., Priyalakshmi, M., Soundariya, A., Samrot, A. V.,Saigeetha, S., Emilin, R. R., Dhiva, S. & Inbathamizh, L.(2021). Antimicrobial activity, antiproliferative activity,amylase inhibitory activity and phytochemical analysisof ethanol extract of corn (Zea mays L.) silk. Green andSustainable Chemistry, 4, 100089. https://doi.org/10.1016/j.crgsc.2021.100089

  2. Acero-Ortega, C., Dorantes-Alvarez, L., Hernández-Sánchez,H., Gutiérrez-López, G., Aparicio, G. & Jaramillo-Flores,M. E. (2005). Evaluation of Phenylpropanoids in TenCapsicum annuum L. Varieties and Their Inhibitory Effectson Listeria monocytogenes Murray, Webb and Swann ScottA. Food Science and Technology International, 11, 5-10.https://doi.org/10.1177/1082013205050902

  3. Adepoju, A. O., Omotoso, I. O., Femi-Adepoju, A. G. & Karim,A. B. (2020). Comparative studies on the antimicrobial,chemical and biochemical contents of the foliar extractsof Capsicum fructescens L. varieties. African Journal ofBiotechnology, 19(12), 836-845. https://doi.org/10.5897/AJB2020.17258

  4. Anaya-Esparza, L. M., Mora, Z. V., Vázquez-Paulino, O.,Ascencio, F. & Villarruel-López, A. (2021). Bell Peppers(Capsicum annum L.) Losses and Wastes: Source for Foodand Pharmaceutical Applications. Molecules, 26, 5341.https://doi.org/10.3390/molecules26175341

  5. Arena, M. P., Capozzi, V., Russo, P., Drider, D., Spano,G. & Fiocco, D. (2018). Immunobiosis and probiosis:antimicrobial activity of lactic acid bacteria with a focuson their antiviral and antifungal properties. AppliedMicrobiology and Biotechnology, 102, 9949-9958. https://doi.org/10.1007/s00253-018-9403-9

  6. Barrajón-Catalán, E., Álvarez-Martínez, F. J., Borrás, F., Pérez,D., Herrero, N., Ruiz, J. J. & Micol, V. (2020). Metabolomicanalysis of the effects of a commercial complex biostimulanton pepper crops. Food Chemistry, 310, 125818. https://doi.org/10.1016/j.foodchem.2019.125818

  7. Bucić-Kojić, A., Šelo, G., Zelić, B., Planinić, M. & Tišma, M.(2017). Recovery of Phenolic Acid and Enzyme Productionfrom Corn Silage Biologically Treated by Trametesversicolor. Applied Biochemistry and Biotechnology, 181,948-960. https://doi.org/10.1007/s12010-016-2261-y

  8. Carvalho Lemos, V., Reimer, J. J. & Wormit, A. (2019). Color forLife: Biosynthesis and Distribution of Phenolic Compoundsin Pepper (Capsicum annuum). Agriculture, 9, 81. https://doi.org/10.3390/agriculture9040081

  9. Cespedes, C. L., Alarcon, J., Aqueveque, P. M., Lobo, T.,Becerra, J., Balbontin, C., Avila, J. G., Kubo, I. & Seigler,D. S. (2015). New environmentally-friendly antimicrobialsand biocides from Andean and Mexican biodiversity.Environmental Research, 142, 549-562. https://doi.org/10.1016/j.envres.2015.08.004

  10. Chen, L. & Kang, Y. H. (2013). Anti-inflammatory andantioxidant activities of red pepper (Capsicum annuum L.)stalk extracts: Comparison of pericarp and placenta extracts.Journal of Functional Foods, 5, 1724-1731. https://doi.org/10.1016/j.jff.2013.07.018

  11. da Silva Pereira, L., do Nascimento, V. V., de Fátima, F. R.S., Rodrigues, R., Fernandes, K. V. S., de Oliveira, C.A., Vasconcelos, I. M., dos Santos, B. C., Sudré, C. P.,Zottich, U. & Gomes, V. M. (2018). Characterizationof Capsicum annuum L. leaf and root antimicrobialpeptides: antimicrobial activity against phytopathogenicmicroorganisms. Acta Physiologiae Plantarum, 40, 107.https://doi.org/10.1007/s11738-018-2685-9

