Entrar/Registro  
INICIO ENGLISH
 
Gaceta Médica de México
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Gaceta Médica de México >Año 2013, No. 2


Ramírez-Bello J, Vargas-Alarcón G, Tovilla-Zárate C, Fragoso JM
Polimorfismos de un solo nucleótido (SNP): implicaciones funcionales de los SNP reguladores (rSNP) y de los SNP-ARN estructurales (srSNP) en enfermedades complejas
Gac Med Mex 2013; 149 (2)

Idioma: Español
Referencias bibliográficas: 71
Paginas: 220-228
Archivo PDF: 146.37 Kb.


Texto completo




RESUMEN

Los polimorfismos de un solo nucleótido (SNP) representan a las variantes genéticas más comúnmente encontradas en el genoma humano. Debido a su amplia distribución, estos polimorfismos se localizan en cualquier parte de la estructura de los genes y el genoma. Los SNP que tienen implicaciones funcionales sobre los niveles de expresión génica se denominan SNP reguladores (rSNP), mientras que los que alteran la traducción de los ARN mensajeros (ARNm), el corte y empalme, la eficiencia para potenciar o inhibir el corte y empalme, la estabilidad de los ARNm y la función de las proteínas (sin alterar su estructura) se denominan SNP ARN estructurales (srSNP). Diversos estudios han documentado la importancia funcional de los rSNP y srSNP en el desarrollo de enfermedades comunes como hipertensión arterial (HTA), obesidad, artritis reumatoide, enfermedad arterial coronaria, entre otras. El objetivo de este artículo es hacer una revisión bibliográfica actualizada de los SNP funcionales (rSNP y srSNP) que tiene efecto en la función del gen, ARNm, proteínas y que se asocian con diversas enfermedades complejas.


Palabras clave: Polimorfismo, rSNP, srSNP, Susceptibilidad.


REFERENCIAS

  1. Dooley MA, Hogan SL. Environmental epidemiology and risk factors for autoimmune disease. Curr Opin Rheumatol. 2003;15:99-103.

  2. Kunes J, Zicha J. The interaction of genetic and enviromental factors in the etiology of hypertension. Physiol Res. 2009;58 Suppl 2:33-41.

  3. Andrassi MG. Metabolic syndrome, diabetes and atherosclerosis: influence of gene-enviroment interaction. Mutat Res. 2009;667:35-43.

  4. Ramírez-Bello J, Pérez-Méndez O, Ramírez-Fuentes S, Carrillo-Sánchez S, Vargas-Alarcón G, Fragoso JM. Genetic and genomic studies in hypertension: an actualization of the genomic studies. Arch Cardiol Mex. 2011;81:240-50.

  5. Su MW, Tung KY, Liang PH, Tsai CH, Kuo NW, Lee YL. Gene-gene and gene-environmental interaction of childhood asthma: a multifactor dimension reduction approach. PLoS One. 2012;7:e30694.

  6. Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet. 2003;33(Suppl):228-37.

  7. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nat. 2001;409:860-921.

  8. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291:1304-51.

  9. Sachidanandam R, Weissman D, Schmidt SC, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorhisms. Nat. 2001;409:928-33.

  10. Feuk L, Marshall CR, Wintle RF, Scherer SW. Structural variants: changing the landscape of chromosomes and design of disease studies. Hum Mol Genet. 2006;15(Spec):R57-66.

  11. Beckmann JS, Estivill X, Antonarakis SE. Copy number variants and genetic traits: closer to the resolution of phenotypic to genotyping variability. Nat Rev Genet. 2007;8:639-46.

  12. Altshuler D, Caly MJ, Lander ES. Genetic mapping in human disease. Science. 2008;322:881-8.

  13. Ronaghi M, Langaee T. Single nucleotide polymorphism: discovery, detection and analysis. Perzonalized Medicine. 2005;2:111-25.

  14. Feero WG, Guttmacher AE, Collins FS. Genomic medicine – An updated primer. N Engl J Med. 2010;362:2001-11.

  15. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature. 2010;467:1061-73.

  16. Entrez SNP (www.ncbi.nlm.nih.gov/sites/entrez?db=snp).

  17. Sadee W. Measuring cis-acting regulatory variants genome-wide: new insights into expression genetics and disease susceptibility. Genome Med. 2009;1:116.

  18. Sadee W, Wang D, Papp AC, et al. Pharmacogenomics of the RNA world: structural RNA polymorphisms in drug therapy. 2011;89:355-65.

  19. Prokunina L, Alarcón-Riquelme ME. Regulatory SNPs in complex diseases: their identification and functional validation. Expert Rev Mol Med. 2004;6:1-15.

  20. Hernández-Romano J, Martínez-Barnetche J, Valverde-Garduño V. Polymorphisms in gene regulatory regions and their role in the physiopathology of complex disease in the post-genomic era. Salud Pública Mex. 2009;51 Suppl 3:455-62.

