medigraphic.com
SPANISH

Odovtos - International Journal of Dental Sciences

ISSN 1659-1046 (Print)
Odovtos - International Journal of Dental Sciences
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2025, Number 1

<< Back Next >>

Odovtos-Int J Dent Sc 2025; 27 (1)

Immunohistochemical and Clinicopathologic Correlation of DNA Methyltransferase 3A and (C-X-C motif) Ligand 1 in Oral Squamous Cell Carcinoma

Abdelrahman AB, Hafez MM
Full text How to cite this article

Language: English
References: 40
Page: 110-120
PDF size: 464.14 Kb.


Key words:

Oral squamous cell carcinoma, DNA methyltransferase 3A, CXCL1, Immunohistochemistry, Tumor grading, Clinical characteristics.

ABSTRACT

DNA methyl transferase 3A (DNMT3A) is an enzyme acting by adding a new methyl group to DNA favoring DNA silencing and carcinogenesis. Cytokines were said to assist epigenetic switch and enhance the activation of methyltransferases in many cancer types. The role of chemokine (C-X-C motif) ligand 1 (CXCL1) in cancer development was proved in many reports. In this study, we suggested that CXCL1 might induce activation of DNMT3A, affecting carcinogenesis of oral squamous cell carcinoma (OSCC). Immunohistochemical (IHC) scoring was calculated and statistical correlation was performed to evaluate the expression of epithelial DNMT3A in addition to epithelial and mesenchymal CXCL1 in OSCC and normal mucosal samples. DNMT3A, epithelial, and mesenchymal CXCL1 revealed a statistically significant increase in immune scoring from normal mucosa and between different tumor grades, besides a significant relation of the expressions with tumor size, stage, and lymph node involvement. Pearson’s correlation detected a statistically significant correlation of DNMT3A with epithelial and mesenchymal CXCL1. Thus, CXCL1 overexpression may be associated with DNMT3A upregulation. DNMT3A, epithelial, and mesenchymal CXCL1 were associated with histological grades and advanced tumor characters suggesting them as reliable prognostic biomarkers in patients of OSCC.


REFERENCES

  1. Hema K.N., Smitha T., Sheethal H.S., MirnaliniS.A. Epigenetics in oral squamous cellcarcinoma. JOMFP. 2017; 21 (2): 252.https://doi.org/10.4103/jomfp.jomfp_150_17

  2. Cheng Y., He C., Wang M., Ma X., Mo F.,Yang S., Wei X. Targeting epigenetic regulatorsfor cancer therapy: mechanisms andadvances in clinical trials. Signal TransductTarget Ther. 2019; 4 (1): 1-39. https://doi.org/10.1038/s41392-019-0095-0

  3. Bollati V., Baccarelli A. Environmental epigenetics.Heredity. 2010; 105 (1): 105-12. https://doi.org/10.1038/hdy.2010.2

  4. Smith Z.D., Meissner A. DNA methylation:roles in mammalian development. Nat RevGenet. 2013; 14 (3): 204-20. https://doi.org/10.1038/nrg3354

  5. Gacem R.B., Hachana M., Ziadi S., AbdelkarimS.B., Hidar S., Trimeche M. Clinicopathologicsignificance of DNA methyltransferase1, 3a, and 3b overexpression inTunisian breast cancers. Hum Pathol. 2012;43 (10): 1731- 8. https://doi.org/10.1016/j.humpath.2011.12.022

  6. Leonard S., Pereira M., Fox R., Gordon N., YapJ., Kehoe S., Luesley D., Woodman C., GanesanR. Over-expression of DNMT3A predicts therisk of recurrent vulvar squamous cell carcinomas.Gynecol Oncol. 2016; 143 (2): 414-20.https://doi.org/10.1016/j.ygyno.2016.09.001

  7. Daniel F.I., Rivero E.R., Modolo F., LopesT.G., Salum F.G. Immunohistochemicalexpression of DNA methyltransferases 1, 3aand 3b in oral leukoplakias and squamous cellcarcinomas. Arch Oral Biol. 2010; 55 (12):1024-30. https://doi.org/10.1016/j.archoralbio.2010.08.009

