2025, Número 1
<< Anterior Siguiente >>
Odovtos-Int J Dent Sc 2025; 27 (1)
Correlación inmunohistoquímica y clínico-patológica de la ADN metiltransferasa 3A y el ligando 1 (motivo C-X-C) en el carcinoma oral de células escamosas
Abdelrahman AB, Hafez MM
Idioma: Ingles.
Referencias bibliográficas: 40
Paginas: 110-120
Archivo PDF: 464.14 Kb.
RESUMEN
La ADN metil transferasa 3A (DNMT3A) es una enzima que actúa añadiendo un nuevo grupo
metilo al ADN favoreciendo el silenciamiento del ADN y la carcinogénesis. Se decía que las citoquinas
ayudaban al cambio epigenético y mejoraban la activación de las metiltransferasas en muchos tipos de
cáncer. El papel del ligando 1 de quimiocina (motivo C-X-C) (CXCL1) en el desarrollo del cáncer quedó
demostrado en muchos informes. En este estudio, sugerimos que CXCL1 podría inducir la activación de
DNMT3A, afectando la carcinogénesis del carcinoma oral de células escamosas (OSCC). Se calculó la
puntuación inmunohistoquímica (IHC) y se realizó una correlación estadística para evaluar la expresión
de DNMT3A epitelial además de CXCL1 epitelial y mesenquimal en OSCC y muestras de mucosa normal.
DNMT3A, CXCL1 epitelial y mesenquimatoso reveló un aumento estadísticamente significativo en la
puntuación inmune de la mucosa normal y entre diferentes grados tumorales, además de una relación
significativa de las expresiones con el tamaño, el estadio y la afectación de los ganglios linfáticos del
tumor. La correlación de Pearson detectó una correlación estadísticamente significativa de DNMT3A
con CXCL1 epitelial y mesenquimal. Por tanto, la sobreexpresión de CXCL1 puede estar asociada con la
regulación positiva de DNMT3A. DNMT3A, CXCL1 epitelial y mesenquimatoso se asociaron con grados
histológicos y caracteres tumorales avanzados, lo que los sugiere como biomarcadores de pronóstico
confiables en pacientes con OSCC.
REFERENCIAS (EN ESTE ARTÍCULO)
Hema K.N., Smitha T., Sheethal H.S., MirnaliniS.A. Epigenetics in oral squamous cellcarcinoma. JOMFP. 2017; 21 (2): 252.https://doi.org/10.4103/jomfp.jomfp_150_17
Cheng Y., He C., Wang M., Ma X., Mo F.,Yang S., Wei X. Targeting epigenetic regulatorsfor cancer therapy: mechanisms andadvances in clinical trials. Signal TransductTarget Ther. 2019; 4 (1): 1-39. https://doi.org/10.1038/s41392-019-0095-0
Bollati V., Baccarelli A. Environmental epigenetics.Heredity. 2010; 105 (1): 105-12. https://doi.org/10.1038/hdy.2010.2
Smith Z.D., Meissner A. DNA methylation:roles in mammalian development. Nat RevGenet. 2013; 14 (3): 204-20. https://doi.org/10.1038/nrg3354
Gacem R.B., Hachana M., Ziadi S., AbdelkarimS.B., Hidar S., Trimeche M. Clinicopathologicsignificance of DNA methyltransferase1, 3a, and 3b overexpression inTunisian breast cancers. Hum Pathol. 2012;43 (10): 1731- 8. https://doi.org/10.1016/j.humpath.2011.12.022
Leonard S., Pereira M., Fox R., Gordon N., YapJ., Kehoe S., Luesley D., Woodman C., GanesanR. Over-expression of DNMT3A predicts therisk of recurrent vulvar squamous cell carcinomas.Gynecol Oncol. 2016; 143 (2): 414-20.https://doi.org/10.1016/j.ygyno.2016.09.001
