medigraphic.com
ENGLISH

Medicina Universitaria

Medicina Universitaria
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2007, Número 36

Med Univer 2007; 9 (36)


Células madre

Jaime PJC, Garza VI, Ortiz LR
Texto completo Cómo citar este artículo

Idioma: Español
Referencias bibliográficas: 74
Paginas: 130-140
Archivo PDF: 177.97 Kb.


PALABRAS CLAVE

células madre, diferenciación celular, plasticidad, replicación celular, terapia celular, transplante hematopoyético.

RESUMEN

Las células madre tienen la capacidad de autorenovarse y diferenciarse para producir diversos tipos de células especializadas. Las células madre se clasifican por su potencial de diferenciación en totipotenciales, pluripotenciales y multipotenciales, y según el tejido de origen en embrionarias o adultas. Estas células generan gran interés por los diferentes modelos de diferenciación a los que pueden conducirse: desde el modelo convencional (célula madre-célula hija), hasta procesos de transdiferenciación y desdiferenciación celular. Estos modelos se aplican para entender el fenómeno de plasticidad. Se denomina plasticidad de las células madre a la capacidad de generar diferentes grupos celulares a los de su tejido de origen, como las de las células madre hematopoyéticas, que forman hepatocitos y miocitos en condiciones controladas. En la actualidad existen controversias éticas, ya que los estudios en células madre se realizan a partir de óvulos donados en los centros de fertilización humana; sin embargo, pueden obtenerse células madre con características pluripotenciales de otras fuentes, como las del líquido amniótico. La legislación internacional, respecto de la obtención de células madre es heterogénea y divergente, mientras que la legislación nacional resulta limitada ante los retos que plantea la investigación científica.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Bock G, Goode J. Stem cells: nuclear reprogramming and therapeutic applications. Novartis Foundation Symposium. Chichester UK: John Wiley & Sons, 2005.

  2. National Institutes of Health. Stem cells: scientific progress and future research directions. Washington, DC: National Institutes of Health, Dept. of Health and Human Services, 2001.

  3. Donovan PJ, Gearhart J. The end of the beginning for pluripotent stem cells. Nature 2001;414:92-97.

  4. Lovell-Badge R. The future for stem cell research. Nature 2001;414:88-91.

  5. McLaren A. Ethical and social considerations of stem cell research. Nature 2001;414:129-31.

  6. Snyder EL, Haley NR. Cellular therapy: a physician’s handbook. 1th ed. Washington, DC: American Association of Blood Banks (AABB); 2004.

  7. Stevens LC, Little CC. Spontaneous testicular teratomas in an inbred strain of mice. Proc Natl Acad Sci USA 1954;40:1080-7.

  8. Smith AG. Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 2001;17:435-62.

  9. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981;292:154-6.

  10. Evans MJ. The cultural mouse. Nat Med 2001;7:1081-3.

  11. Schatten G, Smith J, Navara C, Park JH, Pedersen R. Culture of human embryonic stem cells. Nat Methods 2005;2: 455-63.

  12. Raz R, Lee CK, Cannizzaro LA, d’Eustachio P, Levy DE. Essential role of STAT3 for embryonic stem cell pluripotency. Proc Natl Acad Sci USA 1999;96:2846-51.

  13. Rivadeneyra-Espinoza L, Perez-Romano B, Gonzalez-Flores A, Guzman-Garcia MO, Carvajal-Armora F, Ruiz-Arguelles A. Instrument and protocol-dependent variation in the enumeration of CD34+ cells by flow cytometry. Transfusion 2006;46:530-6.

  14. Jaime Pérez JC, Gómez Almaguer D. Hematología, la sangre y sus enfermedades. 1ª ed. México: McGraw-Hill Interamericana, 2005;pp:219-24.

  15. Hu AB, Cai JY, Zheng QC, He XQ, Pan YL. Directional development and differentiation of mouse embryonic stem cells into hepatocytes in vitro. Zhonghua Yi Xue Za Zhi 2003;83:1592-6.

  16. Hu A, Cai J, Zheng Q, He X, et al. Hepatic differentiation from embryonic stem cells in vitro. Chin Med J 2003;116:1893-7.

  17. He NH, Zhao WL, Wang YM. Human fetal liver nonparenchymal mesenchymal stem cells differentiate into functional hepatocyte-like cells in vitro. Zhonghua Gan Zang Bing Za Zhi 2007;15:164-9.

