medigraphic.com
ENGLISH

Revista Cubana de Hematología, Inmunología y Hemoterapia

ISSN 1561-2996 (Digital)
ISSN 0864-0289 (Impreso)
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2022, Número 3

<< Anterior Siguiente >>

Rev Cubana Hematol Inmunol Hemoter 2022; 38 (3)


Disfunción crónica de órganos en pacientes con drepanocitosis. Parte II: manifestaciones renales, neurológicas y sensoriales

Águila FJD, Fernández GCT, Villares ÁI
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 82
Paginas: 1-20
Archivo PDF: 338.97 Kb.


PALABRAS CLAVE

drepanocitosis, enfermedad renal crónica, infarto silente, retinopatía, sordera.

RESUMEN

Introducción: El aumento de la expectativa de vida de pacientes con drepanocitosis, provoca que se sumen comorbilidades y disfunción crónica de órganos a las manifestaciones clínicas de la enfermedad.
Objetivos: Analizar las alteraciones renales, neurológicas y sensoriales que aparecen en pacientes con drepanocitosis como manifestaciones de la disfunción orgánica crónica.
Métodos: Se realizó una revisión de artículos publicados en los últimos 10 años con el uso de los buscadores PubMed, SciELO y Google Académico. Los términos de búsqueda fueron: drepanocitosis, disfunción orgánica, mortalidad, proteinuria, enfermedad renal crónica, infarto cerebral silente, trastornos neurocognitivos, retinopatía, sordera neurosensorial.
Análisis y síntesis de la información: El efecto combinado de afectación glomerular, tubular e intersticial acarrea una disminución paulatina de la función renal. La progresión a la enfermedad renal crónica terminal es común y se asocia a incremento de la mortalidad. Las complicaciones del sistema nervioso central también pueden tener un impacto negativo en la supervivencia o provocar secuelas que influyen en la calidad de vida de los enfermos. Las afectaciones sensoriales tienen repercusiones biopsicosociales. Se describen aspectos relacionados con la prevalencia, diagnóstico y tratamiento de estas complicaciones.
Conclusiones: Un seguimiento de los pacientes basado en estrategias para prevenir y diagnosticar de forma precoz las manifestaciones de disfunción crónica de órganos, puede disminuir las consecuencias desfavorables de estas complicaciones.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Safdar OY, Baghdadi RM, Alahmadi SA, Fakieh BE, Algaydi AM. Sickle cell nephropathy: A review of novel biomarkers and their potential roles in early detection of renal involvement. World J Clin Pediatr. 2022;11(1):14-26. DOI: https:// 10.5409/wjcp.v11.i1.14

  2. Audard V, BartolucciP, Stehle´T. Sickle cell disease and albuminuria: recent advances in our understanding of sickle cell nephropathy. CKJ. 2017;10(4):475-8. DOI: https:// 10.1093/ckj/sfx027

  3. Hebbel RP, Belcher JD, Vercellotti GM. The multifaceted role of ischemia reperfusion in sickle cell anemia. J Clin Invest. 2020;130(3):1062-72. DOI: https:// 10.1172/JCI133639

  4. Brandow M, Liem RI. Advances in the diagnosis and treatment of sickle cell disease. J Hematol Oncology. 2022;15(1):20. DOI: https:// 10.1186/s13045-022-01237-z

  5. Cachat F, Combescure C, Cauderay M, Girardin E, Chehade H. A systematic review of glomerular hyperfiltration assessment and definition in the medical literature. Clin J Am Soc Nephrol. 2015;10:382-9.

  6. Nnaji UM, Ogoke CC, Okafor HU, Achigbu KA. Sickle cell nephropathy and associated factors among asymptomatic children with sickle cell anaemia. Inter J Pediatrics. 2020;1286432. DOI: https:// 10.1155/2020/1286432

  7. Kasztan M, Fox BM, Lebensburger JD, Hyndman KA, Speed JS, Pollock JS.et al7. . Hyperfiltration predicts long-term renal outcomes in humanized sickle cell mice. Blood Adv. 2019;3(9):1460-75. DOI: https:// 10.1182/bloodadvances.2018028878

  8. Lebensburger JD, Aban I, Pernell B, Kasztan M, Feig DI, Hilliard LM, et al8. . Hyperfiltration during early childhood precedes albuminuria in pediatric sickle cell nephropathy. Am J Hematol. 2019;94(4):417-23. DOI: https:// 10.1002/ajh.25390

  9. KDIGO 2012. National Kidney Foundation. KDIGO 2012 Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney International Supplements. 2013. [acceso 24/07/2021];3(1):1-163. Disponible en: Disponible en: http://www.kidney-international.org 9.