Daniel F.I., Rivero E.R., Modolo F., LopesT.G., Salum F.G. Immunohistochemicalexpression of DNA methyltransferases 1, 3aand 3b in oral leukoplakias and squamous cellcarcinomas. Arch Oral Biol. 2010; 55 (12):1024-30. https://doi.org/10.1016/j.archoralbio.2010.08.009
Adhikari B.R., Uehara O., Matsuoka H.,Takai R., Harada F., Utsunomiya M., ChujoT., Morikawa T., Shakya M., Yoshida K.,Sato J. Immunohistochemical evaluation ofKlotho and DNA methyltransferase 3a in oralsquamous cell carcinomas. Med Mol Morphol.2017; 50: 155-60. https://doi.org/10.1007/s00795-017-0156-9
Liu C.Y., Xu J.Y., Shi X.Y., Huang W., RuanT.Y., Xie P., Ding J.L. M2-polarized tumorassociatedmacrophages promoted epithelial–mesenchymal transition in pancreatic cancercells, partially through TLR4/IL-10 signalingpathway. Lab Invest. 2013; 93 (7): 844-54.https://doi.org/10.1038/labinvest.2013.69
Li W., Zhang X., Wang J., Li M., Cao C.,Tan J., Ma D., Gao Q. TGFβ1 in fibroblastsderivedexosomes promotes epithelial-mesenchymaltransition of ovarian cancer cells.Oncotarget. 2017; 8 (56): 96035. https://doi.org/10.18632/oncotarget.21635
Tuong Z.K., Lewandowski A., Bridge J.A.,Cruz J.L., Yamada M., Lambie D., LewandowskiR., Steptoe R.J., Leggatt G.R.,Simpson F., Frazer I.H. Cytokine/chemokineprofiles in squamous cell carcinoma correlatewith precancerous and cancerous diseasestage. Sci Rep. 2019; 9 (1): 17754. https://doi.org/10.1038/s41598-019-54435-0
Koontongkaew S., Amornphimoltham P.,Yapong B. Tumor-stroma interactions influencecytokine expression and matrix metalloproteinaseactivities in paired primary andmetastatic head and neck cancer cells. CellBiol Int. 2009; 33 (2): 165-73. https://doi.org/10.1016/j.cellbi.2008.10.009
Peltanova B., Raudenska M., Masarik M.Effect of tumor microenvironment on pathogenesisof the head and neck squamous cellcarcinoma: a systematic review. Mol Cancer.2019; 18 (1): 1-24. https://doi.org/10.1186/s12943-019-0983-5
Kasashima H., Yashiro M., Nakamae H.,Kitayama K., Masuda G., Kinoshita H.,Fukuoka T., Hasegawa T., Nakane T., HinoM., Hirakawa K. CXCL1-Chemokine (CXCMotif) Receptor 2 Signaling Stimulates theRecruitment of Bone Marrow–Derived MesenchymalCells into Diffuse-Type Gastric CancerStroma. Am J Pathol. 2016; 186 (11): 3028 -39.https://doi.org/10.1016/j.ajpath.2016.07.024
Wan X., Hong Z., Mao Y., Di W. Correlationsof AKIP1, CXCL1 and CXCL2 expressionswith clinicopathological features and survivalprofiles in cervical cancer patients. TranslCancer Res. 2020; 9 (2): 726-34. https://doi.org/10.21037/tcr.2019.11.47
Yu S., Yi M., Xu L., Qin S., Li A., Wu K.CXCL1 as an unfavorable prognosis factornegatively regulated by DACH1 in non-smallcell lung cancer. Front Oncol. 2020; 9: 1515.https://doi.org/10.3389/fonc.2019.01515
le Rolle A.F., Chiu T.K., Fara M., Shia J.,Zeng Z., Weiser M.R., Paty P.B., Chiu V.K.The prognostic significance of CXCL1 hypersecretionby human colorectal cancer epitheliaand myofibroblasts. J Transl Med. 2015; 13(1): 1-2. https://doi.org/10.1186/s12967-015-0555-4
