Entrar/Registro  
INICIO ENGLISH
 
Acta Médica Grupo Ángeles
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Acta Médica Grupo Ángeles >Año 2012, No. 1


Korrodi AAIII, Sánchez REC, Fung AJA, Abreu RÓA, León MG, Gamboa BME, Gudiño CY
Efecto analgésico de la oxigenación hiperbárica (OHB)
Acta Med 2012; 10 (1)

Idioma: Español
Referencias bibliográficas: 30
Paginas: 9-13
Archivo PDF: 250.15 Kb.


Texto completo




RESUMEN

Introducción: El dolor es un proceso complejo, resultado de estímulos de distinto origen. Se clasifica de acuerdo a su etiología en nociceptivo, neuropático y psicógeno, y por su duración en agudo o crónico. A través de la terapia con oxigenación hiperbárica (OHB) es posible disminuir el dolor en los pacientes corrigiendo varios de los mecanismos que intervienen en su génesis. Material y métodos: Se evaluaron 60 pacientes (40 varones y 20 mujeres) con un rango de edad entre los 7 y los 78 años durante un periodo de 10 meses. Se utilizó la escala visual análoga (EVA) para valorar la intensidad del dolor previo y posterior al tratamiento con OHB. Resultados: Previo al tratamiento con OHB, 60% de los pacientes (n = 36) reportaron una calificación EVA del dolor de 7-10, 20% de los pacientes (n = 12) presentaron EVA de 5-7, 15% de los pacientes (n = 9) refirió una EVA de 5 y 5% de los pacientes (n = 3) refirió un EVA menor a 5. Posterior al tratamiento con OHB se obtuvo una reducción significativa del dolor (p ‹ 0.001), encontrándose una EVA de 0-1 en el 75% de los pacientes (n = 45) y 20% de los pacientes (n = 12) refirió EVA de 2, mientras que el 5% (n = 3) no reportó mejoría del dolor posterior a la OHB. Conclusiones: La oxigenación hiperbárica ha demostrado que induce analgesia mejorando significativamente la calidad de vida de los pacientes.


Palabras clave: Oxigenación hiperbárica, escala visual análoga, analgesia.


REFERENCIAS

  1. Bistre S, Araujo M. Dolor: síntoma, síndrome y padecimiento. Azerta Comunicación Creativa 2003: 17-28.

  2. International Association for Study of Pain (IASP). Classification of chronic pain: descriptions of chronic pain syndromes and definitions of pain terms. 2a ed., Merzkey, H. & Bogduk, N., Seanle, WA, USA, 2002.

  3. Zimmermann M. Pathobiology of neuropathic pain. Eur J Pharmacol 2001; 429(1-3): 23-37.

  4. Inoue K, koizumi S, Tsuda M, Shigemoto-Mogami Y. Signaling of ATP receptors in glia-neuron interaction and pain. Life Sci 2003; 74(2-3): 189-197.

  5. Inoue K, Tsuda M, Koizumi S. ATP-and adenosine-mediated signaling in central nervous system: chronic pain and microglia: involvement of the ATP receptor P2X4: J Pharmacol Sci 2004; 94(2): 112-114.

  6. Finsterer J. Mitochondrial neuropathy. Clin Neurol Neurosurg 2005; 107(3): 181-186.

  7. Chiechio S, Copan A, De Petris L, Morales ME, Nicoletti F, Gereau RW. Transcriptional regulation of metabotropic glutamate receptor 2/3 expression by the NF-Kappa pathway in primary dorsal root ganglia neurons: A possible mechanism for the analgesic effect of L-acetylcarnitine. Mol Pain 2006; 2: 20.

  8. Milligan ED, O’Connor KA, Nguyen KT, Armstrong CB, Twining C, Gaykema RP, Holguin A, Martin D, Maier SF, Watkins LR. Intrathecal HIV-1 envelope glycoprotein gp 120 induces enhanced pain states mediated by spinal cord proinflammatory cytokines: J Neurosci 2001; 21(8): 2808-2819.

  9. Ledeboer A, Gamanos M, Lai W, Martin D, Maier SF, Watkins LR, Quan N. Involvement of spinal cord nuclear factor kappaB activation in rat models of proinflammatory cytokine-mediated pain facilitation. Eur J Neurosci 2005; 22(8): 1977-1986.

  10. Zhao Z, Chen SR, Eisenach JC, Busija DW, Pan HL. Spinal cyclooxygenase-2 is involved in development of allodynia after nervier injury in rats. Neuroscience 2000; 97(4): 743-748.