  8. Adhikari B.R., Uehara O., Matsuoka H.,Takai R., Harada F., Utsunomiya M., ChujoT., Morikawa T., Shakya M., Yoshida K.,Sato J. Immunohistochemical evaluation ofKlotho and DNA methyltransferase 3a in oralsquamous cell carcinomas. Med Mol Morphol.2017; 50: 155-60. https://doi.org/10.1007/s00795-017-0156-9

  9. Liu C.Y., Xu J.Y., Shi X.Y., Huang W., RuanT.Y., Xie P., Ding J.L. M2-polarized tumorassociatedmacrophages promoted epithelial–mesenchymal transition in pancreatic cancercells, partially through TLR4/IL-10 signalingpathway. Lab Invest. 2013; 93 (7): 844-54.https://doi.org/10.1038/labinvest.2013.69

  10. Li W., Zhang X., Wang J., Li M., Cao C.,Tan J., Ma D., Gao Q. TGFβ1 in fibroblastsderivedexosomes promotes epithelial-mesenchymaltransition of ovarian cancer cells.Oncotarget. 2017; 8 (56): 96035. https://doi.org/10.18632/oncotarget.21635

  11. Tuong Z.K., Lewandowski A., Bridge J.A.,Cruz J.L., Yamada M., Lambie D., LewandowskiR., Steptoe R.J., Leggatt G.R.,Simpson F., Frazer I.H. Cytokine/chemokineprofiles in squamous cell carcinoma correlatewith precancerous and cancerous diseasestage. Sci Rep. 2019; 9 (1): 17754. https://doi.org/10.1038/s41598-019-54435-0

  12. Koontongkaew S., Amornphimoltham P.,Yapong B. Tumor-stroma interactions influencecytokine expression and matrix metalloproteinaseactivities in paired primary andmetastatic head and neck cancer cells. CellBiol Int. 2009; 33 (2): 165-73. https://doi.org/10.1016/j.cellbi.2008.10.009

  13. Peltanova B., Raudenska M., Masarik M.Effect of tumor microenvironment on pathogenesisof the head and neck squamous cellcarcinoma: a systematic review. Mol Cancer.2019; 18 (1): 1-24. https://doi.org/10.1186/s12943-019-0983-5

  14. Kasashima H., Yashiro M., Nakamae H.,Kitayama K., Masuda G., Kinoshita H.,Fukuoka T., Hasegawa T., Nakane T., HinoM., Hirakawa K. CXCL1-Chemokine (CXCMotif) Receptor 2 Signaling Stimulates theRecruitment of Bone Marrow–Derived MesenchymalCells into Diffuse-Type Gastric CancerStroma. Am J Pathol. 2016; 186 (11): 3028 -39.https://doi.org/10.1016/j.ajpath.2016.07.024

  15. Wan X., Hong Z., Mao Y., Di W. Correlationsof AKIP1, CXCL1 and CXCL2 expressionswith clinicopathological features and survivalprofiles in cervical cancer patients. TranslCancer Res. 2020; 9 (2): 726-34. https://doi.org/10.21037/tcr.2019.11.47

  16. Yu S., Yi M., Xu L., Qin S., Li A., Wu K.CXCL1 as an unfavorable prognosis factornegatively regulated by DACH1 in non-smallcell lung cancer. Front Oncol. 2020; 9: 1515.https://doi.org/10.3389/fonc.2019.01515

  17. le Rolle A.F., Chiu T.K., Fara M., Shia J.,Zeng Z., Weiser M.R., Paty P.B., Chiu V.K.The prognostic significance of CXCL1 hypersecretionby human colorectal cancer epitheliaand myofibroblasts. J Transl Med. 2015; 13(1): 1-2. https://doi.org/10.1186/s12967-015-0555-4

