2025, Número 3
<< Anterior Siguiente >>
Acta Ortop Mex 2025; 39 (3)
Aplicaciones de aprendizaje profundo en ortopedia: una revisión sistemática y futuras direcciones
González-Pola R, Herrera-Lozano A, Graham-Nieto L, Zermeño-García G
Idioma: Ingles.
Referencias bibliográficas: 88
Paginas: 152-163
Archivo PDF: 263.41 Kb.
RESUMEN
Introducción: la inteligencia artificial (IA) y deep learning en ortopedia han ganado un gran interés en los últimos años. En estudios anteriores, se han mostrado diferentes aplicaciones, desde la evaluación radiográfica hasta el diagnóstico de tumores óseos. El propósito de esta revisión es analizar literatura actual sobre IA y deep learning para identificar las herramientas más utilizadas en los campos de evaluación, resultados, imágenes y ciencias básicas.
Material y métodos: se realizaron búsquedas en PubMed, EMBASE y Google Scholar desde enero de 2020 hasta el 31 de octubre de 2023. Se identificaron 862 estudios, de los cuales 595 fueron incluidos. Se incluyeron un total de 281 estudios sobre evaluación radiográfica, 102 sobre cirugía de columna, 95 sobre evaluación de resultados, 84 sobre educación ortopédica y 33 aplicaciones de ciencias básicas. Los resultados primarios fueron la precisión diagnóstica, diseño del estudio y estándares de presentación de informes en la literatura. Las estimaciones se agruparon mediante un metaanálisis de efectos aleatorios.
Resultados: se utilizaron 53 métodos de imagen diferentes para medir los aspectos radiográficos. Se utilizaron un total de 185 algoritmos diferentes de aprendizaje automático, siendo la arquitectura de red neuronal convolucional la más común (73%). Mejorar la precisión y la velocidad del diagnóstico fueron los resultados más reportados (62%).
Conclusión: la heterogeneidad fue alta entre los estudios y se observó una amplia variación en la metodología, terminología y medidas de resultados. Esto puede llevar a una sobreestimación de la precisión diagnóstica de los algoritmos para imagenología. Existe una necesidad inmediata de desarrollar directrices específicas para la IA que proporcionen orientación sobre cuestiones clave.
REFERENCIAS (EN ESTE ARTÍCULO)
Cabitza F, Locoro A, Banfi G. Machine learning in orthopedics: a literature review. Front Bioeng Biotechnol. 2018; 6: 75.
Groot OQ, Bongers MER, Ogink PT, Senders JT, Karhade AV, Bramer JAM, et al. Does artificial intelligence outperform natural intelligence in interpreting musculoskeletal radiological studies? A systematic review. Clin Orthop Relat Res. 2020; 478(12): 2751-64.
Shah RM, Wong C, Arpey NC, Patel AA, Divi SN. A surgeon's guide to understanding artificial intelligence and machine learning studies in orthopaedic surgery. Curr Rev Musculoskelet Med. 2022; 15(2): 121-32.
Padash S, Mickley JP, Vera GDV, Nugen F, Khosravi B, Erickson BJ, et al. An overview of machine learning in orthopedic surgery: an educational paper. J Arthroplasty. 2023; 38(10): 1938-42.
Staartjes VE, de Wispelaere MP, Vandertop WP, Schröder ML. Deep learning-based preoperative predictive analytics for patient-reported outcomes following lumbar discectomy: feasibility of center-specific modeling. Spine J. 2019; 19(5): 853-61.
Lalehzarian SP, Gowd AK, Liu JN. Machine learning in orthopaedic surgery. World J Orthop. 2021; 12(9): 685-99.
Kang YJ, Yoo JI, Cha YH, Park CH, Kim JT. Machine learning-based identification of hip arthroplasty designs. J Orthop Translat. 2019; 21: 13-7.
Denecke K, Baudoin CR. A review of artificial intelligence and robotics in transformed health ecosystems. Front Med (Lausanne). 2022; 9: 795957.
