2022, Número 4
<< Anterior Siguiente >>
Rev Cub Oftal 2022; 35 (4)
El rol epigenético de la radiación ultravioleta y estrés oxidativo en la formación de cataratas
Molinet VLM, Pérez PAI
Idioma: Español
Referencias bibliográficas: 28
Paginas: 1-13
Archivo PDF: 273.98 Kb.
RESUMEN
El ojo humano es altamente expuesto a luz de todo tipo de ondas electromagnéticas, la tensión metabólica en la eliminación del daño celular, así como su acumulación, constituyen el mayor estrés oxidativo debido a radiación ultravioleta. El objetivo del la revisión fue documentar la nueva evidencia científica en epigenética con respecto a la radiación ultravioleta y estrés oxidativo en la formación de cataratas. Se realiza una revisión de la literatura comprendida del 1ro de mayo del 2021 al 1ro de mayo 2022 con meta buscadores en inglés y español. El daño bioquímico acumulable a nivel de las histonas es considerado el primer insulto ambiental en la formación de cataratas. El potencial inmunomodulador de las células del epitelio del lente humano es un blanco terapéutico prometedor, debido a ser la principal línea celular afectada en radiación por rayos ultravioleta. El avance tecnológico, bioquímico y fisiológico permitirá promover una solución diferente, por otro concepto distinto de cirugía, para la cura de la entidad más prevalente en el mundo por ceguera reversible: catarata.
REFERENCIAS (EN ESTE ARTÍCULO)
Kamari F, Hallaj S, Dorosti F, Alinezhad F, Taleschain-Tabrizi , Farhadi F, et al. Phototoxicity of environmental radiations in human lens: revisting the pathogenesis of UV-induced cataract. GraefesArch Clin Exp Opthalmol. 2019;257:2065-77. https://doi.org/10.1007/s00417-019-04390-31.
Nam SW, Lim DH, Cho KY, Kim HS, Kim K, Chung T-Y. Risk factors of presenile nuclear cataract in healths creening study. BMC Opthalmol. 2018;18. https://doi.org/10.1186/s12886-018-0928-62.
Qui X, Rong X, Yang J, Lu Y.Evaluation of the antioxidant effects of different histone deacetylase inhibitors (HDACis) on human lens epitelial cells (HLECs)after UV exposure. BMC Opthalmol. 2019;19. https://doi.org/10.1186/s12886-019-1056-73.
Wu Q, Li Z, Lu X, Song J, Wang H, Liu D, et al. Epigallocatechin gallate protects the human lens epitelial cell survival against UVB irrdiation through AIF/endo G signalling pathways in vitro. Cutaneous and Ocular Toxicology. 2021;40:187-97. https://doi.org/10.1080/15569527.2021.18791124.
Wu Q, Song J, Gao Y, Zou Y, Guo J, Zhang X, et al. Epigallocatechin gallate enhances human lens epitelial cell survival after UVB irradiation cia mitocondrial signaling pathway. Mol Med Rep. 2022;25. https://doi.org/10.3892/mmr.2022.126035.
Babizhayev M, Yegorov Y. Biomarkers of Oxidative Stress and Cataract. Novel DrugDelivery Therapeutic Strategies Tergeting Telomere Reduction and the Expression of Telomerase Activity in the lens Epithelial Cells with N-Acetylcarnosine Lubricant Eye Drops: Anti-Cataract which Helps to Prevent and Treat Cataracts in the Eyes of Dogs and other Animals. CDD. 2014;11:24-61. https://doi.org/10.2174/156720181131066600626.
Álvarez-Barrios A, Álvarez L, García M, Artime E, Pereiro R, González-Iglesias H. Antioxidant Defenses in the Human Eye: A Focus on Metallothioneins. Antioxidants. 2021;10:89. https://doi.org/10.3390/antiox100100897.
Chen M, Zhang C, Zhou N, Wang X, SuD, Qi Y. Metformin alleviates oxidative stress-induced senescence of human lens epithelial cells via AMPK activation and autophagic flux restoration. J Cell Mol Med. 2021;25:8376-89. https://doi.org/10.1111/jcmm.167978.
Braakhuis AJ, Donaldson CI, Lim JC, Donladson PJ. Nutritional Strategies to Prevent Lens Cataract: Current Status and Future Strategies. Nutrients. 2019;11:1186. https://doi.org/10.3390/nu110511869.
Donini M, Gaglio SC, Laudanna C, Perduca M, Dusi S. Oxyresveratrol-Loaded PLGA Nanoparticles Inhibit Oxygen Free Radical Production by Human Monocytes: Role in Nanoparticle Biocompatibility. Molecules. 2021;26:4351. https://doi.org/10.3390/molecules2614435110.
