medigraphic.com
ENGLISH

Odovtos - International Journal of Dental Sciences

ISSN 1659-1046 (Impreso)
Odovtos - International Journal of Dental Sciences
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2025, Número 1

<< Anterior Siguiente >>

Odovtos-Int J Dent Sc 2025; 27 (1)


Correlación inmunohistoquímica y clínico-patológica de la ADN metiltransferasa 3A y el ligando 1 (motivo C-X-C) en el carcinoma oral de células escamosas

Abdelrahman AB, Hafez MM
Texto completo Cómo citar este artículo Artículos similares

Idioma: Ingles.
Referencias bibliográficas: 40
Paginas: 110-120
Archivo PDF: 464.14 Kb.


PALABRAS CLAVE

Carcinoma oral de células escamosas, ADN metiltransferasa 3A, CXCL1, Inmunohistoquímica, Clasificación de tumores, Características clínicas.

RESUMEN

La ADN metil transferasa 3A (DNMT3A) es una enzima que actúa añadiendo un nuevo grupo metilo al ADN favoreciendo el silenciamiento del ADN y la carcinogénesis. Se decía que las citoquinas ayudaban al cambio epigenético y mejoraban la activación de las metiltransferasas en muchos tipos de cáncer. El papel del ligando 1 de quimiocina (motivo C-X-C) (CXCL1) en el desarrollo del cáncer quedó demostrado en muchos informes. En este estudio, sugerimos que CXCL1 podría inducir la activación de DNMT3A, afectando la carcinogénesis del carcinoma oral de células escamosas (OSCC). Se calculó la puntuación inmunohistoquímica (IHC) y se realizó una correlación estadística para evaluar la expresión de DNMT3A epitelial además de CXCL1 epitelial y mesenquimal en OSCC y muestras de mucosa normal. DNMT3A, CXCL1 epitelial y mesenquimatoso reveló un aumento estadísticamente significativo en la puntuación inmune de la mucosa normal y entre diferentes grados tumorales, además de una relación significativa de las expresiones con el tamaño, el estadio y la afectación de los ganglios linfáticos del tumor. La correlación de Pearson detectó una correlación estadísticamente significativa de DNMT3A con CXCL1 epitelial y mesenquimal. Por tanto, la sobreexpresión de CXCL1 puede estar asociada con la regulación positiva de DNMT3A. DNMT3A, CXCL1 epitelial y mesenquimatoso se asociaron con grados histológicos y caracteres tumorales avanzados, lo que los sugiere como biomarcadores de pronóstico confiables en pacientes con OSCC.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Hema K.N., Smitha T., Sheethal H.S., MirnaliniS.A. Epigenetics in oral squamous cellcarcinoma. JOMFP. 2017; 21 (2): 252.https://doi.org/10.4103/jomfp.jomfp_150_17

  2. Cheng Y., He C., Wang M., Ma X., Mo F.,Yang S., Wei X. Targeting epigenetic regulatorsfor cancer therapy: mechanisms andadvances in clinical trials. Signal TransductTarget Ther. 2019; 4 (1): 1-39. https://doi.org/10.1038/s41392-019-0095-0

  3. Bollati V., Baccarelli A. Environmental epigenetics.Heredity. 2010; 105 (1): 105-12. https://doi.org/10.1038/hdy.2010.2

  4. Smith Z.D., Meissner A. DNA methylation:roles in mammalian development. Nat RevGenet. 2013; 14 (3): 204-20. https://doi.org/10.1038/nrg3354

  5. Gacem R.B., Hachana M., Ziadi S., AbdelkarimS.B., Hidar S., Trimeche M. Clinicopathologicsignificance of DNA methyltransferase1, 3a, and 3b overexpression inTunisian breast cancers. Hum Pathol. 2012;43 (10): 1731- 8. https://doi.org/10.1016/j.humpath.2011.12.022

  6. Leonard S., Pereira M., Fox R., Gordon N., YapJ., Kehoe S., Luesley D., Woodman C., GanesanR. Over-expression of DNMT3A predicts therisk of recurrent vulvar squamous cell carcinomas.Gynecol Oncol. 2016; 143 (2): 414-20.https://doi.org/10.1016/j.ygyno.2016.09.001