McInnes MDF, Moher D, Thombs BD, McGrath TA, Bossuyt PM; and the PRISMA-DTA Group, et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. JAMA. 2018; 319(4): 388-96. doi: 10.1001/jama.2017.19163. Erratum in: JAMA. 2019; 322(20): 2026.
Pinto-Coelho L. How artificial intelligence is shaping medical imaging technology: a survey of innovations and applications. Bioengineering (Basel). 2023; 10(12): 1435.
Berg HE. Will intelligent machine learning revolutionize orthopedic imaging? Acta Orthop. 2017; 88(6): 577.
Pankhania M. Artificial intelligence in musculoskeletal radiology: past, present, and future. Indian Journal of Musculoskeletal Radiology. 2020; 2: 89-96.
Bousson V, Benoist N, Guetat P, Attané G, Salvat C, Perronne L. Application of artificial intelligence to imaging interpretations in the musculoskeletal area: where are we? Where are we going? Joint Bone Spine. 2023; 90(1): 105493.
Moon KR, Lee BD, Lee MS. A deep learning approach for fully automated measurements of lower extremity alignment in radiographic images. Sci Rep. 2023; 13(1): 14692.
Yang S, Yin B, Cao W, Feng C, Fan G, He S. Diagnostic accuracy of deep learning in orthopaedic fractures: a systematic review and meta-analysis. Clin Radiol. 2020; 75(9): 713.e17-e28.
Lee J, Chung SW. Deep learning for orthopedic disease based on medical image analysis: present and future. Applied Sciences. 2022; 12(2): 681.
Malik AT, Khan SN. Predictive modeling in spine surgery. Ann Transl Med. 2019; 7(Suppl 5): S173.
Fan X, Zhu Q, Tu P, Joskowicz L, Chen X. A review of advances in image-guided orthopedic surgery. Phys Med Biol. 2023; 68(2).
Charles YP, Lamas V, Ntilikina Y. Artificial intelligence and treatment algorithms in spine surgery. Orthop Traumatol Surg Res. 2023; 109(1S): 103456
Rasouli JJ, Shao J, Neifert S, Gibbs WN, Habboub G, Steinmetz MP, et al. Artificial intelligence and robotics in spine surgery. Global Spine J. 2021; 11(4): 556-64.
Ogink PT, Groot OQ, Karhade AV, Bongers MER, Oner FC, Verlaan JJ, et al. Wide range of applications for machine-learning prediction models in orthopedic surgical outcome: a systematic review. Acta Orthop. 2021; 92(5): 526-31.
McDonnell JM, Evans SR, McCarthy L, Temperley H, Waters C, Ahern D, et al. The diagnostic and prognostic value of artificial intelligence and artificial neural networks in spinal surgery: a narrative review. Bone Joint J. 2021; 103-B(9): 1442-48.
Tan J, Shi M, Li B, Liu Y, Luo S, Cheng X. Role of arachidonic acid metabolism in intervertebral disc degeneration: identification of potential biomarkers and therapeutic targets via multi-omics analysis and artificial intelligence strategies. Lipids Health Dis. 2023; 22(1): 204.
Anastasio AT, Zinger BS, Anastasio TJ. A novel application of neural networks to identify potentially effective combinations of biologic factors for enhancement of bone fusion/repair. PLoS One. 2022; 17(11): e0276562.
Yang L, Coleman MC, Hines MR, Kluz PN, Brouillette MJ, Goetz JE. Deep learning for chondrocyte identification in automated histological analysis of articular cartilage. Iowa Orthop J. 2019; 39(2): 1-8.
Melgoza IP, Chenna SS, Tessier S, Zhang Y, Tang SY, Ohnishi T, et al. Development of a standardized histopathology scoring system using machine learning algorithms for intervertebral disc degeneration in the mouse model-An ORS spine section initiative. JOR Spine. 2021; 4(2): e1164.
