Entrar/Registro  
INICIO ENGLISH
 
Alergia, Asma e Inmunología Pediátricas
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Alergia, Asma e Inmunología Pediátricas >Año 2002, No. 3


Goytia-Acevedo R, Meza-Velázquez R, Rosales-Gonzales M
El plomo como posible factor de riesgo para el desarrollo de alergia
Alerg Asma Inmunol Pediatr 2002; 11 (3)

Idioma: Español
Referencias bibliográficas: 47
Paginas: 101-105
Archivo PDF: 228.88 Kb.


Texto completo




RESUMEN

Existen evidencias de que la incidencia de las enfermedades alérgicas está aumentando en todo el mundo. Uno de los principales factores de riesgo que se proponen es la atopia, sin embargo, el incremento de alergia en ciudades desarrolladas sugiere que factores ambientales, como la contaminación ambiental también puedan ser un factor de riesgo para desarrollar enfermedades alérgicas. Recientes estudios demuestran que algunos metales pueden modular el sistema inmune. En este artículo, se propone el posible papel del plomo como factor de riesgo para la aparición de enfermedades alérgicas.


Palabras clave: Plomo.


REFERENCIAS

  1. Griem P, Wulferink M, Sanchs B, Gonzales JB, Gleichmann. Allergic and autoimmune reactions to xenobiotics: how do they arise? Immunol Today 1998; 19: 133-41.

  2. Luster MI, Germolec DR, Rosenthal GJ. Immunotoxicology: review of current status. Ann Allergy; 1990; 64(5): 427-32.

  3. Peden DB. Development of atopy and asthma: candidate environmental influences and important periods of exposure. Environ health Perspect; 2000; 108 Suppl 3: 475-82.

  4. Warner-Lambert Company (2000). http://www.laalergia.com

  5. Gainer JH. Lead aggravates viral disease and represses the antiviral activity of interferon inducers. Environ Health Perspects 1974; 144: 4110-4120.

  6. Behrman, (2000). Part XIV-Allergy Disorders; 645-649 in Nelson Textbook of pediatrics, Sixteenth Edition, Copyright 2000. W.B. Saunders Company

  7. Koenig JQ. Air pollution and asthma. J Allergy Clin Immunol; 1999; 104: 717-22.

  8. Parronchi P, Brugnolo F, Sampognaro S, Maggi E. Genetic and environmental factors contributing to the onset of allergic disorders. Int Arch Allergy Immunol 2000; 121: 2.

  9. Holt PG. Environmental pollutants as co-factors en IgE production. Curr Opin Immunol 1989; 1: 643-6.

  10. Kimber I. Allergy, asthma and the environment: an introduction. Toxicol Lett 1998; 102-103: 301-6.

  11. Phillips TM. Assessing environmental exposure in children: immunotoxicology screening. J Expo Anal Environ Epidemiol;2000; 10: 769-75.

  12. Diez U, Kroessner T, Rehwagen M, Richter M, Wetzig H, Schulz R, Borte M, Metzner G, Krumbiegel P, Herbarth O. Effects of indoor painting and smoking on airway symptoms in atopy risk children in the first year of life results of the LARS study. Leipzig Allergy Hig-Risk Children Study. Int J Hyg Environ Health 2000; 203: 23-8.

  13. Lombardi G, Germain C, Uren J, Fiorillo MT, du Bois RM, Jones-Williams W, Saltini C, Sorrentino R, Lechler R. HLA-DP allele –specific T cell responses to beryllium account for DP-associated susceptibility to chronic beryllium disease. J Immunol 2001; 166: 3549-3555.

  14. Krocova Z, Macela A, Kroca M, Hernychova L. The immunomodulatory effect(s) of lead and cadmium on the cells of immune system in vitro. Toxicol In Vitro; 2000; 14: 33-40.

  15. Sprietsma JE. Zinc-controlled Th1/Th2 switch significantly determines development of diseases. Med Hypotheses 1997; 49: 1-14.

  16. Heo Y, Lee WT, Lawrence DA. In vivo the environmental pollutants lead and mercury induce oligoclonal T cell responses skewed toward type-2 reactivities. Cell Immunol 1997; 179: 185-95.

  17. Prasad AS. Effects of zinc deficiency on Th1 and Th2 cytokine shifts. J Infect Dis 2000; 182 Suppl 1: S62-8.

  18. Gorrie MJ, Qasim FJ, Whittle CJ, Gillespie KM, Szeto C-C, Nicoletti F, Bolton EM, Bradley JA, Mathieson PW. Exogenous type-1 cytokines modulate mercury-induced hyper-IgE in the rat. Clinical and Experimental Immunology 2000; 121: 17-22.

  19. Bagenstose LM, Salgame P, Monestier M. Murine mercury-induced autoimmunity: a model of chemically related autoimmunity in humans. Immunol Res 1999; 20: 67-78.

  20. Hu H, Moller G, Abedi-Valugerdi M. Mechanism of mercury-induced autoimmunity: both T helper 1- and T helper 2- type responses are involved. Immunology 1999; 96: 348-57.

  21. Schempp CM, Dittmar HC, Hummler D, Simon-Haarhaus B, Schulte-Monting J, Schopf E, Simon JC. Magnesium ions inhibit the antigen-presenting function of human epidermal Langerhans cells in vivo and in vitro. Involvement of ATPase, HLA-DR, B7 molecules, and cytokines. J Invest Dermatol 2000; 115: 680-6.

  22. Hashimoto Y, Nishimura Y, Maeda H, Yokoyama M. Assesment of magnesium status in patients with bronchial asthma. J Asthma 2000; 37: 489-96.