  10. Usmania A, Machado RF. Vascular complications of sickle cell disease. Clin Hemorheol Microcirc. 2018;68(2-3):205-21. DOI: https:// 10.3233/CH-189008

  11. Derebail VK, Ciccone EJ, Zhou Q, Kilgore RR, Cai J, Ataga KI. Progressive decline in estimated GFR in patients with sickle cell disease: an observational cohort study. Am J Kidney Dis. 2019;74(1):47-55. DOI: https:// 10.1053/j.ajkd.2018.12.027

  12. Derebail VK, Zhou Q, Ciccone EJ, Cai J, Ataga KI. Rapid decline in estimated glomerular filtration rate is common in adults with sickle cell disease and associated with increased mortality. Br J Haematol. 2019;186(6):900-7. DOI: https:// 10.1111/bjh.16003

  13. Niss O, Lane A, Asnani MR, Yee ME, Raj A, Creary S, et al13. . Progression of albuminuria in patients with sickle cell anemia: a multicenter, longitudinal study. Blood Adv.2020;4(7):1501-11. DOI: https:// 10.1182/bloodadvances.2019001378

  14. Zsom L, Zsom M, Salim SA, Fülöp T. Estimated glomerular filtration rate in chronic kidney disease: a critical review of estimate-based predictions of individual outcomes in kidney disease. Toxins. 2022; 14:127. DOI: https:// 10.3390/toxins14020127

  15. Borrego-Utiel FJ, Ramírez-Navarro AM, Esteban de la Rosa R, Bravo Soto JA. Comparación de las ecuaciones MDRD y de las antiguas ecuaciones CKD-EPI frente a las nuevas ecuaciones CKD-EPI en pacientes con trasplante renal cuando se emplea 51Cr-EDTA para medir el filtrado glomerular. Nefrología. 2020;40(1):53-64. DOI: https:// 10.1016/j.nefro.2019.07.006

  16. Yee MEM, Lane PA, Archer DR, Joiner CH, Eckman JR, Guasch A. Estimation of glomerular filtration rate using serum cystatin C and creatinine in adults with sickle cell anemia. Am J Hematol. 2017;92(10):E598-99. DOI: https:// 10.1002/ajh.24840

  17. Zahr RS, Hankins JS, Kang G, Li C, Wang WC, Lebensburger J, et al17. . Hydroxyurea prevents onset and progression of albuminuria in children with sickle cell anemia. Am J Hematol. 2019;94(1):E27-E29. DOI: https:// 10.1002/ajh.25329

  18. Heimlich JB, Chipoka G, Elsherif L, David E, Ellis G, Kamthunzi P, et al18. . Nephrin as a biomarker of sickle cell glomerulopathy in Malawi. Pediatr Blood Cancer. 2018;65(6):e26993. DOI: https:// 10.1002/pbc.26993

  19. Shatat IF, Qanungo S, Hudson S, Laken MA, Hailpern SM. Changes in urine microalbumin-to-creatinine ratio in children with sickle cell disease over time. Front Pediatr. 2016;4:106. DOI: https:// 10.3389/fped.2016.00106

  20. Ataga KI, Zhou Q, Derebail VK, Saraf SL, Hankins JS, Loehr LR, et al20. . Rapid decline in estimated glomerular filtration rate in sickle cell anemia: results of a multicenter pooled analysis. Haematologica. 2021;106(6):1749-53. DOI: https:// 10.3324/haematol.2020.267419

  21. Naika RP, Derebailb VK. The spectrum of sickle hemoglobin-related nephropathy: from sickle cell disease to sickle trait. Expert Rev Hematol. 2017;10(12):1087-94. DOI: https://10.1080/17474086.2017.1395279

  22. Vichinsky E. Chronic organ failure in adult sickle cell disease. Hematology Am Soc Hematol Educ Program. 2017;2017(1):435-9. DOI: https://10.1182/asheducation-2017.1.435