  12. Dai, Y., van Spronsen, J., Witkamp, G. J., Verpoorte, R. &Choi, Y. H. (2013). Natural deep eutectic solvents as newpotential media for green technology. Analytica ChimicaActa, 766, 61-68. https://doi.org/10.1016/j.aca.2012.12.019

  13. Đorđević, T., Sarić, M. & Gajić, U. J. (2019). PhenolicCompounds and Allelopathic Potential of Fermented andUnfermented Wheat and Corn Straw Extracts. Chemistryand Biodiversity, 16, e1800420. https://doi.org/10.1002/cbdv.201800420

  14. FAO, (2018). Los contaminantes agrícolas: una grave amenazapara el agua del planeta. Recuperado de https://www.fao.org/news/story/es/item/1141818/icode/#:~:text=La%20agricultura%20moderna%20es%20responsable,de%20millones%20de%20d%C3%B3lares%20EEUU.

  15. FAO, (2019). La FAO presenta 2020 como Año Internacionalde la Sanidad Vegetal. Recuperado de https://www.fao.org/documents/card/es/c/CA5188ES/

  16. FAO, (2021). FAOSTAT. Recuperado de https://www.fao.org/faostat/es/

  17. Games, P. D., Koscky-Paier, C. R., Almeida-Souza, H. O.,Barbosa, M. O., Antunes, P. W. P., Carrijo, L. C., Pereira,P. R. G. & Baracat-Pereira, M. C. (2013). In vitro antibacterialand anti-fungal activities of hydrophilic plantdefence compounds obtained from the leaves of bell pepper(Capsicum annuum L.). The Journal of HorticulturalScience and Biotechnology, 88, 551-558. https://doi.org/10.1080/14620316.2013.11513005

  18. Garadew, M., Lin, F., Song, B., DeWinter, T. M., Jackson,J. E., Saffron, C. M., Ho, L. C. & Anastas, P. T. (2020).Greener Routes to Biomass Waste Valorization: LigninTransformation Through Electrocatalysis for RenewableChemicals and Fuels Production. ChemSusChem, 13, 4214-4237. https://doi.org/10.1002/cssc.202000987

  19. Gayathri, N., Gopalakrishnan, M. & Sekar, T. (2016).Phytochemical screening and antimicrobial activity ofCapsicum chinense Jacq. International Journal of Advances inPharmaceutics, 5(1), 2320-4923. https://doi.org/10.7439/ijap

  20. Guan, Y. C., Chen, S. S., Huei, L. T., Ping, Y. C. & Tasang, C.W. (2020). Valorization of biomass from plant microbialfuel cells into levulinic acid by using liquid/solid acidsand green solvents. Journal of Cleaner Production, 260.,121097. https://doi.org/10.1016/j.jclepro.2020.121097

  21. Gullón, P., Gullón, B., Romaní, A., Rocchetti, G. & Lorenzo, J. M.(2020). Smart advanced solvents for bioactive compoundsrecovery from agri-food by-products: A review. Trends inFood Science and Technology, 101, 182-197. https://doi.org/10.1016/j.tifs.2020.05.007

  22. Guo, B., Zhang, Y., Li, S., Lai, T., Yang, L., Chen, J. &Ding, W. (2016). Extract from Maize (Zea mays L.):Antibacterial Activity of DIMBOA and Its Derivativesagainst Ralstonia solanacearum. Molecules, 21, 1397.https://doi.org/10.3390/molecules21101397

  23. Guo, Y., Li, Y., Li, Z., Jiang, L., Cao, X., Gao, W., Wang,J., Luo, D. & Chen, F. (2021). Deep eutectic solventhomogenatebased microwave-assisted hydrodistillationof essential oil from Litsea cubeba (Lour.) Pers. fruitsand its chemical composition and biological activity.Journal of Chromatography A, 1646, 462089. https://doi.org/10.1016/j.chroma.2021.462089

  24. Iorizzi, M., Lanzotti, V., Ranalli, G., De Marino, S. & Zollo,F. (2002). Antimicrobial Furostanol Saponins from theSeeds of Capsicum annuum L. Var. acuminatum. Journalof Agricultural and Food Chemistry, 50, 4310-4316. https://doi.org/10.1021/jf0116911

