2025, Number 1
<< Back Next >>
Odovtos-Int J Dent Sc 2025; 27 (1)
Immunohistochemical and Clinicopathologic Correlation of DNA Methyltransferase 3A and (C-X-C motif) Ligand 1 in Oral Squamous Cell Carcinoma
Abdelrahman AB, Hafez MM
Language: English
References: 40
Page: 110-120
PDF size: 464.14 Kb.
ABSTRACT
DNA methyl transferase 3A (DNMT3A) is an enzyme acting by adding a new methyl group
to DNA favoring DNA silencing and carcinogenesis. Cytokines were said to assist epigenetic switch and
enhance the activation of methyltransferases in many cancer types. The role of chemokine (C-X-C motif)
ligand 1 (CXCL1) in cancer development was proved in many reports. In this study, we suggested that
CXCL1 might induce activation of DNMT3A, affecting carcinogenesis of oral squamous cell carcinoma
(OSCC). Immunohistochemical (IHC) scoring was calculated and statistical correlation was performed to
evaluate the expression of epithelial DNMT3A in addition to epithelial and mesenchymal CXCL1 in OSCC
and normal mucosal samples. DNMT3A, epithelial, and mesenchymal CXCL1 revealed a statistically
significant increase in immune scoring from normal mucosa and between different tumor grades, besides
a significant relation of the expressions with tumor size, stage, and lymph node involvement. Pearson’s
correlation detected a statistically significant correlation of DNMT3A with epithelial and mesenchymal
CXCL1. Thus, CXCL1 overexpression may be associated with DNMT3A upregulation. DNMT3A, epithelial,
and mesenchymal CXCL1 were associated with histological grades and advanced tumor characters
suggesting them as reliable prognostic biomarkers in patients of OSCC.
REFERENCES
Hema K.N., Smitha T., Sheethal H.S., MirnaliniS.A. Epigenetics in oral squamous cellcarcinoma. JOMFP. 2017; 21 (2): 252.https://doi.org/10.4103/jomfp.jomfp_150_17
Cheng Y., He C., Wang M., Ma X., Mo F.,Yang S., Wei X. Targeting epigenetic regulatorsfor cancer therapy: mechanisms andadvances in clinical trials. Signal TransductTarget Ther. 2019; 4 (1): 1-39. https://doi.org/10.1038/s41392-019-0095-0
Bollati V., Baccarelli A. Environmental epigenetics.Heredity. 2010; 105 (1): 105-12. https://doi.org/10.1038/hdy.2010.2
Smith Z.D., Meissner A. DNA methylation:roles in mammalian development. Nat RevGenet. 2013; 14 (3): 204-20. https://doi.org/10.1038/nrg3354
Gacem R.B., Hachana M., Ziadi S., AbdelkarimS.B., Hidar S., Trimeche M. Clinicopathologicsignificance of DNA methyltransferase1, 3a, and 3b overexpression inTunisian breast cancers. Hum Pathol. 2012;43 (10): 1731- 8. https://doi.org/10.1016/j.humpath.2011.12.022
Leonard S., Pereira M., Fox R., Gordon N., YapJ., Kehoe S., Luesley D., Woodman C., GanesanR. Over-expression of DNMT3A predicts therisk of recurrent vulvar squamous cell carcinomas.Gynecol Oncol. 2016; 143 (2): 414-20.https://doi.org/10.1016/j.ygyno.2016.09.001
Daniel F.I., Rivero E.R., Modolo F., LopesT.G., Salum F.G. Immunohistochemicalexpression of DNA methyltransferases 1, 3aand 3b in oral leukoplakias and squamous cellcarcinomas. Arch Oral Biol. 2010; 55 (12):1024-30. https://doi.org/10.1016/j.archoralbio.2010.08.009
Adhikari B.R., Uehara O., Matsuoka H.,Takai R., Harada F., Utsunomiya M., ChujoT., Morikawa T., Shakya M., Yoshida K.,Sato J. Immunohistochemical evaluation ofKlotho and DNA methyltransferase 3a in oralsquamous cell carcinomas. Med Mol Morphol.2017; 50: 155-60. https://doi.org/10.1007/s00795-017-0156-9
Liu C.Y., Xu J.Y., Shi X.Y., Huang W., RuanT.Y., Xie P., Ding J.L. M2-polarized tumorassociatedmacrophages promoted epithelial–mesenchymal transition in pancreatic cancercells, partially through TLR4/IL-10 signalingpathway. Lab Invest. 2013; 93 (7): 844-54.https://doi.org/10.1038/labinvest.2013.69
Li W., Zhang X., Wang J., Li M., Cao C.,Tan J., Ma D., Gao Q. TGFβ1 in fibroblastsderivedexosomes promotes epithelial-mesenchymaltransition of ovarian cancer cells.Oncotarget. 2017; 8 (56): 96035. https://doi.org/10.18632/oncotarget.21635
