medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2023, Número 1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2023; 26 (1)


La citocina TGF-β en el cáncer colorrectal: mecanismos de acción y de secreción

Lara-Salas MA, García-Díaz PO, Mendoza-Lara DF, Sosa-Garrocho M, Pérez-Calixto MP, Mota-López AC, Soldevila G, Robles-Flores M, Macías-Silva M
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 99
Paginas: 1-18
Archivo PDF: 952.53 Kb.


PALABRAS CLAVE

cáncer colorrectal, citocina TGF-β, células SW480, células SW620, secreción.

RESUMEN

El cáncer colorrectal (CRC) es uno de los más agresivos y letales en el humano, su incidencia aumenta por los malos hábitos alimenticios y un estilo de vida sedentario. Las alteraciones genómicas que afecan la función de diversas vías de señalización contribuyen al desarrollo de este tipo de cáncer. El factor de crecimiento transformante β (TGF-β) es una citocina multifuncional con diversos efectos biológicos, incluido el control de la homeostasis tisular; sin embargo, los cambios inusuales en sus funciones favorecen el desarrollo de patologías como la fibrosis y el cáncer. En estadios tempranos del CRC, el TGF-β ejerce efectos supresores de tumores, pero en etapas avanzadas promueve la progresión tumoral, por lo que es considerado un importante blanco terapéutico. Esta revisión describe y analiza los mecanismos potenciales de acción y de secreción de la citocina TGF-β en el microambiente tumoral del CRC, y sus efectos biológicos sobre las líneas cancerosas humanas del CRC: SW480 (tumor primario) y SW620 (tumor metastásico), las cuales provienen del mismo paciente y muestran un alto grado de malignidad. Estas células se caracterizan por sintetizar y secretar altas cantidades de la citocina TGF-β, expresan a los principales componentes de su vía de señalización como los receptores y sus efectores, con excepción de la proteína SMAD4; además se conoce parte de la composición de las vesículas extracelulares secretadas por estas células, así como sus efectos biológicos en diferentes células blanco, por lo que las células SW480 y SW620 representan un modelo biológico ideal para estudiar las acciones del TGF-β en las etapas avanzadas del CRC.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Abdollah, S., Macías-Silva, M., Tsukazaki, T., Hayashi, H.,Attisano, L. & Wrana, J. L. (1997). TβRI phosphorylationof Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J. Biol. Chem.,272, 27678–27685. DOI: 10.1074/jbc.272.44.27678

  2. Ahmed, D., Eide, P., Eilertsen, I., Danielsen, S., Eknæs, M.,Hektoen, M., Lind, G. & Lothe, R. (2013). Epigenetic andgenetic features of 24 colon cancer cell lines. Oncogenesis,2, e71. DOI: 10.1038/oncsis.2013.35

  3. Ai, X., Wu, Y., Zhang, W., Zhang, Z., Jin, G., Zhao, J., Yu, J.,Lin, Y., Zhang, W., Liang, H., Datta, P., Zhang, M., Zhang,B. & Chen, X. (2013). Targeting the ERK pathway reducesliver metastasis of Smad4-inactivated colorectal cancer.Cancer Biol. Ther., 14, 1059–1067. DOI:10.4161/cbt.26427

  4. Antonyak, M. A. & Cerione, R. A. (2014). Microvesiclesas mediators of intercellular communication in cancer.Methods in Molecular Biology Series: Cancer CellSignaling, Second Edition, 1165, 147–173.

  5. Asiri, A., Raposo, T., Alfahed, A. & Ilyas, M. (2019). TGFβ1-induced cell motility is mediated through Cten in colorectalcancer. Int. J. Exp. Pathol., 99, 323–330. DOI: 10.1111/iep.12300

  6. Baj-Krzyworzeka, M., Mytar, B., Szatanek, R., Surmiak, M.,Węglarczyk, K., Baran, J. & Siedlar, M. (2016). Colorectalcancerderived microvesicles modulate differentiation ofhuman monocytes to macrophages. J. Transl. Med., 14,1–15. DOI: 10.1186/s12967-016-0789-9

  7. Beck, S., Jung, B., Fiorino, A., Gomez, J., Rosario, E., Cabrera,B., Huang, S., Chow, J. & Carethers, J. (2006). Bonemorphogenetic protein signaling and growth suppression incolon cancer. Am. J. Physiol. Gastrointest. Liver Physiol.,291, G135–G145. DOI: 10.1152/ajpgi.00482.2005

