medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2023, Número 1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2023; 26 (1)


Activación concertada de los receptores transmembranales: Repercusiones fisiológicas

Lee-Rivera I, López E, López CAM
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 108
Paginas: 1-17
Archivo PDF: 608.87 Kb.


PALABRAS CLAVE

GPCRs, Receptores activados por proteasas, transactivación, transducción de señales.

RESUMEN

Los estudios iniciales acerca de los receptores acoplados a proteínas G (GPCRs) sugerían que los mismos no interactúan con otro tipo de receptores, o bien lo hacen con miembros de su propia familia. Recientemente, este concepto ha cambiado, ya que existe evidencia cada vez más abundante, de que interactúan con otras clases de receptores, diversificando así sus funciones y su capacidad para responder a los estímulos del entorno. El proceso mediante el cual un receptor desencadena cascadas de señalamiento a partir de un segundo receptor, en ausencia de síntesis de proteínas, se ha denominado “transactivación”. En esta revisión se analiza la transactivación de algunos receptores transmembranales, los mecanismos intracelulares involucrados, y sus repercusiones fisiopatológicas, utilizando como ejemplo a los receptores activados por proteasas (PARs). Éstos fueron de los primeros receptores en los que se demostró este tipo de interacción, así como su participación en una gran variedad de procesos fisiológicos, debido a su capacidad para relacionarse con una gran variedad de proteínas de la membrana. La diversidad de funciones que deriva de las interacciones entre los receptores incrementa el nivel de complejidad de sus cascadas de señalamiento, y representan una gran oportunidad para el desarrollo de nuevos protocolos terapéuticos.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Alberelli, M. A., & de Candia, E. (2014). Functional role ofprotease activated receptors in vascular biology. In VascularPharmacology (Vol. 62, Issue 2, pp. 72–81). Elsevier Inc.https://doi.org/10.1016/j.vph.2014.06.001

  2. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts,K., & Walter, P. (2002). General Principles of CellCommunication. https://www.ncbi.nlm.nih.gov/books/NBK26813/

  3. Almonte, A. G., Hamill, C. E., Chhatwal, J. P., Wingo, T. S.,Barber, J. A., Lyuboslavsky, P. N., David Sweatt, J., Ressler,K. J., White, D. A., & Traynelis, S. F. (2007). Learningand memory deficits in mice lacking protease activatedreceptor-1. Neurobiology of Learning and Memory, 88(3),295–304. https://doi.org/10.1016/J.NLM.2007.04.004

  4. Almonte, A. G., Qadri, L. H., Sultan, F. A., Watson, J. A.,Mount, D. J., Rumbaugh, G., & Sweatt, J. D. (2013).Protease-activated receptor-1 modulates hippocampalmemory formation and synaptic plasticity. Journal ofNeurochemistry, 124(1), 109. https://doi.org/10.1111/JNC.12075

  5. Amadesi, S., Cottrell, G. S., Divino, L., Chapman, K., Grady,E. F., Bautista, F., Karanjia, R., Barajas-Lopez, C., Vanner,S., Vergnolle, N., & Bunnett, N. W. (2006). Proteaseactivatedreceptor 2 sensitizes TRPV1 by protein kinaseCε- and A-dependent mechanisms in rats and mice. Journalof Physiology, 575(2), 555–571. https://doi.org/10.1113/jphysiol.2006.111534

  6. Asokananthan, N., Graham, P. T., Fink, J., Knight, D. A., Bakker,A. J., McWilliam, A. S., Thompson, P. J., & Stewart, G. A.(2002). Activation of Protease-Activated Receptor (PAR)-1,PAR-2, and PAR-4 Stimulates IL-6, IL-8, and ProstaglandinE 2 Release from Human Respiratory Epithelial Cells. TheJournal of Immunology, 168(7), 3577–3585. https://doi.org/10.4049/jimmunol.168.7.3577

  7. Bai, M. (2004). Dimerization of G-protein-coupled receptors:roles in signal transduction. Cellular Signalling, 16(2),175–186. https://doi.org/10.1016/S0898-6568(03)00128-1

  8. Bang, E. J., Kim, D. H., & Chung, H. Y. (2021). Proteaseactivatedreceptor 2 induces ROS-mediated inflammationthrough Akt-mediated NF-κB and FoxO6 modulationduring skin photoaging. Redox Biology, 44. https://doi.org/10.1016/J.REDOX.2021.102022

  9. Bergmann, S., Junker, K., Henklein, P., Hollenberg, M. D.,Settmacher, U., & Kaufmann, R. (2006). PAR-type thrombinreceptors in renal carcinoma cells: PAR1-mediated EGFRactivation promotes cell migration. Oncology Reports,15(4), 889–893.