  23. Lee LY, Atochina O, King B, Taylor L, Elloso M, Scott P, Rossmman MD. Beryllium, an adjuvant that promotes gamma interferon production. Infect Immun 2000; 68: 4032-9.

  24. Szepietowski JC, Mckennzie RC, Keohance SG, Aldridge RD, Hunter JA. Atopic and no-atopic individuals react to nickel challenge in a similar way. A study of the cytokine profile in nickel-induced contact dermatitis. Br J Dermatol 1997; 137: 195-200.

  25. Borg L, Christensen JM, Kristiansen J, Nielsen NH, Menne T, Poulsen LK. Nickel-induced cytokine production from mononuclear cells in nickel-sensitive individuals and controls. Cytokine profiles in nickel-sensitive individuals with nickel allergy-related hand eczema before and after challenge. Arch Dermatol Res 2000; 292: 285-91.

  26. Sarasua SM, Vogt RF, Henderson LO, Jones PA, Lybarger JA. Serum immunoglobulins and lymphocyte subset distributions in children and adults living in communities assessed for lead and cadmium exposure. J Toxicol Environ Health 2000; 60: 1-15.

  27. Hurtenbach U, Oberbarnscheidt J, Gleichmann E. Modulation of murine T and B cell reactivity after short-term cadmium exposure in vivo. Arch Toxicol 1988; 62: 22-8

  28. ATSDR (1998). Agency for Toxic Substances Disease Registry (1998). Toxicological profile for lead (update). Washington, DC: US Department of Health and Human Services.

  29. Rosas J, Rodríguez MN (2000). Algunas razones para la eliminación del empleo de la gasolina con plomo. Pemex Refinación, Subdirección de Producción. www.franquiciapemex.com

  30. Kowolenko M, Tracy L, Mudzinski S, Lawrence D. Effects of lead on macrophage function. J Leukocyte Biol 1988; 43: 357-364.

  31. Chen S, Golemboski KA, Sanders FS, Dietert RR. Persistent effect of utero meso-2,3-dimercaptosuccinic acid (DMSA) on immune function and lead-induced immunotoxicity. Toxicology 1999; 132: 67-79.

  32. Lee J, Chen S, Golemboski KA, Parsons PJ, Dietert RR. Developmental windows of differential lead-induced immunotoxicity in chickens. Toxicology 2001; 156: 161-170.

  33. MacCabe MJ, Lawrence DA. The heavy metal lead exhibits B-cell-stimulatory factor activity by enhancing B cell Ia expression and differentiation. J Immunol 1990; 145: 671-677.

  34. Pyatt DW, Zheng Jia-Hua, Stillman WS, Irons RD. Inorganic lead activates NF-kB in primary human CD4+ T lymphocytes. Biochem Biophys Res Comm 1996; 227: 380-385.

  35. Lawrence DA. Heavy metal modulation of lymphocyte activities. I. In vitro effects of heavy metals on primary humoral response. Toxicol Appl Pharmacol 1981 a; 57: 439-451.

  36. Heo Y, Parsons PJ, Lawrence DA. Lead differentially modifies cytokine production in vitro and in vivo. Toxicology and Applied Pharmacology; 1996; 138: 149-157.

  37. Gainer JH. Lead aggravates viral disease and represses the antiviral activity of interferon inducers. Environ Health Perspects 1974; 144: 4110-4120.

  38. MacCabe MJ, Dias JA, Lawrence DA. Lead influences translational or posttranslational regulation of Ia expression and increases invariant chain expression in mouse B cells. J Biochem Toxicol 1991; 6: 269-276.

  39. Lawrence DA. Heavy metal modulation of lymphocyte activities. II. Lead, an in vitro mediator of B cell activation. Int J Immunopharmacology 1981 b ; 3:153-161.

  40. Lawrence DA. In vivo and in vitro effects of lead on humoral and cell-mediated immunity. Infect Immun 1981 c; 31: 136-143.

  41. Warner GL, Lawrence DA. Stimulation of murine lymphocyte response by cations. Cell Immunol 1986; 101: 425-439.

  42. MacCabe MJ, Lawrence DA. Lead, a major environmental pollutant, is immunomodulatory by its differential effects on CD4+ T cell subsets. Toxicol Appl Pharmacol 1991; 111: 13-23.

  43. Lutz PM, Wilson TJ, Ireland J, Jones AL, Gorman JS, Gale NL, Johnson JC, Hewet JE. Elevated immunoglobulin E (IgE) levels in children with exposure to environmental lead. Toxicology 1999; 134: 63-78.

  44. Albert LA, Badillo F. Environmental lead in Mexico. Rev Environ Contam Toxicol 1991; 117: 1-49.

  45. Rothenberg SI, Schnaas-Arrieta L, Pérez-Guerrero IA, Hernández-Cervantes R, Martínez-Medina S, Perroni-Hernández E. Factores relacionados con el plomo en sangre en niños de 6 a 30 meses de edad en el estudio prospectivo de plomo en la Ciudad de México. Rev Sal Púb 1993; 35: 592-598.

  46. Boscolo P, Di Gioacchino M, Sabbioni E, Benvenuti F, Conti P, Reale M, Bavazzano P, Giuliano G. Expression of lymphocyte subpopulations, citokine serum levels, and blood and urinary trace elements in asymptomatic atopic men exposed to an urban environment. Int Arch Occup Environ Health 1999; 72: 26-32.

  47. Snyder JE, Filipov NM, Parsons PJ, Lawrence DA. The efficiency of maternal transfer of lead and its influence on plasma IgE and splenic cellularity of mice. Toxicol Sci 2000; 57: 87-94.



>Revistas >Alergia, Asma e Inmunología Pediátricas >Año2002, No. 3
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019