  8. Berg, K., Eide, P., Eilersten, I., Johannessen, B., Bruun, J.,Danielsen, S., Bjørnslett, M., Meza-Zepeda, L., Eknæs, M.,Lind, G., Myklebost, O., Skotheim, R., Sveen, A. & Lothe,R. (2017). Multi-omics of 34 colorectal cancer cell lines- a resource for biomedical studies. Mol. Cancer, 16, 116.DOI: 10.1186/s12943-017-0691-y

  9. Bogaert, J. & Prenen, H. (2014). Molecular genetics ofcolorectal cancer. Annals of gastroenterology, 27, 9–14.PMCID: PMC3959535

  10. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R., Torre,L. & Jemal, A. (2018). Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortalityworldwide for 36 cancers in 185 countries. CA Cancer J.Clin., 68, 394–424. DOI: 10.3322/caac.21492

  11. Caja, L., Dituri, F., Mancarella, S., Caballero-Diaz, D.,Moustakas, A., Gianelli, G. & Fabregat, I. (2018). TGFbetaand the tissue microenvironment: relevance in fibrosisand cancer. Ijms, 19, 1294. DOI:10.3390/ijms19051294

  12. Cancer Genome Atlas Network. (2012). Comprehensivemolecular characterization of human colon and rectalcancer. Nature, 487, 330–337. DOI: 10.1038/nature11252

  13. Chen, X., Liu, J., Zhang, Q., Liu, B., Cheng, Y., Zhang, Y., Sun,Y., Ge, H. & Liu, Y. (2020). Exosome-mediated transferof miR-93-5p from cancer-associated fibroblasts conferradioresistance in colorectal cancer cells by downregulatingFOXA1 and upregulating TGFB3. J. Exp. Clin. CancerRes., 39, 65. DOI:10.1186/s13046-019-1507-2

  14. Choi, D., Choi, D., Hong, B., Jang, S., Kim, D., Lee, J., Kim,Y., Kim, K. & Gho, Y. (2012). Quantitative proteomics ofextracellular vesicles derived from human primary andmetastatic colorectal cancer cells. J. Extracell. Vesicles,1, 18704. DOI: 10.3402/jev.v1i0.18704

  15. Dai, G., Yao, X., Zhang, Y., Gu, J., Geng, Y., Xue, F. & Zhang, J.(2018). Colorectal cancer cell-derived exosomes containingmiR-10b regulate fibroblasts cells via the PI3K/Aktpathway. Bull. du Cancer, 105, 336–349. DOI:10.1016/j.bulcan.2017.12.009

  16. David, C. J. & Massagué, J. (2018). Contextual determinants ofTGFβ action in development, immunity and cancer. Nat. Rev.Mol. Cel. Biol., 19, 419–435. DOI:10.1038/s41580-0007-0

  17. de Miranda, N., van Dinther, M., van den Akker, B., van Wezel,T., ten Dijke, P. & Morreau, H. (2015). Transforminggrowth factor β signaling in colorectal cancer cells withmicrosatellite instability despite biallelic mutationsin TGFBR2. Gastroenterology, 148, 1427–1437.DOI: 10.1053/j.gastro.2015.02.052

  18. Derynck, R., Turley, S. J. & Akhurst, R. J. (2021). TGFbetabiology in cancer progression and immunotherapy. Nat. Rev.Clin. Oncol., 18, 9–34. DOI:10.1038/s41571-020-0403-1

  19. Dienstmann, R., Vermeulen, L., Guinney, J., Kopetz, S., Tejpar,S. & Tabernero, J. (2017). Consensus molecular subtypesand the evolution of precision medicine in colorectal cancer.Nat. Rev. Cancer, 17, 79–92. DOI: 10.1038/nrc.2016.126

  20. Düchler, M., Czernek, L., Peczek, L., Cypryk, W., Sztiller-Sikorska, M. & Czyz, M. (2019). Melanoma-DerivedExtracellular Vesicles Bear the Potential for the Inductionof Antigen-Specific Tolerance. Cells, 8, 665. DOI: 10.3390/cells8070665

  21. Endzelins, E., Ābols, A., Bušs, A., Zandberga, E., Palviainen,M., Siljander, P. & Linē, A. (2018). Extracellular VesiclesDerived from Hypoxic Colorectal Cancer Cells ConferMetastatic Phenotype to Non-metastatic Cancer Cells.Anticancer Res., 38, 5139–5147. DOI: 10.21873/anticanres.12836

  22. Fearon, E. & Vogelstein, B. (1990). A genetic model for colorectaltumorigenesis. Cell, 61, 759–767. DOI: 10.1016/0092-8674(90)90186-i

  23. Fink, M. & Wrana, J. L. (2022). Regulation of homeostasisand regeneration in the adult intestinal epithelium by theTGF-beta superfamily. Developmental Dynamics, 2022,1–18. DOI: 10.1002/dvdy.500