  18. Diaz NF, Guerra-Arraiza C, Diaz-Martinez NE, Salazar P, et al. Changes in the content of estrogen alpha and progesterone receptors during differentiation of mouse embryonic stem cells to dopamine neurons. Brain Res Bull 2007;73:75-80.

  19. Fong SP, Tsang KS, Chan AB, Lu G, et al. Trophism of neural progenitor cells to embryonic stem cells: Neural induction and transplantation in a mouse ischemic stroke model. J Neurosci Res 2007;85:1851-62.

  20. Lee H, Al Shamy G, Elkabetz Y, Schofield CM, et al. Directed differentiation and transplantation of human embryonic stem cell derived motoneurons. Stem Cells 2007;25:.

  21. Jiang J, Au M, Lu K, et al. Generation of Insulin-producing Islet-like Clusters from Human Embryonic Stem Cells. Stem Cells 2007.

  22. Lees JG, Tuch BE. Conversion of embryonic stem cells into pancreatic beta-cell surrogates guided by ontogeny. Regen Med 2006;1:327-36.

  23. Jiang W, Shi Y, Zhao D, Chen S, et al. In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res 2007;17:333-44.

  24. Temple S. The development of neural stem cells. Nature 2001;414:112-7.

  25. Herzog EL, Chai L, Krause DS. Plasticity of marrow-derived stem cells. Blood 2003;102:3483-93.

  26. Ding S, Schultz PG. A role for chemistry in stem cell biology. Nat Biotechnol 2004;22:833-40.

  27. Domanska-Janik K, Habich A, Sarnowska A, Janowski M. Neural commitment of cord blood stem cells (HUCB-NSC/ NP): therapeutic perspectives. Acta Neurobiol Exp (Wars) 2006;66:279-91.

  28. Matus A. Actin-based plasticity in dendritic spines. Science 2000;290:754-8.

  29. Avital I, Feraresso C, Aoki T, Hui T, et al. Bone marrow-derived liver stem cell and mature hepatocyte engraftment in livers undergoing rejection. Surgery 2002;132:384-90.

  30. Eglitis MA, Mezey E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 1997;94:4080-5.

  31. Hao HN, Zhao J, Thomas RL, Parker GC, Lyman WD. Fetal human hematopoietic stem cells can differentiate sequentially into neural stem cells and then astrocytes in vitro. J Hematother Stem Cell Res 2003;12:23-32.

  32. Ozasa S, Kimura S, Ito K, UENO H, et al. Efficient conversion of ES cells into myogenic lineage using the gene-inducible system. Biochem Biophys Res Commun 2007;357:957-63.

  33. Raff M. Adult stem cell plasticity: fact or artifact? Annu Rev Cell Dev Biol 2003;19:1-22.

  34. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981;78:7634-8.

  35. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145-7.

  36. Butler AE, Huang A, Rao PN, Bhushan A, et al. Hematopoietic stem cells derived from adult donors are not a source of pancreatic beta-cells in adult nondiabetic humans. Diabetes 2007;56:1810-6.

  37. Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature 2001;414:98-104.

  38. Jacobson LO, Simmons EL, Bethard WF. Studies on hematopoietic recovery from radiation injury. J Clin Invest 1950;29:825.

  39. McCulloch EA, Till JE. Effects of short-term culture on populations of hemopoietic progenitor cells from mouse marrow. Cell Tissue Kinet 1971;4:11-20.

  40. Bernardo ME, Emons JA, Karperien M, Nauti J, et al. Human mesenchymal stem cells derived from bone marrow display a better chondrogenic differentiation compared with other sources. Connect Tissue Res 2007;48:132-40.

  41. Dzierzak E. The emergence of definitive hematopoietic stem cells in the mammal. Curr Opin Hematol 2005;12:197-202.

  42. Winkler IG, Levesque JP. Mechanisms of hematopoietic stem cell mobilization: when innate immunity assails the cells that make blood and bone. Exp Hematol 2006;34:996-1009.

  43. Morris ES, MacDonald KP, Hill GR. Stem cell mobilization with G-CSF analogs: a rational approach to separate GVHD and GVL? Blood 2006;107:3430-5.

  44. Kinniburgh D, Russell NH. Comparative study of CD34-positive cells and subpopulations in human umbilical cord blood and bone marrow. Bone Marrow Transplant 1993;12:489-94.