Konnaris MA, Brendel M, Fontana MA, Otero M, Ivashkiv LB, Wang F, et al. Computational pathology for musculoskeletal conditions using machine learning: advances, trends, and challenges. Arthritis Res Ther. 2022; 24(1): 68.
Zhu W, Zhang X, Fang S, Wang B, Zhu C. Deep learning improves osteonecrosis prediction of femoral head after internal fixation using hybrid patient and radiograph variables. Front Med. 2020; 7: 573522.
Kunze KN, Krivicich LM, Clapp IM, Bodendorfer BM, Nwachukwu BU, Chahla J, et al. Machine learning algorithms predict achievement of clinically significant outcomes after orthopaedic surgery: a systematic review. Arthroscopy. 2022; 38(6): 2090-105.
Clement ND, Clement R, Clement A. Predicting functional outcomes of total hip arthroplasty using machine learning: a systematic review. J Clin Med. 2024; 13(2): 603.
Poduval M, Ghose A, Manchanda S, Bagaria V, Sinha A. Artificial intelligence and machine learning: a new disruptive force in orthopaedics. Indian J Orthop. 2020; 54(2): 109-22.
Ahmed Z, Mohamed K, Zeeshan S, Dong X. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database (Oxford). 2020; 2020: baaa010.
Sumner J, Lim HW, Chong LS, Bundele A, Mukhopadhyay A, Kayambu G. Artificial intelligence in physical rehabilitation: A systematic review. Artif Intell Med. 2023; 146: 102693.
Han ER, Yeo S, Kim MJ, Lee YH, Park KH, Roh H. Medical education trends for future physicians in the era of advanced technology and artificial intelligence: an integrative review. BMC Med Educ. 2019; 19(1): 460.
Maki S, Furuya T, Katsumi K, Nakajima H, Honjoh K, Watanabe S, et al. Multimodal deep learning-based radiomics approach for predicting surgical outcomes in patients with cervical ossification of the posterior longitudinal ligament. Spine (Phila Pa 1976). 2024; 49(22): 1561-9.
Patel R, Thong EHE, Batta V, Bharath AA, Francis D, Howard J. Automated identification of orthopedic implants on radiographs using deep learning. Radiol Artif Intell. 2021; 3(4): e200183.
Shen X, Luo J, Tang X, Chen B, Qin Y, Zhou Y, et al. Deep learning approach for diagnosing early osteonecrosis of the femoral head based on magnetic resonance imaging. J Arthroplasty. 2023; 38(10): 2044-50.
Guy S, Jacquet C, Tsenkoff D, Argenson JN, Ollivier M. Deep learning for the radiographic diagnosis of proximal femur fractures: limitations and programming issues. Orthop Traumatol Surg Res. 2021; 107(2): 102837.
Guo D, Liu X, Wang D, Tang X, Qin Y. Development and clinical validation of deep learning for auto-diagnosis of supraspinatus tears. J Orthop Surg Res. 2023; 18(1): 426.
Yi PH, Wei J, Kim TK, Sair HI, Hui FK, Hager GD, et al. Automated detection & classification of knee arthroplasty using deep learning. Knee. 2020; 27(2): 535-42.
Klemt C, Uzosike AC, Cohen-Levy WB, Harvey MJ, Subih MA, Kwon YM. The ability of deep learning models to identify total hip and knee arthroplasty implant design from plain radiographs. J Am Acad Orthop Surg. 2022; 30(9): 409-15.
Merkely G, Borjali A, Zgoda M, Farina EM, Görtz S, Muratoglu O, et al. Improved diagnosis of tibiofemoral cartilage defects on MRI images using deep learning. Journal of Cartilage & Joint Preservation. 2021; 1(2): 100009.
Yamamoto N, Sukegawa S, Yamashita K, Manabe M, Nakano K, Takabatake K, et al. Effect of patient clinical variables in osteoporosis classification using hip X-rays in deep learning analysis. Medicina (Kaunas). 2021; 57(8): 846.