  24. Fricke, F., Mussack, V., Buschmann, D., Hausser, I., Pfaffl, M.W., Kopitz, J. & Gebert, J. (2019). TGFBR2-dependentalterations of microRNA profiles in extracellular vesiclesand parental colorectal cancer cells. Int. J. Oncol., 55,925–937. DOI:10.3892/ijo.2019.4859

  25. Galon, J. & Bruni, D. (2020). Tumor immunology and tumorevolution: intertwined histories. Immunity, 52, 55–81. DOI:10.1016/j.immuni.2019.12.018

  26. Gasior, K., Wagner, N., Cores, J., Caspar, R., Wilson, A.,Bhattacharya, S. & Hauck, M. (2019). The role of cellularcontact and TGF-β signaling in the activation of the epithelialmesenchymal transition (EMT). Cell Adhesion & Migration,1, 63–75. DOI: 10.1080/19336918.2018.1526597

  27. Gatza, C., Holtzhausen, A., Kirkbride, K., Morton, A., Gatza,M., Datto, M. & Blobe, G. (2011). Type III TGF-β ReceptorEnhances Colon Cancer Cell Migration and Anchorage-Independent Growth. Neoplasia, 13, 758–770. DOI:10.1593/neo.11528

  28. Globocan. (2020). https://www.uicc.org/news/globocan-2020-new-global-cancer-data

  29. Grady, W. & Markowitz, S. (2002). Genetic and epigeneticalterations in colon cancer. Annu. Rev. GenomicsHum. Genet., 3, 101–128. DOI: 10.1146/annurev.genom.3.022502.103043

  30. Grady, W. & Carethers, J. (2008). Genomic and epigeneticinstability in colorectal cancer pathogenesis.Gastroenterology, 135, 1079–1099. DOI: 10.1053/j.gastro.2008.07.076

  31. Grady, W. (2015). Polymerase Slippage Restorationof Frameshifted TGFBR2 in Colorectal Cancer: ANovel Paradigm. Gastroenterology, 148, 1276–1279.DOI: 10.1053/j.gastro.2015.04.023

  32. Gu, J., Qian, H., Shen, L., Zhang, X., Zhu, W., Huang, L., Yan,Y., Mao, F., Zhao, C., Shi, Y. & Xu, W. (2012). Gastriccancer exosomes trigger differentiation of umbilical cordderived mesenchymal stem cells to carcinoma-associatedfibroblasts through TGF-β/Smad pathway. PLoS One, 7,e52465. DOI: 10.1371/journal.pone.0052465

  33. Hanahan, D. & Weinberg, R. A. (2011). Hallmarks of Cancer:Next generation. Cell, 144, 646–674. DOI:10.1016/j.cell.2011.02.013

  34. Hao, Y., Baker, D. & Ten Dijke, P. (2019). TGF-β-MediatedEpithelial-Mesenchymal Transition and Cancer Metastasis.Int. J. Mol. Sci., 20, 2767. DOI: 10.3390/ijms20112767

  35. Herzig, D. & Tsikitis, V. (2015). Molecular markers for colondiagnosis, prognosis and targeted therapy. J. Surg. Oncol.,111, 96–102. DOI: 10.1002/jso.23806

  36. Hewitt, R., McMarlin, A., Kleiner, D., Wersto, R., Martin, P., Tsokos,M., Stamp, G. & Stetler-Stevenson, W. (2000). Validation ofa model of colon cancer progression. J. Pathol., 192, 446–454. DOI: 10.1002/1096-9896(2000)9999:9999<::AIDPATH775>3.0.CO;2-K

  37. Hong, C., Muller, L., Whiteside, T. & Boyiadzis, M. (2014).Plasma exosomes as markers of therapeutic response inpatients with acute myeloid leukemia. Front. Immunol.,5, 160. DOI: 10.3389/fimmu.2014.00160

  38. Hoshino, A., Costa-Silva, B., Shen, T.-L., Rodrigues, G.,Hashimoto, A., Tesic Mark, M., Molina, H., Kohsaka, S., DiGiannatale, A., Ceder, S., Singh, S., Williams, C., Soplop, N.,Uryu, K., Pharmer, L., King, T., Bojmar, L., Davies, A. E.,Ararso, Y., Zhang, T., Zhang, H., Hernandez, J., Weiss, J. M.,Dumont-Cole, V. D., Kramer, K., Wexler, L. H., Narendran,A., Schwartz, G. K., Healey, J. H., Sandstrom, P., Labori,K. J., Kure, E. H., Grandgenett, P. M., Hollingsworth, M.A., de Sousa, M., Kaur, S., Jain, M., Mallya, K., Batra, S.K., Jarnagin, W. R., Brady, M. S., Fodstad, O., Muller, V.,Pantel, K., Minn, A. J., Bissell, M. J., Garcia, B. A., Kang,Y., Rajasekhar, V. K., Ghajar, C. M., Matei, I., Peinado,H., Bromberg, J. & Lyden, D. (2015). Tumor Exosomeintegrins determine organotropic metastasis. Nature, 527,329–335. DOI:q0.1038/nature15756