  10. Blackhart, B. D., Emilsson, K., Nguyen, D., Teng, W., Martelli,A. J., Nystedt, S., Sundelin, J., & Scarborough, R. M. (1996).Ligand cross-reactivity within the protease-activatedreceptor family. Journal of Biological Chemistry, 271(28),16466–16471. https://doi.org/10.1074/jbc.271.28.16466

  11. Burch, M. L., Ballinger, M. L., Yang, S. N. Y., Getachew, R.,Itman, C., Loveland, K., Osman, N., & Little, P. J. (2010a).Thrombin stimulation of proteoglycan synthesis in vascularsmooth muscle is mediated by protease-activated receptor-1transactivation of the transforming growth factor βtypeI receptor. Journal of Biological Chemistry, 285(35),26798–26805. https://doi.org/10.1074/jbc.M109.092767

  12. Burch, M. L., Ballinger, M. L., Yang, S. N. Y., Getachew, R.,Itman, C., Loveland, K., Osman, N., & Little, P. J. (2010b).Thrombin stimulation of proteoglycan synthesis in vascularsmooth muscle is mediated by protease-activated receptor-1transactivation of the transforming growth factor βtypeI receptor. Journal of Biological Chemistry, 285(35),26798–26805. https://doi.org/10.1074/jbc.M109.092767

  13. Burch, M. L., Osman, N., Getachew, R., Al-Aryahi, S., Poronnik,P., Zheng, W., Hill, M. A., & Little, P. J. (2012). G proteincoupled receptor transactivation: Extending the paradigm toinclude serine/threonine kinase receptors. In InternationalJournal of Biochemistry and Cell Biology (Vol. 44, Issue5, pp. 722–727). Elsevier Ltd. https://doi.org/10.1016/j.biocel.2012.01.018

  14. Burke, K. J., & Bender, K. J. (2019). Modulation of IonChannels in the Axon: Mechanisms and Function. Frontiersin Cellular Neuroscience, 13. https://doi.org/10.3389/FNCEL.2019.00221

  15. Burnier, L., & Mosnier, L. O. (2013). Novel mechanisms foractivated protein C cytoprotective activities involvingnoncanonical activation of protease-activated receptor3. Blood, 122(5), 807–816. https://doi.org/10.1182/blood-2013-03-488957

  16. Caruso, R., Pallone, F., Fina, D., Gioia, V., Peluso, I., Caprioli,F., Stolfi, C., Perfetti, A., Spagnoli, L. G., Palmieri, G.,MacDonald, T. T., & Monteleone, G. (2006). Proteaseactivatedreceptor-2 activation in gastric cancer cellspromotes epidermal growth factor receptor trans-activationand proliferation. American Journal of Pathology, 169(1),268–278. https://doi.org/10.2353/ajpath.2006.050841

  17. Cattaneo, F., Castaldo, M., Parisi, M., Faraonio, R., Esposito,G., & Ammendola, R. (2018). Formyl peptide receptor1 modulates endothelial cell functions by NADPHoxidase-dependent VEGFR2 transactivation. OxidativeMedicine and Cellular Longevity, 2018. https://doi.org/10.1155/2018/2609847

  18. Cattaneo, F., Guerra, G., Parisi, M., De Marinis, M., Tafuri,D., Cinelli, M., & Ammendola, R. (2014). Cell-surfacereceptors transactivation mediated by G protein-coupledreceptors. In International Journal of Molecular Sciences(Vol. 15, Issue 11, pp. 19700–19728). MDPI AG. https://doi.org/10.3390/ijms151119700

  19. Cattaneo, F., Iaccio, A., Guerra, G., Montagnani, S., &Ammendola, R. (2011). NADPH-oxidase-dependentreactive oxygen species mediate EGFR transactivation byFPRL1 in WKYMVm-stimulated human lung cancer cells.Free Radical Biology and Medicine, 51(6), 1126–1136.https://doi.org/10.1016/j.freeradbiomed.2011.05.040

  20. Chandrasekharan, U. M., Waitkus, M., Kinney, C. M., Walters-Stewart, A., & Dicorleto, P. E. (2010). Synergistic inductionof mitogen-activated protein kinase phosphatase-1 bythrombin and epidermal growth factor requires vascularendothelial growth factor receptor-2. Arteriosclerosis,Thrombosis, and Vascular Biology, 30(10), 1983–1989.https://doi.org/10.1161/ATVBAHA.110.212399

  21. Chang, J. Z.-C., Hsieh, Y.-P., Lin, W.-H., Chen, H.-M., & Kuo,M. Y.-P. (2017). Activation of transforming growth factor-β1by thrombin via integrins αvβ1, αvβ3, and αvβ5 in buccalfibroblasts: Suppression by epigallocatechin-3-gallate.Head & Neck, 39(7), 1436–1445. https://doi.org/10.1002/HED.24791

  22. Chaplin, R., Thach, L., Hollenberg, M. D., Cao, Y., Little, P. J.,& Kamato, D. (2017). Insights into cellular signalling byG protein coupled receptor transactivation of cell surfaceprotein kinase receptors. Journal of Cell Communicationand Signaling, 11(2), 117–125. https://doi.org/10.1007/S12079-017-0375-9

  23. Chen, J., Ishii, M., Wang, L., Ishii, K., & Coughlin, S. R.(1994). Thrombin receptor activation. Confirmation of theintramolecular tethered liganding hypothesis and discoveryof an alternative intermolecular liganding mode. Journalof Biological Chemistry, 269(23), 16041–16045. https://doi.org/10.1016/s0021-9258(17)33970-4