  25. Ji, Q., Yu, X., Yagoub, A., Chen, L. & Zhou, C. (2020). Efficientremoval of lignin from vegetable wastes by ultrasonic andmicrowave-assisted treatment with ternary deep eutecticsolvent. Industrial Crops and Products, 149, 112357. https://doi.org/10.1016/j.indcrop.2020.112357

  26. Kalhor, P. & Ghandi, K. (2019). Deep Eutectic Solvents forPretreatment, Extraction, and Catalysis of Biomass andFood Waste. Molecules, 24, 4012. https://doi.org/10.3390/molecules24224012

  27. Kalinoski, R. M., Li, W., Mobley, J. K., Asare, S. O., Dorrani,M., Lynn, B. C., Chen, X. & Shi, J. (2020). AntimicrobialProperties of Corn Stover Lignin Fractions Derived fromCatalytic Transfer Hydrogenolysis in Supercritical Ethanolwith a Ru/C Catalyst. ACS Sustainable Chemistry andEngineering, 8, 18455-18467. https://doi.org/10.1021/acssuschemeng.0c05812

  28. Karalexi, M. A., Tagkas, C. F., Markozannes, G., Tseretopoulou,X., Hernández, A. F., Schüz, J., Halldorsson, T. I.,Psaltopoulou, T., Petridou, E. T., Tzoulaki, I. & Ntzani, E.E. (2021). Exposure to pesticides and childhood leukemiarisk: A systematic review and meta-analysis. EnvironmentalPollution, 285, 117376. https://doi.org/10.1016/j.envpol.2021.117376

  29. Lengai, G. M. W., Muthomi, J. W. & Mbega, E. R. (2020).Phytochemical activity and role of botanical pesticidesin pest management for sustainable agricultural cropproduction. Scientific African, 7, e00239. https://doi.org/10.1016/j.sciaf.2019.e00239

  30. Li, C., Huang, C., Zhao, Y., Zheng, C., Su, H., Zhang, L., Luo,W., Zhao, H., Wang, S. & Huang, L. J. (2021). Effect ofCholine-Based Deep Eutectic Solvent Pretreatment on theStructure of Cellulose and Lignin in Bagasse. Processes,9, 384. https://doi.org/10.3390/pr9020384

  31. Lucero, B. & Muñoz-Quezada, M. T. (2021). Neurobehavioral,Neuromotor, and Neurocognitive Effects in AgriculturalWorkers and Their Children Exposed to PyrethroidPesticides: A Review [Systematic Review]. Frontiers inHuman Neuroscience, 15, 648171. https://doi.org/10.3389/fnhum.2021.648171

  32. Nwachukwu, U., George-Okafor, U., Ozoani, U. & Ojiagu, N.(2019). Assessment of probiotic potentials of Lactobacillusplantarum CS and Micrococcus luteus CS from fermentedmilled corn-soybean waste-meal. (2019). Scientific African,6, e00183. https://doi.org/10.1016/j.sciaf.2019.e00183

  33. Maggi, F., Tang, F. H. M., Black, A. J., Marks, G. B. &McBratney, A. (2021). The pesticide health risk index -An application to the world’s countries. Science of TheTotal Environment, 801, 149731. https://doi.org/10.1016/j.scitotenv.2021.149731

  34. Martínez-Fraca, J., de la Torre-Hernández, M. E., Meshoulam-Alamilla, M. & Plasencia, J. (2022). In Search of ResistanceAgainst Fusarium Ear Rot: Ferulic Acid Contents in MaizePericarp Are Associated With Antifungal Activity andInhibition of Fumonisin Production [Original Research].Frontiers in Plant Science, 13, 852257. https://doi.org/10.3389/fpls.2022.852257

  35. Martínez, G., Regente, M., Jacobi, S., Del Rio, M., Pinedo, M. &de la Canal, L. (2017). Chlorogenic acid is a fungicide activeagainst phytopathogenic fungi. Pesticide Biochemistryand Physiology, 140, 30-35. https://doi.org/10.1016/j.pestbp.2017.05.012

  36. Matich, E. K., Laryea, J. A., Seely, K. A., Stahr, S., Su, L. J. &Hsu, P. C. (2021). Association between pesticide exposureand colorectal cancer risk and incidence: A systematicreview. Ecotoxicology and Environmental Safety, 219,112327. https://doi.org/10.1016/j.ecoenv.2021.112327