  18. Wei L.Y., Lee J.J., Yeh C.Y., Yang C.J., KokS.H., Ko J.Y., Tsai FC, Chia JS. Reciprocalactivation of cancer-associated fibroblastsand oral squamous carcinoma cells throughCXCL1. Oral Oncol. 2019; 88:115-23. https://doi.org/10.1016/j.oraloncology.2018.11.002

  19. Wei Z.W., Xia G.K., Wu Y., Chen W., XiangZ., Schwarz R.E., Brekken R.A., Awasthi N.,He Y.L., Zhang C.H. CXCL1 promotes tumorgrowth through VEGF pathway activation andis associated with inferior survival in gastriccancer. Cancer Lett. 2015; 359 (2): 335-43.https://doi.org/10.1016/j.canlet.2015.01.033

  20. Wang D., Sun H., Wei J., Cen B., DuBoisR.N. CXCL1 is critical for premetastatic nicheformation and metastasis in colorectal cancer.Cancer Res. 2017; 77 (13): 3655-65. https://doi.org/10.1158/0008-5472.can-16-3199

  21. Lee C.H., Syu S.H., Liu K.J., Chu P.Y.,Yang W.C., Lin P., Shieh W.Y. Interleukin-1beta transactivates epidermal growth factorreceptor via the CXCL1-CXCR2 axis in oralcancer. Oncotarget. 2015; 6 (36): 38866.https://doi.org/10.18632/oncotarget.5640

  22. Tiwari N., Tiwari V.K., Waldmeier L.,Balwierz P.J., Arnold P., Pachkov M., Meyer-Schaller N., Schübeler D., van Nimwegen E.,Christofori G. Sox4 is a master regulator ofepithelial-mesenchymal transition by controllingEzh2 expression and epigenetic reprogramming.Cancer Cell. 2013; 23 (6): 768-83.https://doi.org/10.1016/j.ccr.2013.04.020

  23. Cardenas H., Vieth E., Lee J., Segar M., LiuY., Nephew K.P., Matei D. TGF-beta inducesglobal changes in DNA methylation duringthe epithelial-to-mesenchymal transition inovarian cancer cells. Epigenetics. 2014; 9(11): 1461-72. https://doi.org/10.4161/15592294.2014.971608

  24. Klymenko Y., Nephew K.P. Epigeneticcrosstalk between the tumor microenvironmentand ovarian cancer cells: a therapeuticroad less traveled. Cancers. 2018; 10 (9): 295.https://doi.org/10.3390/cancers10090295

  25. Almangush A., Mäkitie A.A., TriantafyllouA., de Bree R., Strojan P., Rinaldo A.,Hernandez-Prera J.C., Suárez C., KowalskiL.P., Ferlito A., Leivo I. Staging and gradingof oral squamous cell carcinoma: An update.Oral Oncol. 2020; 107: 104799. https://doi.org/10.1016/j.oraloncology.2020.104799

  26. Thike A.A., Chng M.J., Tan P.H., Fook-Chong S. Immunohistochemical expressionof hormone receptors in invasive breast carcinoma:correlation of results of H-score withpathological parameters. Pathology. 2001;33 (1): 21-5. https://pubmed.ncbi.nlm.nih.gov/11280603/

  27. Park S., Kim J., Jang W., Kim K.M., Jang K.T.Clinicopathologic significance of the deltalikeligand 4, vascular endothelial growthfactor, and hypoxia-inducible factor-2α ingallbladder cancer. J Pathol Transl Med.2023; 57 (2): 113-22. https://doi.org/10.4132/jptm.2023.02.01

  28. Lyko F. The DNA methyltransferase family:a versatile toolkit for epigenetic regulation.Nat Rev Genet. 2018; 19 (2): 81-92. https://doi.org/10.1038/nrg.2017.80

  29. Miyake M., Hori S., Morizawa Y., TatsumiY., Nakai Y., Anai S., Torimoto K., Aoki K.,Tanaka N., Shimada K., Konishi N. CXCL1-mediated interaction of cancer cells with tumorassociatedmacrophages and cancer-associatedfibroblasts promotes tumor progressionin human bladder cancer. Neoplasia. 2016;18 (10): 636-46. https://doi.org/10.1016/j.neo.2016.08.002