  24. Chung, H., Ramachandran, R., Hollenberg, M. D., & Muruve,D. (2013). Proteinase-activated receptor-2 transactivation ofepidermal growth factor receptor and transforming growthfactor-β receptor signaling pathways contributes to renalfibrosis. The Journal of Biological Chemistry, 288(52),37319–37331. https://doi.org/10.1074/JBC.M113.492793

  25. Covic, L., Gresser, A. L., & Kuliopulos, A. (2000). Biphasickinetics of activation and signaling for PAR1 and PAR4thrombin receptors in platelets. Biochemistry, 39(18).https://doi.org/10.1021/bi9927078

  26. Darmoul, D., Gratio, V., Devaud, H., & Laburthe, M. (2004).Protease-activated receptor 2 in colon cancer: TrypsininducedMAPK phosphorylation and cell proliferationare mediated by epidermal growth factor receptortransactivation. Journal of Biological Chemistry, 279(20),20927–20934. https://doi.org/10.1074/jbc.M401430200

  27. Daub, H., Weiss, F. U., Wallasch, C., & Ullrich, A. (1996).Role of transactivation of the EGF receptor in signalling byG-protein-coupled receptors. Nature, 379(6565), 557–560.https://doi.org/10.1038/379557a0

  28. de La Fuente, M., Noble, D. N., Verma, S., & Nieman, M.T. (2012). Mapping human Protease-activated Receptor4 (PAR4) homodimer interface to transmembrane helix4. Journal of Biological Chemistry, 287(13). https://doi.org/10.1074/jbc.M112.341438

  29. Derynck, R., Akhurst, R. J., & Balmain, A. (2001). TGF-βsignaling in tumor suppression and cancer progression.In Nature Genetics (Vol. 29, Issue 2, pp. 117–129). NatGenet. https://doi.org/10.1038/ng1001-117

  30. Dominguez, Z. (2006). Los prostanoides, una revoluciónautacoide. Anales Venezolanos de Nutrición, 19(2),74–82. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798-07522006000200004&lng=es&nrm=iso&tlng=es

  31. Dorsam, R. T., Tuluc, M., & Kunapuli, S. P. (2004). Role ofprotease-activated and ADP receptor subtypes in thrombingeneration on human platelets. Journal of Thrombosis andHaemostasis, 2(5), 804–812. https://doi.org/10.1111/j.1538-7836.2004.00692.x

  32. El-Daly, M., Saifeddine, M., Mihara, K., Ramachandran, R.,Triggle, C. R., & Hollenberg, M. D. (2014). Proteinaseactivatedreceptors 1 and 2 and the regulation of porcinecoronary artery contractility: A role for distinct tyrosinekinase pathways. British Journal of Pharmacology, 171(9),2413–2425. https://doi.org/10.1111/bph.12593

  33. Feistritzer, C., Lenta, R., & Riewald, M. (2005). Proteaseactivatedreceptors-1 and -2 can mediate endothelialbarrier protection: Role in factor Xa signaling. Journal ofThrombosis and Haemostasis, 3(12), 2798–2805. https://doi.org/10.1111/j.1538-7836.2005.01610.x

  34. Fitzpatrick, F. (2005). Cyclooxygenase Enzymes: Regulationand Function. Current Pharmaceutical Design, 10(6),577–588. https://doi.org/10.2174/1381612043453144

  35. Fujimoto, D., Hirono, Y., Goi, T., Katayama, K., Matsukawa,S., & Yamaguchi, A. (2010). The activation of Proteinase-Activated Receptor-1 (PAR1) mediates gastric cancer cellproliferation and invasion. BMC Cancer, 10(443). https://doi.org/10.1186/1471-2407-10-443

  36. Gan, J., Greenwood, S. M., Cobb, S. R., & Bushell, T. J.(2011). Indirect modulation of neuronal excitability andsynaptic transmission in the hippocampus by activationof proteinase-activated receptor-2. British Journal ofPharmacology, 163(5), 984–994. https://doi.org/10.1111/j.1476-5381.2011.01293.x

  37. Gieseler, F., Ungefroren, H., Settmacher, U., Hollenberg, M.D., & Kaufmann, R. (2013). Proteinase-activated receptors(PARs) - Focus on receptor-receptor- interactions andtheir physiological and pathophysiological impact. In CellCommunication and Signaling (Vol. 11, Issue 1). https://doi.org/10.1186/1478-811X-11-86

  38. Guo, H., Liu, D., Gelbard, H., Cheng, T., Insalaco, R., Fernández,J. A., Griffin, J. H., & Zlokovic, B. v. (2004). ActivatedProtein C Prevents Neuronal Apoptosis via ProteaseActivated Receptors 1 and 3. Neuron, 41(4), 563–572.https://doi.org/10.1016/S0896-6273(04)00019-4

  39. Han, K. S., Mannaioni, G., Hamill, C. E., Lee, J., Junge, C. E.,Lee, C. J., & Traynelis, S. F. (2011). Activation of proteaseactivated receptor 1 increases the excitability of the dentategranule neurons of hippocampus. Molecular Brain, 4(1).https://doi.org/10.1186/1756-6606-4-32

  40. Han, X., & Nieman, M. T. (2020). The domino effect triggeredby the tethered ligand of the protease activated receptors.Thrombosis Research, 196, 87–98. https://doi.org/10.1016/j.thromres.2020.08.004