  45. Bornstein R, Flores AI, Montalban MA, del Rey MJ, et al. A modified cord blood collection method achieves sufficient cell levels for transplantation in most adult patients. Stem Cells 2005;23:324-34.

  46. Khurdayan VK. Stem cells: therapeutic present and future. Drug News Perspect 2007;20:119-28.

  47. Lo KC, Whirledge S, Lamb DJ. Stem cells: implications for urology. Curr Urol Rep 2005;6:49-54.

  48. Kim SU. Genetically engineered human neural stem cells for brain repair in neurological diseases. Brain Dev 2007;29:193-201.

  49. Perez-Millan MI, Lorenti A. Stem cells and cardiac regeneration. Medicina (Buenos Aires) 2006;66:574-82.

  50. Luo F, Yang YJ, Wang X, Yu XH, et al. Factors influencing successful isolation of mesenchymal stem cells from human umbilical cord blood. Zhonghua Er Ke Za Zhi 2006;44:509-12.

  51. Skoric D, Balint B, Petakov M, Sindjic M, Rodic P. Collection strategies and cryopreservation of umbilical cord blood. Transfus Med 2007;17:107-13.

  52. Bianco P, Robey PG. Stem cells in tissue engineering. Nature 2001;414:118-21.

  53. De Trizio E, Brennan CS. The business of human embryonic stem cell research and an international analysis of relevant laws. J Biolaw Bus 2004;7:14-22.

  54. Report on human embryonic stem cell research: Brussels. Commission of the european communities, 2003.

  55. Jain KK. Ethical and regulatory aspects of embryonic stem cell research. Expert Opin Biol Ther 2005;5:153-62.

  56. Great Britain. England and Wales. Supreme Court of Judicature, Court of Appeal, Civil Division. R (On the application of Quintavalle) v Secretary of State for Health. All Engl Law Rep 2002;2:625-39.

  57. Pincock S. Newcastle centre gains licence for therapeutic cloning. BMJ 2004;329:417.

  58. Timmons H. Britain grants license to make human embryos for stem cells. NY Times (Print) 2004:A4.

  59. Morgan D, Nielsen L. Prisoners of progress or hostages to fortune? J Law Med Ethics 1993;21:30-42.

  60. Bosch X. Spain approves human embryo research. Nat Med 2003;9:1096.

  61. Pasotti J, Stafford N. It’s legal: Italian researchers defend their work with embryonic stem cells. Nature 2006;442:229.

  62. Gottweis H. Stem cell policies in the United States and in Germany. Policy Stud J 2002;30:444-69.

  63. Morgan D, Bernat E. Austrian law on procreative medicine. Bull Med Ethics 1992;83:13-16.

  64. Norway. Norwegian law on assisted reproduction and genetics: the act relating to the application of biotechnology in medicine. Bull Med Ethics 1994;No. 99:8-11.

  65. Koeferl Puorger UP, Buergin M, Wunder D, Crazzolara S, Birkhaeuser MH. Surplus embryos in Switzerland in 2003: legislation and availability of human embryos for research. Reprod Biomed Online 2006;13:772-7.

  66. Whitty N. Law and the regulation of reproduction in Ireland: 1922-1992. Univ Tor Law J 1993;43:851-88.

  67. Viville S, Menezo Y. Human embryo research in France. Hum Reprod 2002;17:261-3.

  68. Ley General de Salud. En: Cámara de Diputados del H. Congreso de la Unión, 1984:154.

  69. González Martín N. Las células madre o troncales: su itinerario jurídico en México. Instituto de Investigaciones Jurídicas de la UNAM 2005;1:14.

  70. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 2002;360:427-35.

  71. Huang P, Li S, Han M, Xiao Z, et al. Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care 2005;28:2155-60.

  72. De Coppi P, Bartsch G, Siddiqui MM, Xu T, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007;25:100-6.

  73. Amoh Y, Li L, Katsuoka K, Penman S, Hoffman RM. Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. Proc Natl Acad Sci USA 2005;102:5530-4.

  74. Gotloib L, Gotloib LC, Khrizman V. The use of peritoneal mesothelium as a potential source of adult stem cells. Int J Artif Organs 2007;30:501-12.




2020     |     www.medigraphic.com

Mi perfil

CÓMO CITAR (Vancouver)

Med Univer. 2007;9