  37. Misan, A. Nadpal, J., Stupar, A., Pojic, M., Mandic, A.,Verpoorte, R. & Hae, C. Y. (2020). The perspectives ofnatural deep eutectic solvents in agri-food sector. CriticalReviews in Food Science And Nutrition, 60, 2564-2592.https://doi.org/10.1080/10408398.2019.1650717

  38. Moebus, S. & Boedeker, W. (2021). Case Fatality as an Indicatorfor the Human Toxicity of Pesticides—A SystematicScoping Review on the Availability and Variability ofSeverity Indicators of Pesticide Poisoning. InternationalJournal of Environmental Research and Public Health, 18,8307. https://doi.org/10.3390/ijerph18168307

  39. Mohamed, G. A., Ibrahim, S. R. M., Abdelkader, M. S. A.,Al-Musayeib, N. M., Ghoneim, M. & Ross, S. A. (2014).Zeaoxazolinone, a new antifungal agent from roots.Medicinal Chemistry Research, 23, 4627-4630. https://doi.org/10.1007/s00044-014-1026-9

  40. Morales, J., Mendoza, L. & Cotoras, M. (2017). Alterationof oxidative phosphorylation as a possible mechanism ofthe antifungal action of p-coumaric acid against Botrytiscinerea. Applied Microbiology International, 123, 969-976.https://doi.org/10.1111/jam.13540

  41. Mouden, S., Klinkhamer, P. G. L., Choi, Y. H. & Leiss, K. A.(2017). Towards eco-friendly crop protection: natural deepeutectic solvents and defensive secondary metabolites.Phytochemistry Reviews, 16, 935-951. https://doi.org/10.1007/s11101-017-9502-8

  42. Osaili, T. M., Al Sallagi, M. S., Dhanasekaran, D. K., BaniOdeh, W. A. M., Al Ali, H. J., Al Ali, A. A. S. A., Radwan,H., Obaid, R. S. & Holley, R. (2022). Pesticide residues infresh vegetables imported into the United Arab Emirates.Food Control, 133, 108663. https://doi.org/10.1016/j.foodcont.2021.108663

  43. Pane, C., Fratianni, F., Parisi, M., Nazzaro, F. & Zaccardelli,M. (2016). Control of Alternaria post-harvest infections oncherry tomato fruits by wild pepper phenolic-rich extracts.Crop Protection, 84, 81-87. https://doi.org/10.1016/j.cropro.2016.02.015

  44. Pereira, P. C. G., Parente, C. E. T., Carvalho, G. O., Torres, J.P. M., Meire, R. O., Dorneles, P. R. & Malm, O. (2021).A review on pesticides in flower production: A push toreduce human exposure and environmental contamination.Environmental Pollution, 289, 117817. https://doi.org/10.1016/j.envpol.2021.117817

  45. Pontonio, E., Dingeo, C., Gobbetti, M. & Rizzello, C. G.(2019). Maize Milling By-Products: From Food Wastesto Functional Ingredients Through Lactic Acid BacteriaFermentation. Frontiers in Microbiology, 10, 1-14.https://doi.org/10.3389/fmicb.2019.00561

  46. Provan, G. J., Scobbie, L. & Chesson, A. (1994). Determinationof phenolic acids in plant cell walls by microwave digestion.Journal of the Science of Food and Agriculture, 64, 63-65.https://doi.org/10.1002/jsfa.2740640110

  47. Purushothaman, A. & Pemiah, B. (2014). Ultra high performanceliquid chromatography- ultraviolet-electrospray ionizationmicroTOF-Q II analysis of flavonoid fractions fromJatropha tanjorensis. Pharmacognosy Magazine, 10, 472-479. https://doi.org/10.4103/0973-1296.139776

  48. Rodríguez-Juan, E., López, S., Abia, R. J. G., Muriana, F.,Fernández-Bolaños, J. & García-Borrego, A. (2021).Antimicrobial activity on phytopathogenic bacteria andyeast, cytotoxicity and solubilizing capacity of deep eutecticsolvents. Journal of Molecular Liquids, 337, 116343. https://doi.org/10.1016/j.molliq.2021.116343

  49. Rouf Shah, T., Prasad, K. & Kumar, P. (2016). Maize—Apotential source of human nutrition and health: A review.Cogent Food and Agriculture, 2, 1166995. https://doi.org/10.1080/23311932.2016.1166995