Tuong Z.K., Lewandowski A., Bridge J.A.,Cruz J.L., Yamada M., Lambie D., LewandowskiR., Steptoe R.J., Leggatt G.R.,Simpson F., Frazer I.H. Cytokine/chemokineprofiles in squamous cell carcinoma correlatewith precancerous and cancerous diseasestage. Sci Rep. 2019; 9 (1): 17754. https://doi.org/10.1038/s41598-019-54435-0
Koontongkaew S., Amornphimoltham P.,Yapong B. Tumor-stroma interactions influencecytokine expression and matrix metalloproteinaseactivities in paired primary andmetastatic head and neck cancer cells. CellBiol Int. 2009; 33 (2): 165-73. https://doi.org/10.1016/j.cellbi.2008.10.009
Peltanova B., Raudenska M., Masarik M.Effect of tumor microenvironment on pathogenesisof the head and neck squamous cellcarcinoma: a systematic review. Mol Cancer.2019; 18 (1): 1-24. https://doi.org/10.1186/s12943-019-0983-5
Kasashima H., Yashiro M., Nakamae H.,Kitayama K., Masuda G., Kinoshita H.,Fukuoka T., Hasegawa T., Nakane T., HinoM., Hirakawa K. CXCL1-Chemokine (CXCMotif) Receptor 2 Signaling Stimulates theRecruitment of Bone Marrow–Derived MesenchymalCells into Diffuse-Type Gastric CancerStroma. Am J Pathol. 2016; 186 (11): 3028 -39.https://doi.org/10.1016/j.ajpath.2016.07.024
Wan X., Hong Z., Mao Y., Di W. Correlationsof AKIP1, CXCL1 and CXCL2 expressionswith clinicopathological features and survivalprofiles in cervical cancer patients. TranslCancer Res. 2020; 9 (2): 726-34. https://doi.org/10.21037/tcr.2019.11.47
Yu S., Yi M., Xu L., Qin S., Li A., Wu K.CXCL1 as an unfavorable prognosis factornegatively regulated by DACH1 in non-smallcell lung cancer. Front Oncol. 2020; 9: 1515.https://doi.org/10.3389/fonc.2019.01515
le Rolle A.F., Chiu T.K., Fara M., Shia J.,Zeng Z., Weiser M.R., Paty P.B., Chiu V.K.The prognostic significance of CXCL1 hypersecretionby human colorectal cancer epitheliaand myofibroblasts. J Transl Med. 2015; 13(1): 1-2. https://doi.org/10.1186/s12967-015-0555-4
Wei L.Y., Lee J.J., Yeh C.Y., Yang C.J., KokS.H., Ko J.Y., Tsai FC, Chia JS. Reciprocalactivation of cancer-associated fibroblastsand oral squamous carcinoma cells throughCXCL1. Oral Oncol. 2019; 88:115-23. https://doi.org/10.1016/j.oraloncology.2018.11.002
Wei Z.W., Xia G.K., Wu Y., Chen W., XiangZ., Schwarz R.E., Brekken R.A., Awasthi N.,He Y.L., Zhang C.H. CXCL1 promotes tumorgrowth through VEGF pathway activation andis associated with inferior survival in gastriccancer. Cancer Lett. 2015; 359 (2): 335-43.https://doi.org/10.1016/j.canlet.2015.01.033
Wang D., Sun H., Wei J., Cen B., DuBoisR.N. CXCL1 is critical for premetastatic nicheformation and metastasis in colorectal cancer.Cancer Res. 2017; 77 (13): 3655-65. https://doi.org/10.1158/0008-5472.can-16-3199
Lee C.H., Syu S.H., Liu K.J., Chu P.Y.,Yang W.C., Lin P., Shieh W.Y. Interleukin-1beta transactivates epidermal growth factorreceptor via the CXCL1-CXCR2 axis in oralcancer. Oncotarget. 2015; 6 (36): 38866.https://doi.org/10.18632/oncotarget.5640
Tiwari N., Tiwari V.K., Waldmeier L.,Balwierz P.J., Arnold P., Pachkov M., Meyer-Schaller N., Schübeler D., van Nimwegen E.,Christofori G. Sox4 is a master regulator ofepithelial-mesenchymal transition by controllingEzh2 expression and epigenetic reprogramming.Cancer Cell. 2013; 23 (6): 768-83.https://doi.org/10.1016/j.ccr.2013.04.020
Cardenas H., Vieth E., Lee J., Segar M., LiuY., Nephew K.P., Matei D. TGF-beta inducesglobal changes in DNA methylation duringthe epithelial-to-mesenchymal transition inovarian cancer cells. Epigenetics. 2014; 9(11): 1461-72. https://doi.org/10.4161/15592294.2014.971608
Klymenko Y., Nephew K.P. Epigeneticcrosstalk between the tumor microenvironmentand ovarian cancer cells: a therapeuticroad less traveled. Cancers. 2018; 10 (9): 295.https://doi.org/10.3390/cancers10090295
Almangush A., Mäkitie A.A., TriantafyllouA., de Bree R., Strojan P., Rinaldo A.,Hernandez-Prera J.C., Suárez C., KowalskiL.P., Ferlito A., Leivo I. Staging and gradingof oral squamous cell carcinoma: An update.Oral Oncol. 2020; 107: 104799. https://doi.org/10.1016/j.oraloncology.2020.104799