  30. Daniel F.I., Alves S.R., Vieira D.S., Biz M.T.,Daniel I.W., Modolo F. Immunohistochemicalexpression of DNA methyltransferases1, 3a, and 3b in actinic cheilitis and lipsquamous cell carcinomas. J Oral Pathol Med.2016; 45 (10): 774-9. https://doi.org/10.1111/jop.12453

  31. Choi M.S., Shim Y.H., Hwa J.Y., Lee S.K.,Ro J.Y., Kim J.S., Yu E. Expression of DNAmethyltransferases in multistep hepatocarcinogenesis.Hum Pathol. 2003; 34 (1): 11-7.https://doi.org/10.1053/hupa.2003.5

  32. Lees-Murdock D.J., Shovlin T.C., GardinerT., De Felici M., Walsh C.P. DNA methyltransferaseexpression in the mouse germline during periods of de novo methylation.Dev Dyn: an official publication of theAmerican Association of Anatomists. 2005;232 (4): 992-1002. https://doi.org/10.1002/dvdy.20288

  33. Yang J., Wei X., Wu Q., Xu Z., Gu D., Jin Y.,Shen Y., Huang H., Fan H., Chen J. Clinicalsignificance of the expression of DNAmethyltransferase proteins in gastric cancer.Mol Med Rep. 2011; 4 (6): 1139-43. https://doi.org/10.3892/mmr.2011.578

  34. Miyake M., Lawton A., Goodison S.,Urquidi V., Gomes-Giacoia E., Zhang G.,Ross S., Kim J., Rosser C.J. Chemokine(CXC) ligand 1 (CXCL1) protein expressionis increased in aggressive bladder cancers.BMC Cancer. 2013; 13 (1): 1-7. https://doi.org/10.1186/1471-2407-13-322

  35. Yuan M., Zhu H., Xu J., Zheng Y., Cao X.,Liu Q. Tumor-derived CXCL1 promoteslung cancer growth via recruitment oftumor-associated neutrophils. J ImmunolRes. 2016; 2016: 6530410. https://doi.org/10.1155/2016/6530410

  36. Chen X., Jin R., Chen R., Huang Z. Complementaryaction of CXCL1 and CXCL8in pathogenesis of gastric carcinoma. IntJ Clin Exp Pathol. 2018; 11 (2): 1036-45.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6958037/

  37. Wang N., Liu W., Zheng Y., Wang S., YangB., Li M., Song J., Zhang F., Zhang X., WangQ., Wang Z. CXCL1 derived from tumorassociatedmacrophages promotes breastcancer metastasis via activating NF-κB/SOX4signaling. Cell Death Dis. 2018; 9 (9): 1-18.https://doi.org/10.1038/s41419-018-0876-3

  38. Rokavec M., Öner M., Hermeking H. Inflammation-induced epigenetic switches in cancer.Cell Mol Life Sci. 2016; 73 (1): 23-39. https://doi.org/10.1007/s00018-015-2045-5

  39. Martin M., Ancey P.B., Cros M.P., DurandG., Le Calvez-Kelm F., Hernandez-VargasH., Herceg Z. Dynamic imbalance betweencancer cell subpopulations induced by transforminggrowth factor beta (TGF-beta) isassociated with a DNA methylome switch.BMC Genomics. 2014; 15: 435. https://doi.org/10.1186/1471-2164-15-435

  40. Mathot P., Grandin M., Devailly G., SouazéF., Cahais V., Moran S., Campone M., HercegZ., Esteller M., Juin P., Mehlen P., Dante R.DNA methylation signal has a major role inthe response of human breast cancer cells tothe microenvironment. Oncogenesis. 2017;6 (10): e390-e390. https://doi.org/10.1038/oncsis.2017.88




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Odovtos-Int J Dent Sc. 2025;27