  23. Alvarez O, Miller ST, Wang WC, Luo Z, McCarville MB, Schwartz GJ, et al23. . Effect of hydroxyurea treatment on renal function parameters: results from the multi-center placebo-controlled BABY HUG clinical trial for infants with sickle cell anemia. Pediatr Blood Cancer. 2012;59(4):668-74. DOI: https:// 10.1002/pbc.24100

  24. Roy NBA, Fortin PM, Bull KR, Doree C, Trivella M, Hopewell S, Estcourt LJ. Interventions for chronic kidney disease in people with sickle cell disease. Cochrane Database of Systematic Rev. 2017;7:CD012380. DOI: https://10.1002/14651858.CD012380.pub2

  25. Aygun B, Mortier NA, Smeltzer MP, Shulkin BL, Hankins JS, Ware RE. Hydroxyurea treatment decreases glomerular hyperfiltration in children with sickle cell anemia. Am J Hemato. 2013;88(2):116-9.

  26. Haymann JP, Hammoudi N, Stankovic K, Galacteros F, Habibi A, Avellino V, et al26. . Renin‐angiotensin system blockade promotes a cardio‐renal protection in albuminuric homozygous sickle cell patients. Br J Haematol. 2017; 79(5):820-8. DOI: https:// 10.1111/bjh.14969

  27. Quinn CT, Saraf SL, Gordeuk VR, Fitzhugh CD, Creary SE, Bodas P, et al27. . Losartan for the nephropathy of sickle cell anemia: a phase‐2, multi‐center trial. Am J Hematol. 2017;92(9):E520-E528. DOI: https:// 10.1002/ajh.24810

  28. Yee ME, Lane PA, Archer DR, Joiner CH, Eckman JR, Guasch A. Losartan therapy decreases albuminuria with stable glomerular filtration and permselectivity in sickle cell anemia. Blood Cells Mol Dis. 2018;69:65-70. DOI: https:// 10.1016/j.bcmd.2017.09.006

  29. Thrower A, Ciccone EJ, Maitra P, Derebail VK, Cai J, Ataga KI. Effect of renin-angiotensin-aldosterone system blocking agents on progression of glomerulopathy in sickle cell disease. Br J Haematol. 2019;184(2):246-52. DOI: https:// 10.1111/bjh.15651

  30. Howard J, Thein SL. Optimal disease management and health monitoring in adults with sickle cell disease. Hematology Am Soc Hematol Educ Program. 2019;2019(1):505-12. DOI: https:// 10.1182/hematology.2019000055

  31. Huang E, Parke C, Mehrnia A, Kamgar M, Pham PT, Danovitch G, et al31. . Improved survival among sickle cell kidney transplant recipients in the recent era. Nephrol Dial Transplant. 2013;28(4):1039-46. DOI: https:// 10.1093/ndt/gfs585

  32. Gérardin C, Moktefi A, Couchoud C, Duquesne A, Ouali N, Gataut P, et al32. . Survival and specific outcome of sickle cell disease patients after renal transplantation. Br J Haematol. 2019;187(5):676-80. DOI: https:// 10.1111/bjh.16113

  33. Liem RI, Lanzkron S, Coates TD, DeCastro L, Desai AA, Ataga KI, et al33. . American Society of Hematology 2019 guidelines for sickle cell disease: cardiopulmonary and kidney disease. Blood Adv. 2019;3(23):3867-97. DOI: https:// 10.1182/bloodadvances.2019000916

  34. Al-Jafar HA, Alroughani R, Abdullah TA, Al-Qallaf F. Neurological complications of sickle cell disease. Int J Clin Exp Neurol. 2016;4(1):9-18. DOI: https:// 10.12691/ijcen-4-1-2

  35. DeBaun MR, Kirkham FJ. Central nervous system complications and management in sickle cell disease. Blood. 2016;127(7):829-38. DOI: https:// 10.1182/blood-2015-09-618579

  36. NoubiapJJ, MengnjoMK, NicastroNMD, Kamtchum-TatueneJ. Neurologic complications of sickle cell disease in Africa. A systematic review and meta-analysis. Neurology. 2017;89(14):1516-24. DOI: https:// 10.1212/WNL.0000000000004537

  37. Ohene-Frempong K, Weiner SJ, Sleeper LA, Miller ST, Embury S, Moohr JW, et al37. . Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood. 1998;91(1):288-94.