  39. Huang, D., Sun, W., Zhou, Y., Li, P., Chen, F., Chen, H., Xia,D., Xu, E., Lai, M., Wu, Y. & Zhang, H. (2018). Mutationsof key driver genes in colorectal cancer progressionand metastasis. Cancer Metastasis Rev., 37, 173–187.DOI: 10.1007/s10555-017-9726-5

  40. Inamoto, S., Itatani, Y., Yamamoto, T., Minamiguchi, S., Hirai,H., Iwamoto, M., Hasegawa, S., Taketo, M., Sakai, Y. &Kawada, K. (2016). Loss of SMAD4 Promotes ColorectalCancer Progression by Accumulation of Myeloid-DerivedSuppressor Cells through the CCL15-CCR1 ChemokineAxis. Clin. Cancer Res., 22, 492–501. DOI: 10.1158/1078-0432.CCR-15-0726

  41. Itatani, Y., Kawada, K. & Sakai, Y. (2019). Transforming GrowthFactor-beta signaling pathway in colorectal cancer andits tumor microenvironment. Int. J. Mol. Sci., 20, 5822.DOI:10.3390/ijms20235822

  42. Jabalee, J., Towle, R. & Garnis, C. (2018). The Role ofExtracellular Vesicles in Cancer: Cargo, Function, andTherapeutic Implications. Cells, 7, 93. DOI: 10.3390/cells7080093

  43. Ji, H., Greening, D., Barnes, T., Lim, J., Tauro, B., Rai, A., Xu,R., Adda, C., Mathivanan, S., Zhao, W., Xue, Y., Xu, T., Zhu,H. & Simpson, R. (2013). Proteome profiling of exosomesderived from human primary and metastatic colorectalcancer cells reveal differential expression of key metastaticfactors and signal transduction components. Proteomics,13, 1672–1686. DOI: 10.1002/pmic.201200562

  44. Ji, Q., Zhou, L., Sui, H., Yang, L., Wu, X., Song, Q., Jia, R.,Li, R., Sun, J., Wang, Z., Liu, N., Feng, Y., Sun, X., Cai,G., Feng, Y., Cai, J., Cao, Y., Cai, G., Wang, Y. & Li, Q.(2020). Primary tumors release ITGBL1-rich extracellularvesicles to promote distal metastatic tumor growth throughfibroblast-niche formation. Nat. Commun., 11, 1211.DOI:10.1038/s41467-020-14869-x

  45. Jung, B., Staudacher, J. & Beauchamp, D. (2017). TransformingGrowth Factor β Superfamily Signaling in Developmentof Colorectal Cancer. Gastroenterology, 152, 36–52.DOI: 10.1053/j.gastro.2016.10.015

  46. Jurj, A., Zanoaga, O., Braicu, C., Lazar, V., Tomuleasa, C., Irimie,A. & Berindan-Neagoe, I. (2020). A Comprehensive Pictureof Extracellular Vesicles and Their Contents. MolecularTransfer to Cancer Cells. Cancers, 12, 298. DOI: 10.3390/cancers12020298

  47. Kalra, H., Drummen, G. & Mathivanan, S. (2016). Focus onextracellular vesicles: Introducing the next small big thing.Int. J. Mol. Sci., 17, 170. DOI: 10.3390/ijms17020170

  48. Kim, H., Wheeler, M., Wilson, C., Iida, J., Eng, D., Simpson,M., McCarthy, J. & Bullard, K. (2004). Hyaluronanfacilitates invasion of colon carcinoma cells in vitro viainteraction with CD44. Cancer Res., 64, 4569–4576. DOI:10.1158/0008-5472.CAN-04-0202

  49. Kitamura, T., Kometani, K., Hashida, H., Matsunaga, A.,Miyoshi, H., Hosogi, H., Aoki, M., Oshima, M., Hattori,M., Takabayashi, A., Minato, N. & Taketo, M. (2007).SMAD4-deficient intestinal tumors recruit CCR1+ myeloidcells that promote invasion. Nat. Genet., 39, 467–475.DOI: 10.1038/ng1997