  41. Hardie, R. C., & Minke, B. (1992). The trp gene is essential fora light-activated Ca2+ channel in Drosophila photoreceptors.Neuron, 8(4), 643–651. https://doi.org/https://doi.org/10.1016/0896-6273(92)90086-S

  42. Hawkins, B. J., Solt, L. A., Chowdhury, I., Kazi, A. S., Abid,M. R., Aird, W. C., May, M. J., Foskett, J. K., & Madesh,M. (2007). G Protein-Coupled Receptor Ca2+-LinkedMitochondrial Reactive Oxygen Species Are Essentialfor Endothelial/Leukocyte Adherence. Molecular andCellular Biology, 27(21), 7582. https://doi.org/10.1128/MCB.00493-07

  43. Henry, P. J. (2006). The protease-activated receptor2 (PAR2)-prostaglandin E2-prostanoid EP receptor axis: A potentialbronchoprotective unit in the respiratory tract? In EuropeanJournal of Pharmacology (Vol. 533, Issues 1–3, pp.156–170). Eur J Pharmacol. https://doi.org/10.1016/j.ejphar.2005.12.051

  44. Holinstat, M., Boutaud, O., Apopa, P. L., Vesci, J., Bala, M.,Oates, J. A., & Hamm, H. E. (2011). Protease-ActivatedReceptor Signaling in Platelets Activates CytosolicPhospholipase A2α Differently for Cyclooxygenase-1 and12-Lipoxygenase Catalysis. Arteriosclerosis, Thrombosis,and Vascular Biology, 31(2), 435. https://doi.org/10.1161/ATVBAHA.110.219527

  45. Holinstat, M., Voss, B., Bilodeau, M. L., McLaughlin, J. N.,Cleator, J., & Hamm, H. E. (2006). PAR4, but not PAR1,signals human platelet aggregation via Ca2+ mobilizationand synergistic P2Y12 receptor activation. Journal ofBiological Chemistry, 281(36), 26665–26674. https://doi.org/10.1074/jbc.M602174200

  46. Hollmann, M., O’Shea-Greenfield, A., Rogers, S. W., &Heinemann, S. (1989). Cloning by functional expressionof a member of the glutamate receptor family. Nature,342(6250), 643–648. https://doi.org/10.1038/342643a0

  47. Hubbard, S. R. (1999). Structural analysis of receptor tyrosinekinases. Progress in Biophysics and Molecular Biology,71(3–4), 343–358. https://doi.org/10.1016/S0079-6107(98)00047-9

  48. Jarry, A., Dorso, L., Gratio, V., Forgue-Lafitte, M. E., Laburthe,M., Laboisse, C. L., & Darmoul, D. (2007). PAR-2 activationincreases human intestinal mucin secretion throughEGFR transactivation. Biochemical and BiophysicalResearch Communications, 364(3), 689–694. https://doi.org/10.1016/j.bbrc.2007.10.073

  49. Jenkins, R. G., Su, X., Su, G., Scotton, C. J., Camerer, E.,Laurent, G. J., Davis, G. E., Chambers, R. C., Matthay,M. A., & Sheppard, D. (2006). Ligation of proteaseactivatedreceptor 1 enhances α vβ6 integrin-dependentTGF-β activation and promotes acute lung injury. Journalof Clinical Investigation, 116(6), 1606–1614. https://doi.org/10.1172/JCI27183

  50. Junge, C., Hubbard, K., Zhang, Z., Olson, J., Hepler, J., Brat,D., & Traynelis, S. (2004). Protease-activated receptor-1in human brain: localization and functional expressionin astrocytes. Experimental Neurology, 188(1), 94–103.https://doi.org/10.1016/J.EXPNEUROL.2004.02.018

  51. Kamato, D., Bhaskarala, V. V., Mantri, N., Oh, T. G., Ling, D.,Janke, R., Zheng, W., Little, P. J., & Osman, N. (2017). RNAsequencing to determine the contribution of kinase receptortransactivation to G protein coupled receptor signalling invascular smooth muscle cells. PLoS ONE, 12(7). https://doi.org/10.1371/JOURNAL.PONE.0180842

  52. Kamato, D., Do, B. H., Osman, N., Ross, B. P., Mohamed,R., Xu, S., & Little, P. J. (2020). Smad linker regionphosphorylation is a signalling pathway in its own rightand not only a modulator of canonical TGF-β signalling.Cellular and Molecular Life Sciences, 77(2), 243–251.https://doi.org/10.1007/S00018-019-03266-3

  53. Kamato, D., Ta, H., Afroz, R., Xu, S., Osman, N., & Little, P.J. (2019). Mechanisms of PAR-1 mediated kinase receptortransactivation: Smad linker region phosphorylation.Journal of Cell Communication and Signaling, 13(4), 539.https://doi.org/10.1007/S12079-019-00527-5

  54. Kaneider, N. C., Leger, A. J., Agarwal, A., Nguyen, N., Perides,G., Derian, C., Covic, L., & Kuliopulos, A. (2007a). “Rolereversal” for the receptor PAR1 in sepsis-induced vasculardamage. Nat Immunol, 8(12), 1303–1312. https://doi.org/10.1038/ni1525