Tiwari A, Poduval M, Bagaria V. Evaluation of artificial intelligence models for osteoarthritis of the knee using deep learning algorithms for orthopedic radiographs. World J Orthop. 2022; 13(6): 603-14.
Leung K, Zhang B, Tan J, Shen Y, Geras KJ, Babb JS, et al. Prediction of total knee replacement and diagnosis of osteoarthritis by using deep learning on knee radiographs: data from the osteoarthritis initiative. Radiology. 2020; 296(3): 584-93.
Borjali A, Magnéli M, Shin D, Malchau H, Muratoglu OK, Varadarajan KM. Natural language processing with deep learning for medical adverse event detection from free-text medical narratives: a case study of detecting total hip replacement dislocation. Comput Biol Med. 2021; 129: 104140.
Eweje FR, Bao B, Wu J, Dalal D, Liao WH, He Y, et al. Deep learning for classification of bone lesions on routine MRI. EBioMedicine. 2021; 68: 103402.
Ashkani-Esfahani S, Mojahed-Yazdi R, Bhimani R, Kerkhoffs G, Guss D, DiGiovanni CW, et al. Assessment of ankle fractures using deep learning algorithms and convolutional neural network. Foot Ankle Orthop. 2022; 7(1): 2473011421S00091.
Li J, Qian K, Liu J, Huang Z, Zhang Y, Zhao G, et al. Identification and diagnosis of meniscus tear by magnetic resonance imaging using a deep learning model. J Orthop Translat. 2022; 34: 91-101.
Magnéli M, Ling P, Gislén J, Fagrell J, Demir Y, Arverud ED, et al. Deep learning classification of shoulder fractures on plain radiographs of the humerus, scapula and clavicle. PLoS One. 2023; 18(8): e0289808.
Shen SC, Peña Fernández M, Tozzi G, Buehler MJ. Deep learning approach to assess damage mechanics of bone tissue. J Mech Behav Biomed Mater. 2021; 123: 104761.
Lau LCM, Chui ECS, Man GCW, Xin Y, Ho KKW, Mak KKK, et al. A novel image-based machine learning model with superior accuracy and predictability for knee arthroplasty loosening detection and clinical decision making. J Orthop Translat. 2022; 36: 177-83.
Kim M, Oh IS, Yoon SJ. Deep learning and computer vision techniques for automated total hip arthroplasty planning on 2-D radiographs. IEEE Access. 2022; 10: 94145-57.
Recht MP, Zbontar J, Sodickson DK, Knoll F, Yakubova N, Sriram A, et al. Using deep learning to accelerate knee MRI at 3 T: results of an interchangeability study. AJR Am J Roentgenol. 2020; 215(6): 1421-9.
Borjali A, Ashkani-Esfahani S, Bhimani R, Guss D, Muratoglu OK, DiGiovanni CW, et al. The use of deep learning enables high diagnostic accuracy in detecting syndesmotic instability on weight-bearing CT scanning. Knee Surg Sports Traumatol Arthrosc. 2023; 31(12): 6039-45.
Yang J, Ji Q, Ni M, Zhang G, Wang Y. Automatic assessment of knee osteoarthritis severity in portable devices based on deep learning. J Orthop Surg Res. 2022; 17(1): 540.
Hernigou P, Barbier O, Chenaie P. Hip arthroplasty dislocation risk calculator: evaluation of one million primary implants and twenty-five thousand dislocations with deep learning artificial intelligence in a systematic review of reviews. Int Orthop. 2023; 47(2): 557-71.
Rahman T, Khandakar A, Islam KR, Soliman MM, Islam MT, Elsayed A, et al. HipXNet: deep learning approaches to detect aseptic loos-ening of hip implants using X-ray images. IEEE Access. 2022; 10: 53359-73.