  50. Kodach, L., Wiercinska, E., de Miranda, N., Bleuming, S.,Musler, A., Peppelenbosch, M., Dekker, E., van denBrink, G., van Noesel, C., Morreau, H., Hommes, D.,Ten Dijke, P., Offerhaus, G. & Hardwick, J. (2008). Thebone morphogenetic protein pathway is inactivated in themajority of sporadic colorectal cancers. Gastroenterology,134, 1332–1341. DOI: 10.1053/j.gastro.2008.02.059

  51. Languino, L., Singh, A., Prisco, M., Inman, G., Luginbuhl,A., Curry, J. & South, A. (2016). Exosome-mediatedtransfer from the tumor microenvironment increases TGFβsignaling in squamous cell carcinoma. Am. J. Transl. Res.,8, 2432–2437. PMID: 27347352; PMCID: PMC4891457

  52. Levy, L. & Hill, C. (2005). Smad4 Dependency Defines TwoClasses of Transforming Growth Factor β (TGF-β) TargetGenes and Distinguishes TGF-β-Induced Epithelial-Mesenchymal Transition from Its Antiproliferative andMigratory Responses. Mol. Cell. Biol., 25, 8108–8125.DOI: 10.1128/MCB.25.18.8108-8125.2005

  53. Li, X., Li, X., Lv, X., Xiao, J., Liu, B. & Zhang, Y. (2017).Smad4 Inhibits VEGF-A and VEGF-C Expressions viaEnhancing Smad3 Phosphorylation in Colon Cancer. Anat.Rec., 300, 1560–1569. DOI: 10.1002/ar.23610

  54. López-Casillas, F., Wrana, J. L. & Massagué, J. (1993).Betaglycan presents ligand to the TGFbeta signalingreceptor. Cell, 73, 1435–1444. DOI:10.1016/0092-8674(93)90368-z

  55. Lu, M., Munger, J., Steadele, M., Busald, C., Tellier, M. &Schnapp, L. (2002). Integrin α8β1 mediates adhesion toLAP-TGFβ1. J. Cell Sci., 115, 4641–4648. DOI: 10.1242/jcs.00145

  56. Macías-Silva, M., Abdollah, S., Hoodless, P., Pirone, R.,Attisano, L. & Wrana, J. (1996). MADR2 is a substrate ofthe TGFbeta receptor and its phosphorylation is required fornuclear accumulation and signaling. Cell, 87, 1215–1224.DOI: 10.1016/s0092-8674(00)81817-6

  57. Maslankova, J., Vecurkovska, I., Rabajdova, M., Katuchova, J.,Kicka, M., Gayova, M. & Katuch, V. (2022). Regulationof transforming growth factor-β-induced cell motility ismediated through Cten in colorectal cancer signaling as atherapeutic approach to treating colorectal cancer. WorldJ. Gastroenterol., 28, 4733–4761. DOI: 10.3748/wjg.v28.i33.4744

  58. Mizuno, T., Cloyd, J., Vicente, D., Omichi, K., Chun, Y., Kopetz,S., Maru, D., Conrad, C., Tzeng, C., Wei, S., Aloia, T. &Vauthey, J. (2018). SMAD4 gene mutation predicts poorprognosis in patients undergoing resection for colorectalliver metastases. Eur. J. Surg. Oncol., 44, 684–692.DOI: 10.1016/j.ejso.2018.02.247

  59. Morikawa, M., Deryinck, R. & Miyazono, K. (2016). TGF-betaand the TGF-beta family: Context dependent roles in celland tissue physiology. Cold Spring Harb. Perspect. Biol.,8, a021873. DOI: 10.1101/cshperspect.a021873

  60. Morris, S., Davison, J., Carter, K., O’Leary, R., Trobridge,P., Knoblaugh, S., Myeroff, L., Markowitz, S., Brett,B., Scheetz, T., Dupuy, A., Starr, T. & Grady, W. (2017).Transposon mutagenesis identifies candidate genes thatcooperate with loss of transforming growth factor-betasignaling in mouse intestinal neoplasms. Int. J. Cancer,140, 853–863. DOI: 10.1002/ijc.30491

  61. Nieto, M., Huang, R., Jackson, R. & Thiery, J. (2016). EMT:2016. Cell, 166, 21–45. DOI: 10.1016/j.cell.2016.06.028

  62. Ogawa, R., Yamamoto, T., Hirai, H., Hanada, K., Kiyasu,Y., Nishikawa, G., Mizuno, R., Inamoto, S., Itatani, Y.,Sakai, Y. & Kawada, K. (2019). Loss of SMAD4 PromotesColorectal Cancer Progression by Recruiting Tumor-Associated Neutrophils via the CXCL1/8-CXCR2 Axis.Clin. Cancer Res., 25, 2887–2899. DOI: 10.1158/1078-0432.CCR-18-3684