  55. Kaneider, N. C., Leger, A. J., Agarwal, A., Nguyen, N., Perides,G., Derian, C., Covic, L., & Kuliopulos, A. (2007b). “Rolereversal” for the receptor PAR1 in sepsis-induced vasculardamage. Nature Immunology, 8(12), 1303–1312. https://doi.org/10.1038/ni1525

  56. Kataoka, H., Hamilton, J. R., McKemy, D. D., Camerer, E.,Zheng, Y. W., Cheng, A., Griffin, C., & Coughlin, S. R.(2003). Protease-activated receptors 1 and 4 mediatethrombin signaling in endothelial cells. Blood, 102(9).https://doi.org/10.1182/blood-2003-04-1130

  57. Kaufmann, R., Hascher, A., Mubbach, F., Henklein, P.,Katenkamp, K., Westermann, M., & Settmacher, U.(2012). Proteinase-activated receptor 2 (PAR2) incholangiocarcinoma (CCA) cells: Effects on signaling andcellular level. Histochemistry and Cell Biology, 138(6),913–924. https://doi.org/10.1007/s00418-012-1006-4

  58. Kaufmann, R., Oettel, C., Horn, A., Halbhuber, K. J., Eitner,A., Krieg, R., Katenkamp, K., Henklein, P., Westermann,M., Böhmer, F. D., Ramachandran, R., Saifeddine, M.,Hollenberg, M. D., & Settmacher, U. (2009). Met receptortyrosine kinase transactivation is involved in proteinaseactivatedreceptor-2-mediated hepatocellular carcinomacell invasion. Carcinogenesis, 30(9), 1487–1496. https://doi.org/10.1093/carcin/bgp153

  59. Kawabata, A., Kubo, S., Ishiki, T., Kawao, N., Sekiguchi, F.,Kuroda, R., Hollenberg, M. D., Kanke, T., & Saito, N. (2004).Proteinase-Activated Receptor-2-Mediated Relaxation inMouse Tracheal and Bronchial Smooth Muscle: SignalTransduction Mechanisms and Distinct Agonist Sensitivity.Journal of Pharmacology and Experimental Therapeutics,311(1), 402–410. https://doi.org/10.1124/JPET.104.068387

  60. Kawabata, A., Matsunami, M., & Sekiguchi, F. (2008).Gastrointestinal roles for proteinase-activated receptorsin health and disease. British Journal of Pharmacology,153(SUPPL. 1). https://doi.org/10.1038/sj.bjp.0707491

  61. Kawao, N., Nagataki, M., Nagasawa, K., Kubo, S., Cushing,K., Wada, T., Sekiguchi, F., Ichida, S., Hollenberg, M.D., MacNaughton, W. K., Nishikawa, H., & Kawabata,A. (2005a). Signal transduction for proteinase-activatedreceptor-2-triggered prostaglandin E2 formation inhuman lung epithelial cells. Journal of Pharmacology andExperimental Therapeutics, 315(2), 576–589. https://doi.org/10.1124/jpet.105.089490

  62. Kawao, N., Nagataki, M., Nagasawa, K., Kubo, S., Cushing,K., Wada, T., Sekiguchi, F., Ichida, S., Hollenberg, M.D., MacNaughton, W. K., Nishikawa, H., & Kawabata,A. (2005b). Signal transduction for proteinase-activatedreceptor-2-triggered prostaglandin E2 formation inhuman lung epithelial cells. Journal of Pharmacology andExperimental Therapeutics, 315(2), 576–589. https://doi.org/10.1124/jpet.105.089490

  63. Komarova, Y. A., Mehta, D., & Malik, A. B. (2007). Dualregulation of endothelial junctional permeability.In Science’s STKE: signal transduction knowledgeenvironment (Vol. 2007, Issue 412). Sci STKE. https://doi.org/10.1126/stke.4122007re8

  64. Lee, C. J., Mannaioni, G., Yuan, H., Woo, D. H., Gingrich,M. B., & Traynelis, S. F. (2007). Astrocytic control ofsynaptic NMDA receptors. Journal of Physiology, 581(3),1057–1081. https://doi.org/10.1113/jphysiol.2007.130377

  65. Lee-Rivera, I., López, E., & López-Colomé, A. M. (2022).Diversification of PAR signaling through receptor crosstalk.Cellular & Molecular Biology Letters, 27(1), 77. https://doi.org/10.1186/S11658-022-00382-0

  66. Lei, H., & Kazlauskas, A. (2014). A Reactive Oxygen Species-Mediated, Self-Perpetuating Loop Persistently ActivatesPlatelet-Derived Growth Factor Receptor α. Molecular andCellular Biology, 34(1), 110–122. https://doi.org/10.1128/mcb.00839-1366. Lin, H., Liu, A. P., Smith, T. H., & Trejo, J. A. (2013). Cofactoringand dimerization of proteinase-activated receptors. InPharmacological Reviews (Vol. 65, Issue 4, pp. 1198–1213).American Society for Pharmacology and ExperimentalTherapeutics. https://doi.org/10.1124/pr.111.004747

  67. Lin, H., & Trejo, J. (2013). Transactivation of the PAR1-PAR2heterodimer by thrombin elicits β-arrestin-mediatedendosomal signaling. Journal of Biological Chemistry,288(16), 11203–11215. https://doi.org/10.1074/jbc.M112.439950