Wang HM, Lin YP. Deep learning-based postoperative recovery and nursing of total hip arthroplasty. Comput Math Methods Med. 2022; 2022: 7811200.
Kinugasa M, Inui A, Satsuma S, Kobayashi D, Sakata R, Morishita M, et al. Diagnosis of developmental dysplasia of the hip by ultrasound imaging using deep learning. J Pediatr Orthop. 2023; 43(7): e538-44.
Sharifi RM, Myers CA, Zandie R, Mahoor MH, Davidson BS, Clary CW. Deep learning in gait parameter prediction for OA and TKA patients wearing IMU sensors. Sensors (Basel). 2020; 20(19): 5553.
Li Y, Zhang Y, Zhang E, Chen Y, Wang Q, Liu K, et al. Differential diagnosis of benign and malignant vertebral fracture on CT using deep learning. Eur Radiol. 2021; 31(12): 9612-9.
Rouzrokh P, Khosravi B, Johnson QJ, Faghani S, Vera Garcia DV, Erickson BJ, et al. Applying deep learning to establish a total hip arthroplasty radiography registry: a stepwise approach. J Bone Joint Surg Am. 2022; 104(18): 1649-58.
Huang J, Shen H, Wu J, Hu X, Zhu Z, Lv X, et al. Spine explorer: a deep learning based fully automated program for efficient and reliable quantifications of the vertebrae and discs on sagittal lumbar spine MR images. Spine J. 2020; 20(4): 590-9.
Kong SH, Lee JW, Bae BU, Sung JK, Jung KH, Kim JH, et al. Development of a spine X-ray-based fracture prediction model using a deep learning algorithm. Endocrinol Metab (Seoul). 2022; 37(4): 674-83.
Zhao M, Meng N, Cheung JPY, Yu C, Lu P, Zhang T. SpineHRformer: a transformer-based deep learning model for automatic spine deformity assessment with prospective validation. Bioengineering (Basel). 2023; 10(11): 1333.
Wang C, Yuan J, Huang Z, Shi Z. Deep learning-based correlation analysis between spine surgery lumbar facet joint and lumbar disc herniation using magnetic resonance images. Scientific Programming. 2021; 2021(1): 9623991.
Broida SE, Schrum ML, Yoon E, Sweeney AP, Dhruv NN, Gombolay MC, et al. Improving surgical triage in spine clinic: predicting likelihood of surgery using machine learning. World Neurosurg. 2022; 163: e192-8.
Ito S, Nakashima H, Yoshii T, Egawa S, Sakai K, Kusano K, et al. Deep learning-based prediction model for postoperative complications of cervical posterior longitudinal ligament ossification. Eur Spine J. 2023; 32(11): 3797-806.
Etzel CM, Veeramani A, Zhang AS, McDonald CL, DiSilvestro KJ, Cohen EM, et al. Supervised machine learning for predicting length of stay after lumbar arthrodesis: a comprehensive artificial intelligence approach. J Am Acad Orthop Surg. 2022; 30(3): 125-32.
Maras Y, Tokdemir G, Üreten K, Atalar E, Duran S, Maras H. Diagnosis of osteoarthritic changes, loss of cervical lordosis, and disc space narrowing on cervical radiographs with deep learning methods. Jt Dis Relat Surg. 2022; 33(1): 93-101.
Campagner A, Berjano P, Lamartina C, Langella F, Lombardi G, Cabitza F. Assessment and prediction of spine surgery invasiveness with machine learning techniques. Comput Biol Med. 2020; 121: 103796.
Liu H, Jiao M, Yuan Y, Ouyang H, Liu J, Li Y, et al. Benign and malignant diagnosis of spinal tumors based on deep learning and weighted fusion framework on MRI. Insights Imaging. 2022; 13(1): 87.
Müller D, Haschtmann D, Fekete TF, Kleinstück F, Reitmeir R, Loibl M, et al. Development of a machine-learning based model for predicting multidimensional outcome after surgery for degenerative disorders of the spine. Eur Spine J. 2022; 31(8): 2125-36.