  7. Daniel F.I., Rivero E.R., Modolo F., LopesT.G., Salum F.G. Immunohistochemicalexpression of DNA methyltransferases 1, 3aand 3b in oral leukoplakias and squamous cellcarcinomas. Arch Oral Biol. 2010; 55 (12):1024-30. https://doi.org/10.1016/j.archoralbio.2010.08.009

  8. Adhikari B.R., Uehara O., Matsuoka H.,Takai R., Harada F., Utsunomiya M., ChujoT., Morikawa T., Shakya M., Yoshida K.,Sato J. Immunohistochemical evaluation ofKlotho and DNA methyltransferase 3a in oralsquamous cell carcinomas. Med Mol Morphol.2017; 50: 155-60. https://doi.org/10.1007/s00795-017-0156-9

  9. Liu C.Y., Xu J.Y., Shi X.Y., Huang W., RuanT.Y., Xie P., Ding J.L. M2-polarized tumorassociatedmacrophages promoted epithelial–mesenchymal transition in pancreatic cancercells, partially through TLR4/IL-10 signalingpathway. Lab Invest. 2013; 93 (7): 844-54.https://doi.org/10.1038/labinvest.2013.69

  10. Li W., Zhang X., Wang J., Li M., Cao C.,Tan J., Ma D., Gao Q. TGFβ1 in fibroblastsderivedexosomes promotes epithelial-mesenchymaltransition of ovarian cancer cells.Oncotarget. 2017; 8 (56): 96035. https://doi.org/10.18632/oncotarget.21635

  11. Tuong Z.K., Lewandowski A., Bridge J.A.,Cruz J.L., Yamada M., Lambie D., LewandowskiR., Steptoe R.J., Leggatt G.R.,Simpson F., Frazer I.H. Cytokine/chemokineprofiles in squamous cell carcinoma correlatewith precancerous and cancerous diseasestage. Sci Rep. 2019; 9 (1): 17754. https://doi.org/10.1038/s41598-019-54435-0

  12. Koontongkaew S., Amornphimoltham P.,Yapong B. Tumor-stroma interactions influencecytokine expression and matrix metalloproteinaseactivities in paired primary andmetastatic head and neck cancer cells. CellBiol Int. 2009; 33 (2): 165-73. https://doi.org/10.1016/j.cellbi.2008.10.009

  13. Peltanova B., Raudenska M., Masarik M.Effect of tumor microenvironment on pathogenesisof the head and neck squamous cellcarcinoma: a systematic review. Mol Cancer.2019; 18 (1): 1-24. https://doi.org/10.1186/s12943-019-0983-5

  14. Kasashima H., Yashiro M., Nakamae H.,Kitayama K., Masuda G., Kinoshita H.,Fukuoka T., Hasegawa T., Nakane T., HinoM., Hirakawa K. CXCL1-Chemokine (CXCMotif) Receptor 2 Signaling Stimulates theRecruitment of Bone Marrow–Derived MesenchymalCells into Diffuse-Type Gastric CancerStroma. Am J Pathol. 2016; 186 (11): 3028 -39.https://doi.org/10.1016/j.ajpath.2016.07.024

  15. Wan X., Hong Z., Mao Y., Di W. Correlationsof AKIP1, CXCL1 and CXCL2 expressionswith clinicopathological features and survivalprofiles in cervical cancer patients. TranslCancer Res. 2020; 9 (2): 726-34. https://doi.org/10.21037/tcr.2019.11.47

  16. Yu S., Yi M., Xu L., Qin S., Li A., Wu K.CXCL1 as an unfavorable prognosis factornegatively regulated by DACH1 in non-smallcell lung cancer. Front Oncol. 2020; 9: 1515.https://doi.org/10.3389/fonc.2019.01515

  17. le Rolle A.F., Chiu T.K., Fara M., Shia J.,Zeng Z., Weiser M.R., Paty P.B., Chiu V.K.The prognostic significance of CXCL1 hypersecretionby human colorectal cancer epitheliaand myofibroblasts. J Transl Med. 2015; 13(1): 1-2. https://doi.org/10.1186/s12967-015-0555-4