Wei L.Y., Lee J.J., Yeh C.Y., Yang C.J., KokS.H., Ko J.Y., Tsai FC, Chia JS. Reciprocalactivation of cancer-associated fibroblastsand oral squamous carcinoma cells throughCXCL1. Oral Oncol. 2019; 88:115-23. https://doi.org/10.1016/j.oraloncology.2018.11.002
Wei Z.W., Xia G.K., Wu Y., Chen W., XiangZ., Schwarz R.E., Brekken R.A., Awasthi N.,He Y.L., Zhang C.H. CXCL1 promotes tumorgrowth through VEGF pathway activation andis associated with inferior survival in gastriccancer. Cancer Lett. 2015; 359 (2): 335-43.https://doi.org/10.1016/j.canlet.2015.01.033
Wang D., Sun H., Wei J., Cen B., DuBoisR.N. CXCL1 is critical for premetastatic nicheformation and metastasis in colorectal cancer.Cancer Res. 2017; 77 (13): 3655-65. https://doi.org/10.1158/0008-5472.can-16-3199
Lee C.H., Syu S.H., Liu K.J., Chu P.Y.,Yang W.C., Lin P., Shieh W.Y. Interleukin-1beta transactivates epidermal growth factorreceptor via the CXCL1-CXCR2 axis in oralcancer. Oncotarget. 2015; 6 (36): 38866.https://doi.org/10.18632/oncotarget.5640
Tiwari N., Tiwari V.K., Waldmeier L.,Balwierz P.J., Arnold P., Pachkov M., Meyer-Schaller N., Schübeler D., van Nimwegen E.,Christofori G. Sox4 is a master regulator ofepithelial-mesenchymal transition by controllingEzh2 expression and epigenetic reprogramming.Cancer Cell. 2013; 23 (6): 768-83.https://doi.org/10.1016/j.ccr.2013.04.020
Cardenas H., Vieth E., Lee J., Segar M., LiuY., Nephew K.P., Matei D. TGF-beta inducesglobal changes in DNA methylation duringthe epithelial-to-mesenchymal transition inovarian cancer cells. Epigenetics. 2014; 9(11): 1461-72. https://doi.org/10.4161/15592294.2014.971608
Klymenko Y., Nephew K.P. Epigeneticcrosstalk between the tumor microenvironmentand ovarian cancer cells: a therapeuticroad less traveled. Cancers. 2018; 10 (9): 295.https://doi.org/10.3390/cancers10090295
Almangush A., Mäkitie A.A., TriantafyllouA., de Bree R., Strojan P., Rinaldo A.,Hernandez-Prera J.C., Suárez C., KowalskiL.P., Ferlito A., Leivo I. Staging and gradingof oral squamous cell carcinoma: An update.Oral Oncol. 2020; 107: 104799. https://doi.org/10.1016/j.oraloncology.2020.104799
Thike A.A., Chng M.J., Tan P.H., Fook-Chong S. Immunohistochemical expressionof hormone receptors in invasive breast carcinoma:correlation of results of H-score withpathological parameters. Pathology. 2001;33 (1): 21-5. https://pubmed.ncbi.nlm.nih.gov/11280603/
Park S., Kim J., Jang W., Kim K.M., Jang K.T.Clinicopathologic significance of the deltalikeligand 4, vascular endothelial growthfactor, and hypoxia-inducible factor-2α ingallbladder cancer. J Pathol Transl Med.2023; 57 (2): 113-22. https://doi.org/10.4132/jptm.2023.02.01
Lyko F. The DNA methyltransferase family:a versatile toolkit for epigenetic regulation.Nat Rev Genet. 2018; 19 (2): 81-92. https://doi.org/10.1038/nrg.2017.80