Mandel W, Parent S, Kadoury S. Intraoperative forecasting of growth modulation spine surgery outcomes with spatio-temporal dynamic networks. In: Martel AL, Abolmaesumi P, Stoyanov D, Mateus D, Zuluaga MA, Zhou SK, et al., editors. Medical Image Computing and Computer Assisted Intervention-MICCAI 2020. Cham: Springer International Publishing; 2020. p. 751-60.
Fan G, Liu H, Wang D, Feng C, Li Y, Yin B, et al. Deep learning-based lumbosacral reconstruction for difficulty prediction of percutaneous endoscopic transforaminal discectomy at L5/S1 level: A retrospective cohort study. Int J Surg. 2020; 82: 162-9.
Chen T, Liu C, Zhang Z, Liang T, Zhu J, Zhou C, et al. Using machine learning to predict surgical site infection after lumbar spine surgery. Infect Drug Resist. 2023; 16: 5197-07.
Mu S, Wang J, Gong S. Application of medical imaging based on deep learning in the treatment of lumbar degenerative diseases and osteoporosis with bone cement screws. Comput Math Methods Med. 2021; 2021: 2638495.
Cho SM, Kim YG, Jeong J, Kim I, Lee HJ, Kim N. Automatic tip detection of surgical instruments in biportal endoscopic spine surgery. Comput Biol Med. 2021; 133: 104384.
De Silva T, Vedula SS, Perdomo-Pantoja A, Vijayan R, Doerr SA, Uneri A, et al. SpineCloud: image analytics for predictive modeling of spine surgery outcomes. J Med Imaging (Bellingham). 2020; 7(3): 031502.
Kuris EO, Veeramani A, McDonald CL, DiSilvestro KJ, Zhang AS, Cohen EM, et al. Predicting readmission after anterior, posterior, and posterior interbody lumbar spinal fusion: a neural network machine learning approach. World Neurosurg. 2021; 151: e19-27.
Von Atzigen M, Liebmann F, Hoch A, Bauer DE, Snedeker JG, et al. HoloYolo: a proof-of-concept study for marker-less surgical navigation of spinal rod implants with augmented reality and on-device machine learning. Int J Med Robot. 2021; 17(1): 1-10.
Tran VL, Lin HY, Liu HW. MBNet: a multi-task deep neural network for semantic segmentation and lumbar vertebra inspection on X-ray images. Computer Vision–ACCV 2020: 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30–December 4, 2020, Revised Selected Papers, Part I | SpringerLink [Internet]. [Cited 2024 Jan 14].
Chen CC, Huang JF, Lin WC, Cheng CT, Chen SC, Fu CY, et al. The feasibility and performance of total hip replacement prediction deep learning algorithm with real world data. Bioengineering (Basel). 2023; 10(4): 458.
Niculescu B, Faur CI, Tataru T, Diaconu BM, Cruceru M. Investigation of biomechanical characteristics of orthopedic implants for tibial plateau fractures by means of deep learning and support vector machine classification. App Sci. 2020; 10(14): 4697.
Bonnheim NB, Wang L, Lazar AA, Chachad R, Zhou J, Guo X, et al. Deep-learning-based biomarker of spinal cartilage endplate health using ultrashort echo time magnetic resonance imaging. Quant Imaging Med Surg. 2023; 13(5): 2807-21.
Kasa K, Burns D, Goldenberg MG, Selim O, Whyne C, Hardisty M. Multi-modal deep learning for assessing surgeon technical skill. Sensors (Basel). 2022; 22(19): 7328.
Loftus TJ, Ruppert MM, Shickel B, Ozrazgat-Baslanti T, Balch JA, Hu D, et al. Overtriage, undertriage, and value of care after major surgery: an automated, explainable deep learning-enabled classification system. J Am Coll Surg. 2023; 236(2): 279-91.