  38. Kassim AA, Pruthi S, Day M, Rodeghier M, Gindville MC, Brodsky MA, et al38. . Silent cerebral infarcts and cerebral aneurysms are prevalent in adults with sickle cell anemia. Blood. 2016;127(16):2038-40. DOI: https:// 10.1182/blood-2016-01-694562

  39. Adams RJ, McKie VC, Hsu L, Files B, Vl E, Pegelow C, et al39. . Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med. 1998;339(1):5-11. DOI: https:// 10.1056/NEJM199807023390102

  40. Adams RJ, Brambilla D. Discontinuing prophylactic transfusions used to prevent stroke in sickle cell disease. N Engl J Med. 2005; 353(26):2769-78. DOI: https:// 10.1056/NEJMoa050460

  41. Ware RE, Davis BR, Schultz WH, Brown RC, Aygun B, Sarnaik S, et al41. . Hydroxycarbamide versus chronic transfusion for maintenance of transcranial doppler flow velocities in children with sickle cell anaemia-TCD with Transfusions Changing to Hydroxyurea (TWiTCH): a multicenter, open-label, phase 3, non-inferiority trial. Lancet. 2016;387(10019):661-70. DOI: https:// 10.1016/S0140-6736(15)01041-7

  42. Ware RE, Helms RW. Stroke with transfusions changing to hydroxyurea (SWiTCH). Blood. 2012;119(17):3925-32. DOI: https:// 10.1182/blood-2011-11-392340

  43. DeBaun MR, Gordon M, McKinstry RC, Noetzel MJ, White DA, Sarnaik SA, et al43. . Controlled trial of transfusions for silent cerebral infarcts in sickle cell anemia. N Engl J Med. 2014;371(8):699-710. DOI: https:// 10.1056/NEJMoa1401731

  44. DeBaun MR, Jordan LC, King AA, Schatz J, Vichinsky E, Fox CK, et al44. . American Society of Hematology 2020 guidelines for sickle cell disease: prevention, diagnosis, and treatment of cerebrovascular disease in children and adults. Blood Adv. 2020;4(8):1558-88. DOI: https:// 10.1182/bloodadvances.2019001142

  45. Kirkham FJ, Lagunju IA. Epidemiology of stroke in sickle cell disease. J Clin Med. 2021; 10(18):4232. DOI: https:// 10.3390/jcm10184232

  46. Jordan LC, DeBaun MR. Cerebral hemodynamic assessment and neuroimaging across the lifespan in sickle cell disease. J Cereb Blood Flow Metab. 2018;38(9):1438-48. DOI: https:// 10.1177/0271678X17701763

  47. Powers W, Rabinstein A, Ackerson T. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018;49(3):e46-e110. DOI: https:// 10.1161/STR.0000000000000158

  48. Stotesbury H, Kawadler JM, Saunders DE, Kirkham FJ. MRI detection of brain abnormality in sickle cell disease. Expert Rev Hematol. 2021;14(5):473-91. DOI: https:// 10.1080/17474086.2021.1893687

  49. Houwing ME, Grohssteiner RL, Dremmen MHG, Atiq F, Bramer W M, de Pagter APJ, et al49. . Silent cerebral infarcts in patients with sickle cell disease: a systematic review and meta-analysis. BMC Med. 2020;18(1):393. DOI: https:// 10.1186/s12916-020-01864-8

  50. Prussien KV, Jordan LC, DeBaun MR, Compas BE. Cognitive function in sickle cell disease across domains, cerebral infarct status, and the lifespan: a meta-analysis. J Pediatr Psychol. 2019;44(8):948-58. DOI: https:// 10.1093/jpepsy/jsz031

  51. Martínez-Triana R, Svarch E, Menéndez-Veitía A, Machado-Almeida T, Álvarez-González MA. Capacidad neurocognitiva en niños con drepanocitosis y su relación con el valor de la hemoglobina. Rev Cubana Hematol Inmunol Hemoter. 2011;27(3):418-28.

  52. García-Hernández A, Martínez-Triana R, Machado-Almeida T. Validación de la prueba evaluación cognitiva de Montreal (moca) en pacientes con anemia drepanocítica. Rev Cubana Hematol, Inmunol Hemoter. 2017[acceso 24/07/2021];33(2):1-3. Disponible en: Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-02892017000200014&lng=es 52.

