Entrar/Registro  
INICIO ENGLISH
 
El Residente
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >El Residente >Año 2009, No. 3


Heras-Sandoval D, Arias c
Señalización por insulina en el cerebro y su participación en la enfermedad de Alzheimer
Residente 2009; 4 (3)

Idioma: Español
Referencias bibliográficas: 46
Paginas: 117-125
Archivo PDF: 454.98 Kb.


Texto completo




RESUMEN

La señalización por insulina en el sistema nervioso central ha cobrado mucho interés por su participación en procesos cognoscitivos como memoria y aprendizaje y por su posible relación con padecimientos neurodegenerativos como la enfermedad de Alzheimer. En tejidos periféricos, la insulina regula principalmente el metabolismo energético y el crecimiento celular. El receptor de insulina y varios componentes de su vía de señalización se encuentran abundantemente distribuidos en el cerebro de mamíferos y su activación modula el crecimiento neuronal y la plasticidad sináptica. Se ha sugerido que algunas alteraciones en la señalización por insulina parecen ser responsables de deficiencias cognoscitivas y juegan un papel importante en el desarrollo de la enfermedad de Alzheimer. De hecho, la diabetes de tipo II es un factor de riesgo para padecer este tipo de demencia. Recientemente se ha observado que la proteína b-amiloide, que se sobreproduce en la enfermedad de Alzheimer, causa alteraciones en la vía de señalización de la insulina, lo que apoya la existencia de relaciones causales interesantes entre este padecimiento y la insulina.


Palabras clave: Insulina, receptor de insulinainsulina cerebral, PI3K, enfermedad de Alzheimer, péptido b-amiloide y marañas neurofibrilares.


REFERENCIAS

  1. Watson G, Craft S. Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer’s disease. Eur J Pharmacol 2004; 490(1-3): 97-113.

  2. Zhao L, Vogt P. Class I PI3K in oncogenic cellular transformation. Oncogene 2008; 27(41): 5486-5496.

  3. Abbott MA, Wells DG, Fallon JR. The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses. J Neurosci 1999; 19(17): 7300-7308.

  4. Selkoe D. Alzheimer’s disease is a synaptic failure. Science 2002; 298(5594): 789-791.

  5. Man HY, Wang Q, Lu WY, Ju W, Ahmadian G, Liu L, D’Souza S, Wong TP, Taghibiglou C, Lu J, Becker LE, Pei L, Liu F, Wymann MP, MacDonald JF, Wang YT. Activation of PI3-Kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons. Neuron 2003; 38(4): 611-624.

  6. Zhao WQ, De Felice FG, Fernández S, Chen H, Lambert MP, Quon MJ, Krafft GA, Klein WL. Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J 2008; 22(1): 246-260.

  7. Niessen M, Jaschinski F, Item F, McNamara MP, Spinas GA, Trüb T. Insulin receptor substrates 1 and 2 but not Shc can activate the insulin receptor independent of insulin and induce proliferation in CHO-IR cells. Exp Cell Res 2007; 313(4): 805-815.

  8. Plum L, Belgardt BF, Brüning JC. Central insulin action in energy and glucose homeostasis. J Clin Invest 2006; 116(7): 1761-1766.

  9. Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 2004; 117(4): 421-426.

  10. Burgering BM, Kops GJ. Cell cycle and death control: long live Forkheads. Trends Biochem Sci 2002; 27(7): 352-360.

  11. Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 2005; 24(50): 7410-7425.

  12. Kenyon C. The plasticity of aging: insights from long-lived mutants. Cell 2005; 120(4): 449-460.

  13. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006; 7(8): 606-619.

  14. Collado M, Medema RH, Garcia-Cao I, Dubuisson ML, Barradas M, Glassford J, Rivas C, Burgering BM, Serrano M, Lam EW. Inhibition of the phosphoinositide 3-kinase pathway induces a senescence-like arrest mediated by p27Kip1. J Biol Chem 2000; 275(29): 21960-21968.

  15. Linseman DA, Phelps RA, Bouchard RJ, Le SS, Laessig TA, McClure ML, Heidenreich KA. Insulin-like growth factor-I blocks Bcl-2 interacting mediator of cell death (Bim) induction and intrinsic death signaling in cerebellar granule neurons. J Neurosci 2002; 22(21): 9287-9297.

  16. Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 2004; 29(2): 95-102.

  17. Meske V, Albert F, Ohm TG. 2008, Coupling of mammalian target of rapamycin with phosphoinositide 3-kinase signaling pathway regulates protein phosphatase 2A-and glycogen synthase kinase-3-dependent phosphorylation of tau. J Biol Chem 2008; 283(1): 100-109.

  18. Pardini AW, Nguyen HT, Figlewicz DP, Baskin DG, Williams DL, Kim F, Schwartz MW. Distribution of insulin receptor substrate-2 in brain areas involved in energy homeostasis. Brain Res 2006; 1112(1): 169-178.

  19. Havrankova J, Roth J, Brownstein MJ. Concentrations of insulin and insulin receptors in the brain are independent of peripheral insulin levels studies of obese and streptozotocin-treated rodents. J Clin Invest 1979; 64(2): 636-642.

  20. Gerozissis K. Brain insulin, energy and glucose homeostasis; genes, environment and metabolic pathologies. Eur J Pharmacol 2008; 585(1): 38-49.

  21. Gasparini L, Netzer WJ, Greengard P, Xu H. Does insulin dysfunction play a role in Alzheimer’s disease? Trends Pharmacol Sci 2002; 23(6): 288-293.