Lim JC, Caballero Arredondo M, Braakhuis AJ, Donaldson PJ. Vitamin C and the Lens: New Insights into Delaying the Onset of Cataract. Nutrients. 2020;12:3142. https://doi.org/10.3390/nu1210314211.
Ahmad A, Ahsan H. Biomarkers of inflammation and oxidative stress in opthalmic disorders. Journal of Immunoassay and Immunochemestry. 2020;41:257-71. https://doi.org/10.1080/15321819.2020.172677412.
Zhao W-J, Yan Y-B. Increasing susceptibility to oxidative stress by cataract-causing crystallin mutations. International Journal of Biological Macromolecules. 2018;108:665-73. https://doi.org/10.1016/j.ijbiomac.2017.12.01313.
Song MS, Sim HJ, Kang S, Park S, Seo K, Lee SY. Pharmacological inhibition of Kv3 on oxidative stress-induced cataract progression. Biochemical and Biophysical Research Communications. 2020;533:1255-61. https://doi.org/10.1016/j.bbrc.2020.09.13814.
Liu S, Jin Z, Xia R, Zheng Z, Zha Y, Wang Q, et al. Protection of Human Lens Epithelial Cells from Oxidative Stress Damage and Cell Apoptosis by KGF-2 through the Akt/Nrf2/HO-1 Pathway. Oxidative Medicine and Cellular Longevity. 2022;2022:1-13. https://doi.org/10.1155/2022/693381215.
Radapong S, Sarker SD, Ritchie KJ, Oxyresveratrol Possesses DNA Damaging Activity. Molecules. 2020;25:2577. https://doi.org/10.3390/molecules2511257716.
Hu X, Liang Y, Zhao B, Wang Y. Oxyresveratrol protects human lens epithelial cells against hydrogen peroxide-induced oxidative stress and apoptosis by activation of Akt/HO-1 pathway. Journal of Pharmacological Sciences. 2019;139:166-73. https://doi.org/10.1016/j.jphs.2019.01.00317.
Huang Y, Ye Z, Yin Y, Ma T, ZhangQ, Shang K, et al. Cataract formation in transgenic HO-1 G143H mutant mice: Involvement of oxidative stress and endoplasmatic reticulum stress. Biochemical and Biochemical and Biophysical Research Communications. 2021;537:43-9. https://doi.org/10.1016/j.bbrc.2020.12.07118. .
Shen Q, Zhou T. Knockdown of IncRNA TUG1 protects lens epithelial celss from oxidative stress-induced injury by regulating miR-196ª-5p expression in age-related cataracts. Exp Ther Med. 2021;22. https://doi.org/10.3892/etm.2021.1072119.
Behof WJ, Whitmore CA, Haynes JR, Rosenberg AJ, Tantawy MN, Peterson TE, et al. A novel antioxidant ergothioneine PET radioligand for in vivo imagingapplications. Sci Rep 2021;11. https://doi.org/10.1038/s41598-021-97925-w20.
Zhou B, Zhao G, Zhu Y, Chen X, Zhang N, Yang J, et al. Protective Effects of Nicotinamide Riboside on H2O2-induced Oxidative Damage in Lens Epithelial Cells. Current Eye Research. 2020:1-10. https://doi.org/10.1080/02713683.2020.185566221.
MiR-211 regulates the antioxidant function of lens epithelialcells affected by age-related actaract. Int J Opthalmol. 2018. https://doi.org/10.18240/ijo.2018.03.0122.
Kaliaperumal R, Venkatachalam R, Nagarajan P, Sabapathy SK. Association of Serum Magnesium with Oxidative Stress in the Pathogenesis of Diabetic Cataract. Biol Trace Elem Res. 2020;199:2869-73. https://doi.org/10.1007/s12011-020-02429-923.
Williams DL. Oxidative Stress and the Eye. Veterinary Clinics of North America: Small Animal Practice. 2008;38:179-92. https://doi.org/10.1016/j.cvsm.2007.10.00624.
Wahlig S, Lovatt M, Mehta JS. Functional role of peroxiredoxin 6 in the eye. Free Radical Biology and Medicine. 2018;126:210-20. https://doi.org/10.1016/j.freeradbiomed.2018.08.01725.
Ma Z, Liu J, Li J, Jiang H, Kong J. Klotho ameliorates the onset and progression of cataract via suppressing oxidative stress and inflammation in the lens in streptozotocin-induced diabetic rats. International Inmmunopharmacology. 2020;85:106582. https://doi.org/10.1016/j.intimp.2020.10658226.
Drinkwater JJ, Davis WA, Davis TME. A systematic review of risk factors for cataract in type 2 diabetes. Diabetes Metab Res Rev. 2018;35-3073. https://doi.org/10.1002/dmrr.307327.
Giannone AA, Li L, Sellitto C, White TW. Physiological MechanismsRegulating Lens Transport.Front Physiol. 2021;12. https://doi.org/10.3389/fphys.2021.81864928.