  50. Saha, A. & Basak, B. B. (2020). Scope of value addition andutilization of residual biomass from medicinal and aromaticplants. Industrial Crops and Products, 145, 111979. https://doi.org/10.1016/j.indcrop.2019.111979

  51. Scaffaro, R., Maio, A. & Nostro, A. (2020). Poly(lactic acid)/carvacrol-based materials: preparation, physicochemicalproperties, and antimicrobial activity. Applied Microbiologyand Biotechnology, 104, 1823-1835. https://doi.org/10.1007/s00253-019-10337-9

  52. Sheldon, R.A. Green chemistry, catalysis and valorization ofwaste biomass. Journal of Molecular Catalysis A: Chemical,422, 3-12. https://doi.org/10.1016/j.molcata.2016.01.013

  53. Sillero, L., Prado, R., Welton, T. & Labidi, J. (2021). Extractionof flavonoid compounds from bark using sustainable deepeutectic solvents. Sustainable Chemistry and Pharmacy,24, 100544. https://doi.org/10.1016/j.scp.2021.100544

  54. Siyuan, S., Tong, L. & Liu, R. (2018). Corn phytochemicals andtheir health benefits. Food Science and Human Wellness,7, 185-195. https://doi.org/10.1016/j.fshw.2018.09.003

  55. Socas-Rodríguez, B., Torres-Cornejo, M. V., Álvarez-Rivera, G.& Mendiola, J. A. (2021). Deep Eutectic Solvents for theExtraction of Bioactive Compounds from Natural Sourcesand Agricultural By-Products. Applied Sciences, 11, 4897.https://doi.org/10.3390/app11114897

  56. Suteu, D., Rusu, L., Zaharia, C., Badeanu, M. & Daraban, G.M. (2020). Challenge of Utilization Vegetal Extracts asNatural Plant Protection Products. Applied Sciences, 10,8913. https://doi.org/10.3390/app10248913

  57. Thakur, R., Gupta, V., Ghosh, T. & Das, A. B. (2022). Effectof anthocyanin-natural deep eutectic solvent (lactic acid/fructuose) on mechanical, thermal, barrier, and pHsenstitive properties of poluvinyl alcohol based ediblefilms. Food Packaging and Shelf Life, 33, 100914. https://doi.org/10.1016/j.fpsl.2022.100914

  58. Torres-Valenzuela, L. S., Ballesteros-Gómez, A. & Rubio,S. (2020). Green Solvents for the Extraction of HighAdded-Value Compounds from Agri-food Waste. FoodEngineering Reviews, 12, 83-100. https://doi.org/10.1007/s12393-019-09206-y

  59. UN, (2020). El impacto de las quemas agrícolas: un problemade calidad del aire. Recuperado de https://www.unep.org/es/noticias-y-reportajes/reportajes/el-impacto-de-las-quemasagricolas-un-problema-de-calidad-del-aire

  60. Utami, T. S., Tibrizi, A., Sungkar, M., Tenggoro, G., Arbianti,R. & Hermansyah, H. (2020). Effect of papaya gum ratioper solvent volume and sonication time in bio-insecticideproduction using NaDES solvents with ultrasonic waves.AIP Conference Proceedings, 2255, 040019. https://doi.org/10.1063/5.0013696

  61. Vazquez-Olivo, G., López-Martínez, L. X., Contreras-Angulo,L. & Heredia, J. B. (2019). Antioxidant Capacity of Ligninand Phenolic Compounds from Corn Stover. Waste andBiomass Valorization, 10, 95–102. https://doi.org/10.1007/s12649-017-0028-5

  62. Whitney, N. J. & Mortimore, C. G. (1959). An AntifungalSubstance in the Corn Plant and its Effect on Growth ofTwo Stalk-rotting Fungi. Nature, 183, 341-341. https://doi.org/10.1038/183341a0

  63. Yaashikaa, P. R., Senthil, K. P. & Varjani, S. (2022). Valorizationof agro-industrial wastes for biorefinery process and circularbioeconomy: A critical review. Bioresource Technology, 343,126126. https://doi.org/10.1016/j.biortech.2021.126126




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2023;26

ARTíCULOS SIMILARES

CARGANDO ...