  63. Okita, A., Takahashi, S., Ouchi, K., Inoue, M., Watanabe, M.,Endo, M., Honda, H., Yamada, Y. & Ishioka, C. (2018).Consensus molecular subtypes classification of colorectalcancer as a predictive factor for chemotherapeutic efficacyagainst metastatic colorectal cancer. Oncotarget, 9, 18698–18711. DOI: 10.18632/oncotarget.24617

  64. Papageorgis, P., Cheng, K., Ozturk, S., Gong, Y., Lambert, A.,Abdolmaleky, H., Zhou, J. & Thiagalingam, S. (2011).Smad4 Inactivation Promotes Malignancy and DrugResistance of Colon Cancer. Cancer Res., 71, 1–11. DOI:10.1158/0008-5472.CAN-09-3269

  65. Papoutsoglou, P. & Moustakas, A. (2020). Long non-codingRNAs and TGFbeta signaling in cancer. Cancer Sci., 111,2672–2681. DOI:10.1111/cas.14509

  66. Pino, M. & Chung, D. (2010). The chromosomal instabilitypathway in colon cancer. Gastroenterology, 138, 2059–2072. DOI: 10.1053/j.gastro.2009.12.065

  67. Popat, S. & Houlston, R. (2005). A systematic review andmeta-analysis of the relationship between chromosome 18qgenotype, DCC status and colorectal cancer prognosis. Eur.J. Cancer, 41, 2060–2070.DOI: 10.1016/j.ejca.2005.04.039

  68. Popēna, I., Ābols, A., Saulīte, L., Pleiko, K., Zandberga, E.,Jēkabsons, K., Endzeliņš, E., Llorente, A., Linē, A. &Riekstiņa, U. (2018). Effect of colorectal cancer-derivedextracellular vesicles on the immunophenotype and cytokinesecretion profile of monocytes and macrophages. CellCommun. Signal., 16, 1–12. DOI: 10.1186/s12964-018-0229-y

  69. Principe, D., DeCant, B., Staudacher, J., Vitello, D., Mangan, R.,Wayne, E., Mascariñas, E., Diaz, A., Bauer, J., McKinney,R., Khazaie, K., Pasche, B., Dawson, D., Munshi, H.,Grippo, P. & Jung, B. (2016). Loss of TGFβ signalingpromotes colon cancer progression and tumor-associatedinflammation. Oncotarget, 8, 3826–3839. DOI: 10.18632/oncotarget.9830

  70. Qin, F., Liu, X., Chen, J., Huang, S., Wei, W., Zou, Y., Liu,X., Deng, K., Mo, S., Chen, J., Chen, X., Huang, Y. &Liang, W. (2020). Anti-TGF-β attenuates tumor growthvia polarization of tumor associated neutrophils towardsan anti-tumor phenotype in colorectal cancer. J. Cancer,11, 2580–2592. DOI: 10.7150/jca.38179

  71. Qu, Y., Dou, B., Tan, H., Feng, Y., Wang, N. & Wang, D. (2019).Tumor microenvironment-driven non-cell-autonomousresistance to antineoplastic treatment. Mol. Cancer., 18,69. DOI: 10.1186/s12943-019-0992-4

  72. Rai, A., Greening, D., Chen, M., Xu, R., Ji, H. & Simpson,R. (2018). Exosomes derived from human primary andmetastatic colorectal cancer cells contribute to functionalheterogeneity of activated fibroblasts by reprogrammingtheir proteome. Proteomics, 19, e1800148. DOI: 10.1002/pmic.201800148

  73. Raposo, G. & Stoorvogel, W. (2013). Extracellular vesicles:exosomes, microvesicles, and friends. J. Cell. Biol., 200,373–383. DOI: 10.1083/jcb.201211138

  74. Ringuette, C., Bernard, G., Tremblay, S., Chabaud, S., Bolduc,S. & Pouliot, F. (2018). Exosomes Induce FibroblastDifferentiation into Cancer-Associated Fibroblasts throughTGFβ Signaling. Mol. Cancer Res., 16, 1196–1204. DOI:10.1158/1541-7786.MCR-17-0784

  75. Robertson, I. & Rifkin, D. (2016). Regulation of thebioavailability of TGF-β and TGF-β-related proteins. ColdSpring Harb. Perspect. Biol., 8, a021907. DOI: 10.1101/cshperspect.a021907