  68. Little, P. J., Burch, M. L., Al-aryahi, S., & Zheng, W. (2011). Theparadigm of G protein receptor transactivation: A mechanisticdefinition and novel example. In TheScientificWorldJournal(Vol. 11, pp. 709–714). ScientificWorldJournal. https://doi.org/10.1100/tsw.2011.75

  69. Lohman, R. J., Jones, N. C., O’Brien, T. J., & Cocks, T. M.(2009). A regulatory role for protease-activated receptor-2in motivational learning in rats. Neurobiology of Learningand Memory, 92(3), 301–309. https://doi.org/10.1016/J.NLM.2009.03.010

  70. Luo, W., Wang, Y., & Reiser, G. (2007). Protease-activatedreceptors in the brain: receptor expression, activation,and functions in neurodegeneration and neuroprotection.Brain Research Reviews, 56(2), 331–345. https://doi.org/10.1016/J.BRAINRESREV.2007.08.002

  71. Madhusudhan, T., Wang, H., Straub, B. K., Gröne, E., Zhou,Q., Shahzad, K., Müller-Krebs, S., Schwenger, V., Gerlitz,B., Grinnell, B. W., Griffin, J. H., Reiser, J., Gröne, H.J., Esmon, C. T., Nawroth, P. P., & Isermann, B. (2012).Cytoprotective signaling by activated protein C requiresprotease-activated receptor-3 in podocytes. Blood, 119(3),874–883. https://doi.org/10.1182/blood-2011-07-365973

  72. Maeda, Y., Sekiguchi, F., Yamanaka, R., Sugimoto, R.,Yamasoba, D., Tomita, S., Nishikawa, H., & Kawabata,A. (2015). Mechanisms for proteinase-activated receptor1-triggered prostaglandin E2 generation in mouseosteoblastic MC3T3-E1 cells. Biological Chemistry, 396(2),153–162. https://doi.org/10.1515/HSZ-2014-0148

  73. Maggio, N., Itsekson, Z., Dominissini, D., Blatt, I., Amariglio,N., Rechavi, G., Tanne, D., & Chapman, J. (2013). Thrombinregulation of synaptic plasticity: Implications for physiologyand pathology. Experimental Neurology, 247, 595–604.https://doi.org/10.1016/J.EXPNEUROL.2013.02.011

  74. Maggio, N., Shavit, E., Chapman, J., & Segal, M. (2008).Thrombin Induces Long-Term Potentiation of Reactivityto Afferent Stimulation and Facilitates Epileptic Seizuresin Rat Hippocampal Slices: Toward Understanding theFunctional Consequences of Cerebrovascular Insults.Journal of Neuroscience, 28(3), 732–736. https://doi.org/10.1523/JNEUROSCI.3665-07.2008

  75. McHowat, J., Creer, M., & Rickard, A. (2001). Stimulationof protease activated receptors on RT4 cells mediatesarachidonic acid release via Ca2+ independent phospholipaseA2. The Journal of Urology, 165(6 Pt 1), 2063–2067. https://doi.org/10.1097/00005392-200106000-00071

  76. McLaughlin, J. N., Patterson, M. M., & Malik, A. B. (2007).Protease-activated receptor-3 (PAR3) regulates PAR1signaling by receptor dimerization. Proceedings of theNational Academy of Sciences of the United States ofAmerica, 104(13), 5662–5667. https://doi.org/10.1073/pnas.0700763104

  77. Moriyuki, K., Sekiguchi, F., Matsubara, K., Nishikawa, H.,& Kawabata, A. (2009). Proteinase-activated receptor-2-triggered prostaglandin E2 release, but not cyclooxygenase-2upregulation, requires activation of the phosphatidylinositol3-kinase / akt / nuclear factor-κB pathway in human alveolarepithelial cells. Journal of Pharmacological Sciences,111(3), 269–275. https://doi.org/10.1254/jphs.09155FP

  78. Mußbach, F., Henklein, P., Westermann, M., Settmacher,U., Böhmer, F. D., & Kaufmann, R. (2015). Proteinaseactivatedreceptor 1- and 4-promoted migration of Hep3Bhepatocellular carcinoma cells depends on ROS formationand RTK transactivation. Journal of Cancer Researchand Clinical Oncology, 141(5), 813–825. https://doi.org/10.1007/S00432-014-1863-4

  79. Nakanishi-Matsui, M., Zheng, Y. W., Sulciner, D. J., Welss,E. J., Ludeman, M. J., & Coughlin, S. R. (2000). PAR3is a cofactor for PAR4 activation by thrombin. Nature,404(6778), 609–613. https://doi.org/10.1038/35007085

  80. Ossovskaya, V. S., & Bunnett, N. W. (2004). Protease-ActivatedReceptors: Contribution to Physiology and Disease. InPhysiological Reviews (Vol. 84, Issue 2, pp. 579–621).Physiol Rev. https://doi.org/10.1152/physrev.00028.2003

  81. Pagano, J., Giona, F., Beretta, S., Verpelli, C., & Sala, C. (2021).N-methyl-d-aspartate receptor function in neuronal andsynaptic development and signaling. Current Opinionin Pharmacology, 56, 93–101. https://doi.org/10.1016/J.COPH.2020.12.006