  18. Wei L.Y., Lee J.J., Yeh C.Y., Yang C.J., KokS.H., Ko J.Y., Tsai FC, Chia JS. Reciprocalactivation of cancer-associated fibroblastsand oral squamous carcinoma cells throughCXCL1. Oral Oncol. 2019; 88:115-23. https://doi.org/10.1016/j.oraloncology.2018.11.002

  19. Wei Z.W., Xia G.K., Wu Y., Chen W., XiangZ., Schwarz R.E., Brekken R.A., Awasthi N.,He Y.L., Zhang C.H. CXCL1 promotes tumorgrowth through VEGF pathway activation andis associated with inferior survival in gastriccancer. Cancer Lett. 2015; 359 (2): 335-43.https://doi.org/10.1016/j.canlet.2015.01.033

  20. Wang D., Sun H., Wei J., Cen B., DuBoisR.N. CXCL1 is critical for premetastatic nicheformation and metastasis in colorectal cancer.Cancer Res. 2017; 77 (13): 3655-65. https://doi.org/10.1158/0008-5472.can-16-3199

  21. Lee C.H., Syu S.H., Liu K.J., Chu P.Y.,Yang W.C., Lin P., Shieh W.Y. Interleukin-1beta transactivates epidermal growth factorreceptor via the CXCL1-CXCR2 axis in oralcancer. Oncotarget. 2015; 6 (36): 38866.https://doi.org/10.18632/oncotarget.5640

  22. Tiwari N., Tiwari V.K., Waldmeier L.,Balwierz P.J., Arnold P., Pachkov M., Meyer-Schaller N., Schübeler D., van Nimwegen E.,Christofori G. Sox4 is a master regulator ofepithelial-mesenchymal transition by controllingEzh2 expression and epigenetic reprogramming.Cancer Cell. 2013; 23 (6): 768-83.https://doi.org/10.1016/j.ccr.2013.04.020

  23. Cardenas H., Vieth E., Lee J., Segar M., LiuY., Nephew K.P., Matei D. TGF-beta inducesglobal changes in DNA methylation duringthe epithelial-to-mesenchymal transition inovarian cancer cells. Epigenetics. 2014; 9(11): 1461-72. https://doi.org/10.4161/15592294.2014.971608

  24. Klymenko Y., Nephew K.P. Epigeneticcrosstalk between the tumor microenvironmentand ovarian cancer cells: a therapeuticroad less traveled. Cancers. 2018; 10 (9): 295.https://doi.org/10.3390/cancers10090295

  25. Almangush A., Mäkitie A.A., TriantafyllouA., de Bree R., Strojan P., Rinaldo A.,Hernandez-Prera J.C., Suárez C., KowalskiL.P., Ferlito A., Leivo I. Staging and gradingof oral squamous cell carcinoma: An update.Oral Oncol. 2020; 107: 104799. https://doi.org/10.1016/j.oraloncology.2020.104799

  26. Thike A.A., Chng M.J., Tan P.H., Fook-Chong S. Immunohistochemical expressionof hormone receptors in invasive breast carcinoma:correlation of results of H-score withpathological parameters. Pathology. 2001;33 (1): 21-5. https://pubmed.ncbi.nlm.nih.gov/11280603/

  27. Park S., Kim J., Jang W., Kim K.M., Jang K.T.Clinicopathologic significance of the deltalikeligand 4, vascular endothelial growthfactor, and hypoxia-inducible factor-2α ingallbladder cancer. J Pathol Transl Med.2023; 57 (2): 113-22. https://doi.org/10.4132/jptm.2023.02.01

  28. Lyko F. The DNA methyltransferase family:a versatile toolkit for epigenetic regulation.Nat Rev Genet. 2018; 19 (2): 81-92. https://doi.org/10.1038/nrg.2017.80