  76. Rodrigues-Junior, D. M., Tsirigoti, C., Lim, S. K., Heldin,C.-H. & Moustakas, A. (2022). Extracellular vesiclesand transforming growth factor beta signaling in cancer.Front. Cell. Dev. Biol., 10, 849938. DOI:10.3389/fcell.2022.849938

  77. Roelands, J., Kuppen, P., Vermeulen, L., Maccalli, C., Decock,J., Wang, E., Marincola, F., Bedognetti, D. & Hendrickx,W. (2017). Immunogenomic Classification of ColorectalCancer and Therapeutic Implications. Int. J. Mol. Sci., 18,2229. DOI: 10.3390/ijms18102229

  78. Rossowska, J., Anger, N., Wegierek, K., Szcygiel, A.,Mierzejewska, J., Milczarek, M., Szermer-Olearnik, B.& Pajtasz-Piasecka. E. (2019). Antitumor Potential ofExtracellular Vesicles Released by Genetically ModifiedMurine Colon Carcinoma Cells With Overexpression ofInterleukin-12 and shRNA for TGF-β1. Front. Immunol.,10, 211. DOI:10.3389/fimmu.2019.00211

  79. Sansom, O. J., Reed, K. R., Hayes, A. J., Ireland, H., Brinkmann,H., Newton, I. P., Battle, E., Simon-Assman, P., Clevers,H., Nathke, I. S., Clarke, A. R. & Winton, D. J. (2004).Loss of Apc in vivo immediately perturbs Wnt signaling,differentiation and migration. Genes Dev., 18, 1385–1390.

  80. Sarli, L., Bottarelli, L., Bader, G., Iusco, D., Pizzi, S., Costi,R., D’Adda, T., Bertolani, M., Roncoroni, L. & Bordi,C. (2004). Association between recurrence of sporadiccolorectal cancer, high level of microsatellite instability,and loss of heterozygosity at chromosome 18q. Dis. ColonRectum, 47, 1467–1482.DOI: 10.1007/s10350-004-0628-6

  81. Shang, A., Gu, C., Wang, W., Wang, X., Sun, J., Zeng, B., Chen,C., Chang, W., Ping, Y., Ji, P., Wu, J., Quan, W., Yao, Y.,Zhou, Y., Sun, Z. & Li, D. (2020). Exosomal circPACRGLpromotes pregression of colorectal cancer via the miR-142-3p/miR-506-3p-TGFB1 axis. Mol. Cancer., 19, 117.DOI:10.1186/s12943-020-01235-0

  82. Shelke, G., Yin, Y., Jang, S., Lässer, C., Wennmalm, S.,Hoffmann, H., Li, L., Gho, Y., Nilsson, J. & Lötvall,J. (2019). Endosomal signalling via exosome surfaceTGFβ-1. J. Extracell. Vesicles, 8, 1650458. DOI:10.1080/20013078.2019.1650458

  83. Suwakulsiri, W., Rai, A., Xu, R., Chen, M., Greening, D. &Simpson, R. (2019). Proteomic profiling reveals key cancerprogression modulators in shed microvesicles released fromisogenic human primary and metastatic colorectal cancercell lines. BBA-Proteins and Proteomics, 1867, 14017.DOI: 10.1016/j.bbapap.2018.11.008

  84. Szczepanski, M., Szajnik, M., Welsh, A., Whiteside, T. &Boyiadzis, M. (2011). Blast-derived microvesicles in serafrom patients with acute myeloid leukemia suppress naturalkiller cell function via membrane-associated transforminggrowth factor-beta1. Haematologica, 96, 1302–1309.DOI:10.3324/haematol.2010.039743

  85. Tecalco-Cruz, A. C., Rios-Lopez, D. G., Vazquez-Victorio,G., Rosales-Alvarez, R. E. & Macías-Silva, M. (2018).Transcriptional cofactors Ski and SnoN are major regulatorsof thre TGF-β/Smad signaling pathway in health anddisease. Sig. Transduct. Target. Ther., 3, 15. DOI: 10.1038/s41392-018-0015-8

  86. The Cancer Genome Atlas Network. (2012). Comprehensivemolecular characterization of human colon and rectalcancer. Nature, 487, 330–337. DOI: 10.1038/nature11252

  87. Toledo-Padilla, D., Coquis-Bucio, D. A., Sosa-Garrocho, M. &Macías-Silva, M. (2023). Síntesis, secreción y activación dela citocina TGF-β: Relevancia en la salud y la enfermedad.Rev. Edu. Bioq., (En prensa).