  11. Schafers M, Svenssons CI, Sommer C, Sorkin LS. Tumor necrosis factor-alpha induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons. J Neurosci 2003; 23(7): 2517-2521.

  12. Peng XM, Zhou ZG, Glorioso JC, Fink DJ, Mata M. Tumor necrosis factor-alpha contributes to below-level neuropathic pain after spinal cord injury. Ann Neurol 2006; 59(5): 843-851.

  13. O’Rielly DD, Loomis CW. Increased expression of cyclooxigenase and nitric oxide isoforms, and exaggerated sensitivity to prostaglandin E2, in the rat lumbar spinal cord 3 days after L5-L6 spinal nerve ligation. Anesthesiology 2006; 104(2): 328-337.

  14. Ledeboer A, Sloane EM, Milligan ED, Frank MG, Mahony JH, Maier SF, Watkins LR. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain 2005; 115(1-2): 71-83.

  15. Sweitzer SM, Colburn RW, Rutkowski M, DeLeo JA. Acute peripheral inflammation induces moderate glial activation and spinal IL-beta expression that correlates with pain behavior and the rat. Brain Res 1999; 829(1-2): 209-221.

  16. Xie W, Liu X, Xuan H, Luo S, Zhao X, Zhou Z, Xu J. Effect of betamethasone on neuropathic pain and cerebral expression of NF-kappaB and cytokines. Neurosci Left 2006; 393(2-3): 255-259.

  17. Detloff MR, Fisher LC, McGaughy V, Longbrake EE, Popovich PG, Basso DM. CSM 2007, spinal cord injury thematic poster presentations: Remote microglial activation and the production of proinflamatory cytokines predicts the development of neuropathic pain after spinal cord injury. J Neurol Phys Ther 2006; 30(4): 201-208.

  18. Sakaue G, Shimaoka M, Fukuoka T, Hiroi T, Inoue T, Hashimoto N et al. NF-kappa B decoy suppresses cytokines expression and thermal hyperalgesia in a rat neuropathic pain model. Neuroreport 2001; 12(10): 2079-2084.

  19. Lee KM, Kang BS, Lee HL, Son SJ, Hwang SH, Kim DS, Park JS, Cho HJ. Spinal NF-kB activation induces COX-2 up regulation and contributes to inflammatory pain hypersensitivity. Eur J Neurosci 2004; 19(12): 3375-3381.

  20. Chen SR, Pan HL. Distinct roles of group III metabotropic glutamate receptors in control of nociception and dorsal horn neurons in normal and nerve-injured Rats. J Pharmacol Exp Ther 2005; 312(1): 120-126.

  21. Milligan ED, Twining C, Chacur M, Biedenkapp J, O’Connor K, Poole S, Tracey K, Martin D, Maier SF, Watkins LR. J Neurosci 2003; 23(3): 1026-1040.

  22. Colburn RW, Rickman AJ, De Leo JA. The effect of site and type of nerve injury on spinal glial activation and neuropathic pain behavior. Exp Neurol 1999; 157(2): 289-304.

  23. Wada A. Roles of voltage-dependent sodium channels in neuronal development, pain, and neurodegeneration. J Pharmacol Sci 2006; 102(3): 253-268.

  24. Hains BC, Saab CY, Klein JP, Craner MJ, Waxman SG. Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J Neurosci 2004; 24(20): 4832-4839.

  25. Todorovic SM, Jevtovic-Todorovic V. The role of T-type calcium channels in peripheral and central pain processing. CNS Neurol Disord Drug Targets. 2006; 5(6): 639-653.

  26. Feldmeir J. HBO Committe Report. Ed. Undersea and Hyperbaric Medical Society, 2003.

  27. Sánchez EC. Hyperbaric oxigenation (HBO2) in peripherial nerve repair and regeneration. J Neuro Rev 2007.

  28. Yildiz S, Uzun G, Kiralp MZ. Hyperbaric oxigen therapy in chronic pain management. Current Pain Headache Rep 2006; 10(2): 95-100.

  29. Marianne JK et al. Analgesic effect of hyperbaric oxygen for pain caused by cancer treatment. Journal of Palliative Care 1999; 15(2): 53-55.

  30. Eguiluz-Ordoñez R, Sánchez EC, Venegas A, Figueroa-Granados V, Hernandez-Pando R. Effects of hyperbaric oxygen on peripheral nerves. Plast Reconst Surg 2006; 118: 350-357.



>Revistas >Acta Médica Grupo Ángeles >Año2012, No. 1
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019