  29. Miyake M., Hori S., Morizawa Y., TatsumiY., Nakai Y., Anai S., Torimoto K., Aoki K.,Tanaka N., Shimada K., Konishi N. CXCL1-mediated interaction of cancer cells with tumorassociatedmacrophages and cancer-associatedfibroblasts promotes tumor progressionin human bladder cancer. Neoplasia. 2016;18 (10): 636-46. https://doi.org/10.1016/j.neo.2016.08.002

  30. Daniel F.I., Alves S.R., Vieira D.S., Biz M.T.,Daniel I.W., Modolo F. Immunohistochemicalexpression of DNA methyltransferases1, 3a, and 3b in actinic cheilitis and lipsquamous cell carcinomas. J Oral Pathol Med.2016; 45 (10): 774-9. https://doi.org/10.1111/jop.12453

  31. Choi M.S., Shim Y.H., Hwa J.Y., Lee S.K.,Ro J.Y., Kim J.S., Yu E. Expression of DNAmethyltransferases in multistep hepatocarcinogenesis.Hum Pathol. 2003; 34 (1): 11-7.https://doi.org/10.1053/hupa.2003.5

  32. Lees-Murdock D.J., Shovlin T.C., GardinerT., De Felici M., Walsh C.P. DNA methyltransferaseexpression in the mouse germline during periods of de novo methylation.Dev Dyn: an official publication of theAmerican Association of Anatomists. 2005;232 (4): 992-1002. https://doi.org/10.1002/dvdy.20288

  33. Yang J., Wei X., Wu Q., Xu Z., Gu D., Jin Y.,Shen Y., Huang H., Fan H., Chen J. Clinicalsignificance of the expression of DNAmethyltransferase proteins in gastric cancer.Mol Med Rep. 2011; 4 (6): 1139-43. https://doi.org/10.3892/mmr.2011.578

  34. Miyake M., Lawton A., Goodison S.,Urquidi V., Gomes-Giacoia E., Zhang G.,Ross S., Kim J., Rosser C.J. Chemokine(CXC) ligand 1 (CXCL1) protein expressionis increased in aggressive bladder cancers.BMC Cancer. 2013; 13 (1): 1-7. https://doi.org/10.1186/1471-2407-13-322

  35. Yuan M., Zhu H., Xu J., Zheng Y., Cao X.,Liu Q. Tumor-derived CXCL1 promoteslung cancer growth via recruitment oftumor-associated neutrophils. J ImmunolRes. 2016; 2016: 6530410. https://doi.org/10.1155/2016/6530410

  36. Chen X., Jin R., Chen R., Huang Z. Complementaryaction of CXCL1 and CXCL8in pathogenesis of gastric carcinoma. IntJ Clin Exp Pathol. 2018; 11 (2): 1036-45.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6958037/

  37. Wang N., Liu W., Zheng Y., Wang S., YangB., Li M., Song J., Zhang F., Zhang X., WangQ., Wang Z. CXCL1 derived from tumorassociatedmacrophages promotes breastcancer metastasis via activating NF-κB/SOX4signaling. Cell Death Dis. 2018; 9 (9): 1-18.https://doi.org/10.1038/s41419-018-0876-3

  38. Rokavec M., Öner M., Hermeking H. Inflammation-induced epigenetic switches in cancer.Cell Mol Life Sci. 2016; 73 (1): 23-39. https://doi.org/10.1007/s00018-015-2045-5

  39. Martin M., Ancey P.B., Cros M.P., DurandG., Le Calvez-Kelm F., Hernandez-VargasH., Herceg Z. Dynamic imbalance betweencancer cell subpopulations induced by transforminggrowth factor beta (TGF-beta) isassociated with a DNA methylome switch.BMC Genomics. 2014; 15: 435. https://doi.org/10.1186/1471-2164-15-435

  40. Mathot P., Grandin M., Devailly G., SouazéF., Cahais V., Moran S., Campone M., HercegZ., Esteller M., Juin P., Mehlen P., Dante R.DNA methylation signal has a major role inthe response of human breast cancer cells tothe microenvironment. Oncogenesis. 2017;6 (10): e390-e390. https://doi.org/10.1038/oncsis.2017.88




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Odovtos-Int J Dent Sc. 2025;27

ARTíCULOS SIMILARES

CARGANDO ...