  88. Vogelstein, B., Papadopoulos, N., Velculescu, V., Zhou, S., Diaz,L., Jr. & Kinzler, K. (2013). Cancer genome landscapes.Science, 339, 1546–1558. DOI: 10.1126/science.1235122

  89. Voorneveld, P., Kodach, L., Jacobs, R., Liv, N., Zonnevylle, A.,Hoogenboom, J., Biemond, I., Verspaget, H., Hommes, D.,de Rooij, K., van Noesel, C., Morreau, H., van Wezel, T.,Offerhaus, G., van den Brink, G., Peppelenbosch, M., TenDijke, P. & Hardwick, J. (2014). Loss of SMAD4 altersBMP signaling to promote colorectal cancer cell metastasisvia activation of Rho and ROCK. Gastroenterology, 147,196–208. DOI: 10.1053/j.gastro.2014.03.052

  90. Webber, J., Steadman, R., Mason, M., Tabi, Z. & Clayton, A.(2010). Cancer exosomes trigger fibroblast to myofibroblastdifferentiation. Cancer Res., 70, 9621–9630. DOI:10.1158/0008-5472.CAN-10-1722

  91. Wrana, J., Attisano, L., Wieser, R., Ventura, F. & Massagué, J.(1994). Mechanism of activation of the TGF-beta receptor.Nature, 370, 341–347. DOI: 10.1038/370341a0. Xu, R., Greening, D., Chen, M., Rai, A., Ji, H., Takahashi, N.& Simpson, R. (2019). Surfaceome of Exosomes Secretedfrom the Colorectal Cancer Cell Line SW480: Peripheraland Integral Membrane Proteins Analyzed by Proteolysisand TX114. Proteomics, 19, e1700453. DOI: 10.1002/pmic.201700453

  92. Yamada, N., Kuranaga, Y., Kumazaki, M., Shinohara, H.,Taniguchi, K. & Akao, Y. (2016). Colorectal cancer cellderivedextracellular vesicles induce phenotypic alteration ofT cells into tumor-growth supporting cells with transforminggrowth factor-B1-mediated suppression. Oncotarget, 7,27033–27043. DOI:10.18632/oncotarget.7041

  93. Yan, W., Liu, Z., Yang, W. & Wu, G. (2018). miRNA expressionprofiles in Smad4-positive and Smad4-negative SW620human colon cancer cells detected by next-generation smallRNA sequencing. Cancer Manag. Res., 10, 5479–5490.DOI: 10.2147/CMAR.S178261

  94. Yen, E., Miaw, S., Yu, J. & Lai, I. (2017). Exosomal TGF-β1is correlated with lymphatic metastasis of gastric cancers.Am. J. Cancer Res., 7, 2199–2208. PMID: 29218244;PMCID: PMC5714749

  95. Zhang, L., Naeem, A., Wei, S., Li, Z., Zang, Z., Wang, M., Liu,Y. & Su, D. (2019). PPTS Inhibits the TGF-β1-InducedEpithelial-Mesenchymal Transition in Human ColorectalCancer SW480 Cells. Evid-Based Complement. Alternat.Med., 2019, 1–10. DOI: 10.1155/2019/2683534

  96. Zhang, N., Li, L., Luo, J., Tan, J., Hu, W., Li, Z., Wang, X. &Ye, T. (2021). Inhibiting microRNA-424 in bone marrowmesenchymal stem cells-derived exosomes suppressestumor growth in colorectal cancer by upregulating TGFBR3.Arch. Biochem. Biophys., 709, 108965. DOI:10.1016/j.abb.2021.108965

  97. Zhang, Y., Wang, S., Lai, Q., Fang, Y., Wu, C., Liu, Y., Li, Q.,Wang, X., Gu, C., Chen, J., Cai, J., Li, A. & Liu, S. (2020).Cancer-associated fibroblasts-derived exosomal miR-17-5ppromotes colorectal cancer aggresive phenotype by initiatinga RUNX3/MYC/TGF-b1 positive feedback loop. CancerLett., 491, 22–35. DOI:10.1016/j.canlet.2020.07.023

  98. Zhang, Z., Xing, T., Chen, Y. & Xiao, J. (2018). ExosomemediatedmiR-200b promotes colorectal cancer proliferationupon TGF-B1 exposure. Biomed. Pharmacother., 106,1135–1143. DOI:10.1016/j.biopha.2018.07.042

  99. Zhao, J., Schlößer, H., Wang, Z., Qin, J., Li, J., Popp, F., Popp,M., Alakus, H., Chon, S., Hansen, H., Neiss, W., Jauch, K.,Bruns, C. & Zhao, Y. (2019). Tumor-Derived ExtracellularVesicles Inhibit Natural Killer Cell Function in PancreaticCancer. Cancers, 11, 874. DOI: 10.3390/cancers11060874




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2023;26

ARTíCULOS SIMILARES

CARGANDO ...