Thike A.A., Chng M.J., Tan P.H., Fook-Chong S. Immunohistochemical expressionof hormone receptors in invasive breast carcinoma:correlation of results of H-score withpathological parameters. Pathology. 2001;33 (1): 21-5. https://pubmed.ncbi.nlm.nih.gov/11280603/
Park S., Kim J., Jang W., Kim K.M., Jang K.T.Clinicopathologic significance of the deltalikeligand 4, vascular endothelial growthfactor, and hypoxia-inducible factor-2α ingallbladder cancer. J Pathol Transl Med.2023; 57 (2): 113-22. https://doi.org/10.4132/jptm.2023.02.01
Lyko F. The DNA methyltransferase family:a versatile toolkit for epigenetic regulation.Nat Rev Genet. 2018; 19 (2): 81-92. https://doi.org/10.1038/nrg.2017.80
Miyake M., Hori S., Morizawa Y., TatsumiY., Nakai Y., Anai S., Torimoto K., Aoki K.,Tanaka N., Shimada K., Konishi N. CXCL1-mediated interaction of cancer cells with tumorassociatedmacrophages and cancer-associatedfibroblasts promotes tumor progressionin human bladder cancer. Neoplasia. 2016;18 (10): 636-46. https://doi.org/10.1016/j.neo.2016.08.002
Daniel F.I., Alves S.R., Vieira D.S., Biz M.T.,Daniel I.W., Modolo F. Immunohistochemicalexpression of DNA methyltransferases1, 3a, and 3b in actinic cheilitis and lipsquamous cell carcinomas. J Oral Pathol Med.2016; 45 (10): 774-9. https://doi.org/10.1111/jop.12453
Choi M.S., Shim Y.H., Hwa J.Y., Lee S.K.,Ro J.Y., Kim J.S., Yu E. Expression of DNAmethyltransferases in multistep hepatocarcinogenesis.Hum Pathol. 2003; 34 (1): 11-7.https://doi.org/10.1053/hupa.2003.5
Lees-Murdock D.J., Shovlin T.C., GardinerT., De Felici M., Walsh C.P. DNA methyltransferaseexpression in the mouse germline during periods of de novo methylation.Dev Dyn: an official publication of theAmerican Association of Anatomists. 2005;232 (4): 992-1002. https://doi.org/10.1002/dvdy.20288
Yang J., Wei X., Wu Q., Xu Z., Gu D., Jin Y.,Shen Y., Huang H., Fan H., Chen J. Clinicalsignificance of the expression of DNAmethyltransferase proteins in gastric cancer.Mol Med Rep. 2011; 4 (6): 1139-43. https://doi.org/10.3892/mmr.2011.578
Miyake M., Lawton A., Goodison S.,Urquidi V., Gomes-Giacoia E., Zhang G.,Ross S., Kim J., Rosser C.J. Chemokine(CXC) ligand 1 (CXCL1) protein expressionis increased in aggressive bladder cancers.BMC Cancer. 2013; 13 (1): 1-7. https://doi.org/10.1186/1471-2407-13-322
Yuan M., Zhu H., Xu J., Zheng Y., Cao X.,Liu Q. Tumor-derived CXCL1 promoteslung cancer growth via recruitment oftumor-associated neutrophils. J ImmunolRes. 2016; 2016: 6530410. https://doi.org/10.1155/2016/6530410
Chen X., Jin R., Chen R., Huang Z. Complementaryaction of CXCL1 and CXCL8in pathogenesis of gastric carcinoma. IntJ Clin Exp Pathol. 2018; 11 (2): 1036-45.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6958037/
Wang N., Liu W., Zheng Y., Wang S., YangB., Li M., Song J., Zhang F., Zhang X., WangQ., Wang Z. CXCL1 derived from tumorassociatedmacrophages promotes breastcancer metastasis via activating NF-κB/SOX4signaling. Cell Death Dis. 2018; 9 (9): 1-18.https://doi.org/10.1038/s41419-018-0876-3
Rokavec M., Öner M., Hermeking H. Inflammation-induced epigenetic switches in cancer.Cell Mol Life Sci. 2016; 73 (1): 23-39. https://doi.org/10.1007/s00018-015-2045-5
Martin M., Ancey P.B., Cros M.P., DurandG., Le Calvez-Kelm F., Hernandez-VargasH., Herceg Z. Dynamic imbalance betweencancer cell subpopulations induced by transforminggrowth factor beta (TGF-beta) isassociated with a DNA methylome switch.BMC Genomics. 2014; 15: 435. https://doi.org/10.1186/1471-2164-15-435
Mathot P., Grandin M., Devailly G., SouazéF., Cahais V., Moran S., Campone M., HercegZ., Esteller M., Juin P., Mehlen P., Dante R.DNA methylation signal has a major role inthe response of human breast cancer cells tothe microenvironment. Oncogenesis. 2017;6 (10): e390-e390. https://doi.org/10.1038/oncsis.2017.88