  82. Peach, C. J., Edgington-Mitchell, L. E., Bunnett, N. W., &Schmidt, B. L. (2022). Protease-Activated Receptors inHealth and Disease. Physiological Reviews. https://doi.org/10.1152/PHYSREV.00044.2021

  83. Peng, S., Grace, M., Gondin, A., Retamal, J., Dill, L., Darby, W.,Bunnett, N., Abogadie, F., Carbone, S., Tigani, T., Davis, T.,Poole, D., NA, Veldhuis, N., & P, McIntyre, P. (2020). Thetransient receptor potential vanilloid 4 (TRPV4) ion channelmediates protease activated receptor 1 (PAR1)-inducedvascular hyperpermeability. Laboratory Investigation;a Journal of Technical Methods and Pathology, 100(8),1057–1067. https://doi.org/10.1038/S41374-020-0430-7

  84. Poole, D. P., Amadesi, S., Veldhuis, N. A., Abogadie, F. C.,Lieu, T., Darby, W., Liedtke, W., Lew, M. J., McIntyre, P.,& Bunnett, N. W. (2013). Protease-activated Receptor 2(PAR2) Protein and Transient Receptor Potential Vanilloid4 (TRPV4) Protein Coupling Is Required for SustainedInflammatory Signaling. The Journal of BiologicalChemistry, 288(8), 5790. https://doi.org/10.1074/JBC.M112.438184

  85. Price, R., Ferrari, E., Gardoni, F., Mercuri, N. B., & Ledonne,A. (2020). Protease-activated receptor 1 (PAR1) inhibitssynaptic NMDARs in mouse nigral dopaminergic neurons.Pharmacological Research, 160, 105185. https://doi.org/10.1016/J.PHRS.2020.105185

  86. Principe, D. R., Diaz, A. M., Torres, C., Mangan, R. J., DeCant,B., McKinney, R., Tsao, M.-S., Lowy, A., Munshi, H. G.,Jung, B., & Grippo, P. J. (2017). TGFβ engages MEK/ERKto differentially regulate benign and malignant pancreas cellfunction. Oncogene, 36(30), 4336. https://doi.org/10.1038/ONC.2016.500

  87. Ruf, W. (2003). PAR1 signaling: More good than harm? InNature Medicine (Vol. 9, Issue 3, pp. 258–260). Nat Med.https://doi.org/10.1038/nm0303-258

  88. Sabri, A., Guo, J., Elouardighi, H., Darrow, A. L., Andrade-Gordon, P., & Steinberg, S. F. (2003). Mechanisms ofprotease-activated receptor-4 actions in cardiomyocytes:Role of Src tyrosine kinase. Journal of Biological Chemistry,278(13), 11714–11720. https://doi.org/10.1074/jbc.M213091200

  89. Sekiguchi, F., Saito, S., Takaoka, K., Hayashi, H., Nagataki, M.,Nagasawa, K., Nishikawa, H., Matsui, H., & Kawabata,A. (2007). Mechanisms for prostaglandin E2 formationcaused by proteinase-activated receptor-1 activation in ratgastric mucosal epithelial cells. Biochemical Pharmacology,73(1), 103–114. https://doi.org/10.1016/J.BCP.2006.09.016

  90. Sevigny, L. M., Zhang, P., Bohm, A., Lazarides, K., Perides,G., Covic, L., & Kuliopulos, A. (2011). Interdictingprotease-activated receptor-2-driven inflammationwith cell-penetrating pepducins. Proceedings of theNational Academy of Sciences of the United States ofAmerica, 108(20), 8491–8496. https://doi.org/10.1073/pnas.1017091108

  91. Shankar, H., Garcia, A., Prabhakar, J., Kim, S., & Kunapuli,S. P. (2006). P2Y12 receptor-mediated potentiation ofthrombin-induced thromboxane A2 generation in plateletsoccurs through regulation of Erk1/2 activation. Journal ofThrombosis and Haemostasis, 4(3), 638–647. https://doi.org/10.1111/j.1538-7836.2006.01789.x

  92. Shapiro, M. J., Weiss, E. J., Faruqi, T. R., & Coughlin, S. R.(2000). Protease-activated receptors 1 and 4 are shut offwith distinct kinetics after activation by thrombin. Journalof Biological Chemistry, 275(33). https://doi.org/10.1074/jbc.M004589200

  93. Shavit-Stein, E., Artan-Furman, A., Feingold, E., Shimon, M.ben, Itzekson-Hayosh, Z., Chapman, J., Vlachos, A., &Maggio, N. (2017). Protease Activated Receptor 2 (PAR2)Induces Long-Term Depression in the Hippocampus throughTransient Receptor Potential Vanilloid 4 (TRPV4). Frontiersin Molecular Neuroscience, 10. https://doi.org/10.3389/FNMOL.2017.00042

  94. Shavit-Stein, E., Itsekson-Hayosh, Z., Aronovich, A., Reisner,Y., Bushi, D., Pick, C. G., Tanne, D., Chapman, J., Vlachos,A., & Maggio, N. (2015). Thrombin induces ischemic LTP(iLTP): implications for synaptic plasticity in the acutephase of ischemic stroke. Scientific Reports, 5. https://doi.org/10.1038/SREP07912

  95. Shi, X., Gangadharan, B., Brass, L. F., Ruf, W., & Mueller, B.M. (2004). Protease-activated receptors (PAR1 and PAR2)contribute to tumor cell motility and metastasis. MolecularCancer Research, 2(7).