  22. Wei Y, Williams JM, Dipace C, Sung U, Javitch JA, Galli A, Saunders C. Dopamine transporter activity mediates amphetamine-induced inhibition of Akt through a Ca2+/calmodulin-dependent kinase II-dependent mechanism. Mol Pharmacol 2007; 71(3): 835-842.

  23. Nelson T, Alkon D. Insulin and cholesterol pathways in neuronal function, memory and neurodegeneration. Biochem Soc Trans 2005; 33(Pt 5): 1033-1036.

  24. Lee CC, Huang CC, Wu MY, Hsu KS. Insulin stimulates postsynaptic density-95 protein translation via the phosphoinositide 3-kinase-akt-mammalian target of rapamycin signaling pathway. J Biol Chem 2005; 280(18): 18543-18550.

  25. Tang SJ, Reis G, Kang H, Gingras AC, Sonenberg N, Schuman EM. A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc Natl Acad Sci USA 2002; 99(1): 467-472.

  26. Hoyer S. Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol 2004; 490(1-3): 115-125.

  27. Lim GP, Calon F, Morihara T, Yang F, Teter B, Ubeda O, Salem N Jr, Frautschy SA, Cole GM. A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J Neurosci 2005; 25(12): 3032-3040.

  28. Tremblay F, Gagnon A, Veilleux A, Sorisky A, Marette A. Activation of the mammalian target of rapamycin pathway acutely inhibits insulin signaling to Akt and glucose transport in 3T3-L1 and human adipocytes. Endocrinology. 2005; 146(3): 1328-1337.

  29. Akbar M, Calderón F, Wen Z, Kim HY. Docosahexaenoic acid: A positive modulator of Akt signaling in neuronal survival. Proc Natl Acad Sci USA 2005; 102(31): 10858-10863.

  30. Anitha M, Gondha C, Sutliff R, Parsadanian A, Mwangi S, Sitaraman SV, Srinivasan S. GDNF rescues hyperglycemia-induced diabetic enteric neuropathy through activation of the PI3K/Akt pathway. J Clin Invest 2006; 116(2): 344-356.

  31. Canabal DD, Potian JG, Durán RG, McArdle JJ, Routh VH. Hyperglycemia impairs glucose and insulin regulation of nitric oxide production in glucose-inhibited neurons in the ventromedial hypothalamus. Am J Physiol Regul Integr Comp Physiol 2007; 293(2): R592-600.

  32. Khamzina L, Veilleux A, Bergeron S, Marette A. Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: Possible Involvement in Obesity-Linked Insulin Resistance. Endocrinology. 2005; 146(3): 1473-1481.

  33. Di Paolo S, Teutonico A, Leogrande D, Capobianco C, Schena PF. Chronic inhibition of mammalian target of rapamycin signaling downregulates insulin receptor substrates 1 and 2 and AKT activation: A crossroad between cancer and diabetes? J Am Soc Nephrol 2006; 17(8): 2236-2244.

  34. Bloch-Damti A, Potashnik R, Gual P, Le Marchand-Brustel Y, Tanti JF, Rudich A, Bashan N. Differential effects of IRS1 phosphorylated on Ser307 or Ser632 in the induction of insulin resistance by oxidative stress. Diabetología 2006; 49(10): 2463-2473.

  35. Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet 2006; 368(9533): 387-403.

  36. Ho L, Qin W, Pompl PN, Xiang Z, Wang J, Zhao Z, Peng Y, Cambareri G, Rocher A, Mobbs CV, Hof PR, Pasinetti GM. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J 2004; 18(7): 902-904.

  37. Lannert H, Hoyer S. Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci 1998; 112(5): 1199-1208.

  38. Hoyer S. Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis. J Neural Transm 1998; 105(4-5): 415-422.

  39. Grimm MO, Grimm HS, Pätzold AJ, Zinser EG, Halonen R, Duering M, Tschäpe JA, De Strooper B, Müller U, Shen J, Hartmann T. Regulation of cholesterol and sphingomyelin metabolism by amyloid-b and presenilin. Nat Cell Biol 2005; 7(11): 1118-1123.

  40. Townsend M, Mehta T, Selkoe DJ. Soluble Ab inhibits specific signal transduction cascades common to the insulin receptor pathway. J Biol Chem 2007; 282(46): 33305-33312.

  41. Cheng G, Yu Z, Zhou D, Mattson MP. Phosphatidylinositol-3-Kinase-akt kinase and p42/p44 mitogen-activated protein kinases mediate neurotrophic and excitoprotective actions of a secreted form of amyloid precursor protein. Exp Neurol 2002; 175(2): 407-414.

  42. Mungarro-Menchaca X, Ferrera P, Morán J, Arias C. b-amyloid peptide induces ultrastructural changes in synaptosomes and potentiates mitochondrial dysfunction in the presence of ryanodine. J Neurosci Res 2002; 68(1): 89-96.

  43. Avila J. Tau phosphorylation and aggregation in Alzheimer’s disease pathology. FEBS Lett 2006; 580(12): 2922-2927.

  44. Lazarov O, Lee M, Peterson DA, Sisodia SS. Evidence that synaptically released b-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice. J Neurosci 2002; 22(22): 9785-9793.

  45. Kern W, Peters A, Fruehwald-Schultes B, Deininger E, Born J, Fehm HL. Improving influence of insulin on cognitive functions in humans. Neuroendocrinology 2001; 74(4): 270-280.

  46. Park CR, Seeley RJ, Craft S, Woods SC. Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiol Behav 2000; 68(4): 509-514.



>Revistas >El Residente >Año2009, No. 3
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019