  53. Sociedad Española de Hematología y Oncología Pediátricas. Enfermedad de células falciformes. Guía de práctica clínica. SEHOP-2019. [acceso 24/07/2021]; Disponible en: Disponible en: https://www.sehop.org 53.

  54. Adams RJ, Cox M, Ozark SD, Kanter J, Schulte PJ, Xian Y, et al54. . Coexistent sickle cell disease has no impact on the safety or outcome of lytic therapy in acute ischemic stroke: findings from get with the Guidelines-Stroke. Stroke. 2017;48:686-91. DOI: https:// 10.1161/STROKEAHA.116.015412

  55. Ribeiro MVMR, Jucá JVO, dos Santos-Alves ALC,Ferreira CVO, Barbosa FT, Ribeiro EAN. Sickle cell retinopathy: A literature review. Rev Assoc Med Bras2017;63(12):1100-3. DOI: https:// 10.1590/1806-9282.63.12.1100

  56. Aleluia MM, Fonseca TCC, Souza RQ, Neves FI, da Guarda CC, Santiago RP, et al56. . Comparative study of sickle cell anemia and hemoglobin SC disease: clinical characterization, laboratory biomarkers and genetic profiles. BMC Hematol. 2017;17:15. DOI: https:// 10.1186/s12878-017-0087-7

  57. Torres-Villaros H, Fajnkuchen F, Amari F, Janicot L, Giocanti-Aurégan A. Comparison of ultra-wide field photography to ultra-wide field angiography for the staging of sickle cell retinopathy. J Clin Med. 2022;11(4):936. DOI: https:// 10.3390/jcm11040936

  58. LimWS, MaganT, MahrooOA, HysiPG, HelouJ, MohamedMD. Retinal thickness measurements in sickle cell patients with HbSS and HbSC genotype. Can J Ophthalmol. 2018;53(4):420-4. DOI: https:// 10.1016/j.jcjo.2017.10.006

  59. Hussnain SA, Coady PA, Slade MD, Carbonella J, Pashankar F, Adelman RA, et al59. . Hemoglobin level and macular thinning in sickle cell disease. Clin Ophthalmol. 2019;13:627-632. DOI: https:// 10.2147/OPTH.S195168

  60. Wang M, Hussnain SA, Chen RWS. The role of retinal imaging in sickle cell retinopathy: a review. Int Ophthalmol Clin. 2019;59(1):71-82. DOI: https:// 10.1097/IIO.0000000000000255

  61. Lim JI, Cao D. Analysis of retinal thinning using spectral-domain optical coherence tomography imaging of sickle cell retinopathy eyes compared to age- and race-matched control eyes. Am J Ophthalmol. 2018;192:229-38. DOI: https:// 10.1016/j.ajo.2018.03.013

  62. Dell’Arti L, Barteselli G, Riva L, Carini E, Graziadei G, Benatti E, et al62. . Sickle cell maculopathy: identification of systemic risk factors, and microstructural analysis of individual retinal layers of the macula. PLoS One. 2018;13(3):e0193582. DOI: https:// 10.1371/journal.pone.0193582

  63. Amissah-Arthur KN, Mensah E. The past, present and future management of sickle cell retinopathy within an African context. Eye. 2018;32:1304-14. DOI: https:// 10.1038/s41433-018-0162-8

  64. National Heart, Lung, and Blood Institute. Evidence-based management of sickle cell disease: expert panel. 2014. [acceso 24/07/2021];1-161. Disponible en: Disponible en: https://www.nhlbi.nih.gov/guidelines 64.

  65. Han IC, Linz MO, Liu TYA, Zhang AY, Tian J, Scott AW. Correlation of ultra-wide field fluorescein angiography and OCT angiography in sickle cell retinopathy. Ophthalmol Retina. 2018;2(6):599-605. DOI: https:// 10.1016/j.oret.2017.10.011

  66. Lynch G, Scott AW, Linz MO, Han I, JSA Romo, Linderman RE, et al66. . Foveal avascular zone morphology and parafoveal capillary perfusion in sickle cell retinopathy. Br J Ophthalmol. 2020;104(4):473-9. DOI: https:// 10.1136/bjophthalmol-2019-314567

  67. Mian UK, Tang J, Allende APM, Heo M, Bernstein N, Vattappally L. Elevated fetal haemoglobin levels are associated with decreased incidence of retinopathy in adults with sickle cell disease. Br J Haematol 2018;183(5):807-11. DOI: https:// 10.1111/bjh.15617