Miyake M., Hori S., Morizawa Y., TatsumiY., Nakai Y., Anai S., Torimoto K., Aoki K.,Tanaka N., Shimada K., Konishi N. CXCL1-mediated interaction of cancer cells with tumorassociatedmacrophages and cancer-associatedfibroblasts promotes tumor progressionin human bladder cancer. Neoplasia. 2016;18 (10): 636-46. https://doi.org/10.1016/j.neo.2016.08.002
Daniel F.I., Alves S.R., Vieira D.S., Biz M.T.,Daniel I.W., Modolo F. Immunohistochemicalexpression of DNA methyltransferases1, 3a, and 3b in actinic cheilitis and lipsquamous cell carcinomas. J Oral Pathol Med.2016; 45 (10): 774-9. https://doi.org/10.1111/jop.12453
Choi M.S., Shim Y.H., Hwa J.Y., Lee S.K.,Ro J.Y., Kim J.S., Yu E. Expression of DNAmethyltransferases in multistep hepatocarcinogenesis.Hum Pathol. 2003; 34 (1): 11-7.https://doi.org/10.1053/hupa.2003.5
Lees-Murdock D.J., Shovlin T.C., GardinerT., De Felici M., Walsh C.P. DNA methyltransferaseexpression in the mouse germline during periods of de novo methylation.Dev Dyn: an official publication of theAmerican Association of Anatomists. 2005;232 (4): 992-1002. https://doi.org/10.1002/dvdy.20288
Yang J., Wei X., Wu Q., Xu Z., Gu D., Jin Y.,Shen Y., Huang H., Fan H., Chen J. Clinicalsignificance of the expression of DNAmethyltransferase proteins in gastric cancer.Mol Med Rep. 2011; 4 (6): 1139-43. https://doi.org/10.3892/mmr.2011.578
Miyake M., Lawton A., Goodison S.,Urquidi V., Gomes-Giacoia E., Zhang G.,Ross S., Kim J., Rosser C.J. Chemokine(CXC) ligand 1 (CXCL1) protein expressionis increased in aggressive bladder cancers.BMC Cancer. 2013; 13 (1): 1-7. https://doi.org/10.1186/1471-2407-13-322
Yuan M., Zhu H., Xu J., Zheng Y., Cao X.,Liu Q. Tumor-derived CXCL1 promoteslung cancer growth via recruitment oftumor-associated neutrophils. J ImmunolRes. 2016; 2016: 6530410. https://doi.org/10.1155/2016/6530410
Chen X., Jin R., Chen R., Huang Z. Complementaryaction of CXCL1 and CXCL8in pathogenesis of gastric carcinoma. IntJ Clin Exp Pathol. 2018; 11 (2): 1036-45.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6958037/
Wang N., Liu W., Zheng Y., Wang S., YangB., Li M., Song J., Zhang F., Zhang X., WangQ., Wang Z. CXCL1 derived from tumorassociatedmacrophages promotes breastcancer metastasis via activating NF-κB/SOX4signaling. Cell Death Dis. 2018; 9 (9): 1-18.https://doi.org/10.1038/s41419-018-0876-3
Rokavec M., Öner M., Hermeking H. Inflammation-induced epigenetic switches in cancer.Cell Mol Life Sci. 2016; 73 (1): 23-39. https://doi.org/10.1007/s00018-015-2045-5
Martin M., Ancey P.B., Cros M.P., DurandG., Le Calvez-Kelm F., Hernandez-VargasH., Herceg Z. Dynamic imbalance betweencancer cell subpopulations induced by transforminggrowth factor beta (TGF-beta) isassociated with a DNA methylome switch.BMC Genomics. 2014; 15: 435. https://doi.org/10.1186/1471-2164-15-435
Mathot P., Grandin M., Devailly G., SouazéF., Cahais V., Moran S., Campone M., HercegZ., Esteller M., Juin P., Mehlen P., Dante R.DNA methylation signal has a major role inthe response of human breast cancer cells tothe microenvironment. Oncogenesis. 2017;6 (10): e390-e390. https://doi.org/10.1038/oncsis.2017.88