  96. Stone, L. S., & Molliver, D. C. (2009). In search of analgesia:emerging roles of GPCRs in pain. Molecular Interventions,9(5), 234–251. https://doi.org/10.1124/MI.9.5.7

  97. Sweeney, A. M., Fleming, K. E., McCauley, J. P., Rodriguez,M. F., Martin, E. T., Sousa, A. A., Leapman, R. D., &Scimemi, A. (2017). PAR1 activation induces rapid changesin glutamate uptake and astrocyte morphology. ScientificReports 2017 7:1, 7(1), 1–20. https://doi.org/10.1038/srep43606

  98. Tiruppathi, C., Minshall, R., Paria, B., Vogel, S., & Malik, A.(2002). Role of Ca2+ signaling in the regulation of endothelialpermeability. Vascular Pharmacology, 39(4–5), 173–185.https://doi.org/10.1016/S1537-1891(03)00007-7

  99. Trusevych, E., & MacNaughton, W. (2015). Proteases andtheir receptors as mediators of inflammation-associatedcolon cancer. Current Pharmaceutical Design, 21(21),2983–2992. https://doi.org/10.2174/1381612821666150514104800

  100. van der Merwe, J. Q., Hollenberg, M. D., & MacNaughton, W.K. (2008). EGF receptor transactivation and MAP kinasemediate proteinase-activated receptor-2-induced chloridesecretion in intestinal epithelial cells. American Journal ofPhysiology - Gastrointestinal and Liver Physiology, 294(2).https://doi.org/10.1152/ajpgi.00303.2007

  101. Van Der Merwe, J. Q., Hollenberg, M. D., & MacNaughton,W. K. (2008). EGF receptor transactivation and MAPkinase mediate proteinase-activated receptor-2-inducedchloride secretion in intestinal epithelial cells. AmericanJournal of Physiology - Gastrointestinal and LiverPhysiology, 294(2), G441–G451. https://doi.org/10.1152/ajpgi.00303.2007

  102. Vance, K. M., Rogers, R. C., & Hermann, G. E. (2015).PAR1-Activated Astrocytes in the Nucleus of the SolitaryTract Stimulate Adjacent Neurons via NMDA Receptors.The Journal of Neuroscience, 35(2), 776. https://doi.org/10.1523/JNEUROSCI.3105-14.2015

  103. Veldhuis, N. A., Poole, D. P., Grace, M., McIntyre, P., &Bunnett, N. W. (2015). The g protein–coupled receptor–transient receptor potential channel axis: Molecular insightsfor targeting disorders of sensation and inflammation.Pharmacological Reviews, 67(1), 36–73. https://doi.org/10.1124/PR.114.009555

  104. Vellani, V., Kinsey, A. M., Prandini, M., Hechtfischer, S. C.,Reeh, P., Magherini, P. C., Giacomoni, C., & McNaughton,P. A. (2010). Protease activated receptors 1 and 4 sensitizeTRPV1 in nociceptive neurones. Molecular Pain, 6, 61.https://doi.org/10.1186/1744-8069-6-61

  105. Wang, W., Qiao, Y., & Li, Z. (2018). New Insights intoModes of GPCR Activation. Trends in PharmacologicalSciences, 39(4), 367–386. https://doi.org/10.1016/J.TIPS.2018.01.001

  106. Wu, L. J., Sweet, T. B., & Clapham, D. E. (2010). InternationalUnion of Basic and Clinical Pharmacology. LXXVI. Currentprogress in the Mammalian TRP ion channel family. InPharmacological Reviews (Vol. 62, Issue 3, pp. 381–404).Pharmacol Rev. https://doi.org/10.1124/pr.110.002725

  107. Zhao, P., Lieu, T., Barlow, N., Metcalf, M., Veldhuis, N. A.,Jensen, D. D., Kocan, M., Sostegni, S., Haerteis, S.,Baraznenok, V., Henderson, I., Lindström, E., Guerrero-Alba, R., Valdez-Morales, E. E., Liedtke, W., McIntyre, P.,Vanner, S. J., Korbmacher, C., & Bunnett, N. W. (2014).Cathepsin S Causes Inflammatory Pain via Biased Agonismof PAR2 and TRPV4. The Journal of Biological Chemistry,289(39), 27215. https://doi.org/10.1074/JBC.M114.599712

  108. Zhao, P., Lieu, T., Barlow, N., Sostegni, S., Haerteis, S.,Korbmacher, C., Liedtke, W., Jimenez-Vargas, N. N.,Vanner, S. J., & Bunnett, N. W. (2015). NeutrophilElastase Activates Protease-activated Receptor-2 (PAR2)and Transient Receptor Potential Vanilloid 4 (TRPV4) toCause Inflammation and Pain. The Journal of BiologicalChemistry, 290(22), 13875. https://doi.org/10.1074/JBC.M115.642736




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2023;26

ARTíCULOS SIMILARES

CARGANDO ...