  68. McKinney CM, Siringo F, Olson JL, Capocelli KE, Ambruso DR, Nuss R. Red cell exchange transfusion halts progressive proliferative sickle cell retinopathy in a teenaged patient with hemoglobin SC disease. Pediatr Blood Cancer. 2015;62(4):721-3. DOI: https:// 10.1002/pbc.25397

  69. Myint KT, Sahoo S, Thein AW, Moe S, Ni H. Laser therapy for retinopathy in sickle cell disease. Cochrane Database Syst Rev. 2015;2015(10):CD010790. DOIhttps://:10.1002/14651858.CD010790.pub2

  70. Cai CX, Linz MO, Scott AW. Intravitreal bevacizumab for proliferative sickle retinopathy: a case series. J Vitreoretin Dis. 2017 Nov 1;2:32-38. DOI: https:// 10.1177/2474126417738627

  71. Mitropoulos PG, Chatziralli IP, Parikakis EA, Peponis VG, Amariotakis GA, Moschos MM. Intravitreal ranibizumab for stage iv proliferative sickle cell retinopathy: a first case report. Case Rep Ophthalmol Med. 2014;2014:682583. DOI: https:// 10.1155/2014/682583

  72. Nithianandan H, Sridhar J. Surgical and medical perioperative management of sickle cell retinopathy: A literature review. Int Ophthalmol Clin. 2020;60(4):77-87. DOI: https:// 10.1097/IIO.0000000000000323

  73. Menaa F, Khan BA, Uzair B, Menaa A. Sickle cell retinopathy: improving care with a multidisciplinary approach. J Multidiscip Healthc. 2017;10:335-46. DOI: https:// 10.2147/JMDH.S90630

  74. Wood EH, Tang PH, De la Huerta I, Korot E, Muscat S, Palanker DA, et al74. . Stem cell therapies, gene-based therapies, optogenetics, and retinal prosthetics: current State and implications for the future. Retina. 2019; 39(5):820-35. DOI: https:// 10.1097/IAE.0000000000002449

  75. Abdelmahmuod E, Yassin M A, Ahmed M, Ali E. The relationship between sickle cell disease and sudden onset sensorineural deafness. Cureus. 2020; 12(7):e9413. DOI: https:// 10.7759/cureus.9413

  76. Silva LP, Nova CV, Lucena R. Sickle Cell anemia and hearing loss among children and youngsters: literature review. Braz J Otorhinolaryngol. 2012;78(1):126-31. DOI: https:// 10.1590/s1808-86942012000100020

  77. Farrell AN, Landry AM, E. Yee ME, Leu RM, Goudy SL. Sensorineural hearing loss in children with sickle cell disease. Int J Pediatr Otorhinolaryngol. 2019;118:110-4. DOI: https:// 10.1016/j.ijporl.2018.12.002

  78. Lago MRR, Fernández LC, Lyra IM, Ramos RT, Teixeira R, Salles C et al78. . Sensorineural hearing loss in children with sickle cell anemia and its association with endothelial dysfunction, Hematology. 2018;23(10):849-55. DOI: https:// 10.1080/10245332.2018.1478494

  79. Kha MA, Khan MA, Seedat AM, Khan M, Khuwaja SF, Kumar R, et al79. . Sensorineural hearing loss and its relationship with duration of chelation among major β-thalassemia patients. Cureus. 2019;11(8):e5465. DOI: https:// 10.7759/cureus.5465

  80. Al Jabr I. Hearing loss among adults with sickle cell disease in an endemic region: a prospective case-control study. Ann Saudi Med. 2016;36(2):135-8. DOI: https:// 10.5144/0256-4947.2016.135

  81. Ashfield T, Pai I, Wilson K, Britz A, Connor S, Fitzgerald-O'Connor A, et al81. . Cochlear implantation in children with sickle cell disease. Pediatr Int. 2015;57(1):174-6. DOI: https:// 10.1111/ped.12413

  82. Kim SJ, Taheri MR, Merkison M, Monfared A. Cochlear implantation in a patient with sickle cell disease with early cochlear sclerosis. Otol Neurotol.2018;39(2):e87-9. DOI: https:// 10.1097/MAO.0000000000001660




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Hematol Inmunol Hemoter . 2022;38

ARTíCULOS SIMILARES

CARGANDO ...