  21. Hunt R, Sauna ZE, AMbudkar SV, Gottesman MM, Kimchi-Sarfaty C. Silent (synonymous) SNPs: should we care about them? Methods Mol Biol. 2009;578:23-39.

  22. Lee YH, Bae SC, Choi SJ, Ji JD, Song GG. The association between the PTPN22 C1858T polymorphism and rheumatoid arthritis: a meta-analysis update. Mol Biol Rep. 2012;39:3453-60.

  23. Yu H, Liu H, Wang LE, Wei Q. A functional NQO1 609C > T polymorphism and risk of gastrointestinal cancers: a meta-analysis. PLoS One. 2012;7:e30566.

  24. Merino DM, Ma DW, Mutch DM. Genetic variation in lipid desaturases and its impact on the development of human disease. Lipids Health Dis. 2010;18:63.

  25. Ogbourne S, Antalis TM. Transcriptional control and the role of silencers in transcriptional regulation in eukaryotes. Biochem J. 1998;331:1-14.

  26. Kininis M, Kraus WL. A global view of transcriptional regulatory by nuclear receptors: gene expression, factor localization, and DNA sequence analysis. Nucl Recept Signal. 2008;6:e005.

  27. Näär AM, Lemon BD, Tjian R. Transcriptional coactivator complexes. Ann Rev Biochem. 2001;70:475-501.

  28. Kochi Y, Yamada R, Suzuki A, et al. A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nat Genet. 2005;37:478-85.

  29. Knight JC, Udalova I, Hill AV, et al. A polymorphism that affects OCT-1 binding to the TNF promoter region is associated with severe malaria. Nat Genet. 1999;22:145-50.

  30. Ozaki K, Ohnishi Y, Iida A, et al. Functional SNPs in the lymphotoxinalpha gene that are associated with susceptibility to myocardial infarction. Nat Genet. 2002;32:650-4.

  31. Rodríguez-Carreón AA, Zúñiga J, Hernández Pacheco G, et al. Tumor necrosis factor-alpha -308 promoter polymorphism contributes independently to HLA alleles in the severity of rheumatoid arthritis in Mexicans. J Autoimmun. 2005;24:63-8.

  32. Witte JS, Palmer LJ, O’Connor RD, Hopkins PJ, Hall JM. Relation between tumour necrosis factor polymorphism TNF-alpha -308 and risk of asthma. Eur J Hum Genet. 2002;10:82-5.

  33. Ding B, Fu S, Wang M, et al. Tumor necrosis factor -308G > A polymorphisms and cervical cancer risk: a meta-analysis. Int J Gynecol Cancer. 2012;22:213-9.

  34. Pujhari SK, Ratho RK, Prabhakar S, Mishra B, Modi M. TNF-alpha promoter polymorphism: a factor contributing to the different immunological and clinical phenotypes in Japanese encephalitis. BMC Infect Dis. 2012;12:23.

  35. Wilson AG, Symons JA, McDowell TL, McDevitt HO, Duff GW. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Nat Acad Sci USA. 1997;94:3195-9.

  36. Glossop JR, Dawes PT, Nixon NB, Mattey DL. Polymorphism in the tumour necrosis factor receptor II gene is associated with circulating levels of soluble tumour necrosis factor receptors in rheumatoid arthritis. Arthritis Res Ther. 2005;7:R1227-34.

  37. Jeong P, Kim EJ, Kim EG, Byun SS, Kim CS, Kim WJ. Association of bladder tumors and GA genotype of -308 nucleotide in tumor necrosis factor-alpha promoter with greater tumor necrosis factor-alpha expression. Urology. 2004;64:1052-6.

  38. Sharma S, Sharma A, Kumar S, Sharma SK, Ghosh B. Association of TNF haplotypes with asthma, serum IgE levels, and correlation with serum TNF-alpha levels. Am J Respir Cell Mol Biol. 2006;35:488-95.

  39. Stojanovic S, Jevtovic-Stoimenov T, Stankovic A, et al. Association of TNF-alpha polymorphism (-308A/G) with high activity of rheumatoid arthritis and therapy response to etarnecept. Srp Arh Celok Lek. 2011;139:784-9.

  40. Schmeling H, Horneff G. Tumour necrosis factor alpha promoter polymorphisms and etanercept therapy in juvenile idiophatic arthritis. Rheumatol Int. 2007;27:383-6.

  41. Jiménez-Morales S, Velázquez-Cruz R, Ramírez-Bello J, et al. Tumor necrosis factor-alpha is a common genetic risk factor for asthma, juvenile rheumatoid arthritis, and systemic lupus erythematosus in a Mexican pediatric population. Hum Immunol. 2009;70:251-6.

  42. Vera PL, Meyer-Siegler KL. Association between macrophage migration inhibitory factor promoter region polymorphism (-173G/C) and cancer: a meta-analysis BMC Res Notes 2011;4:395.

  43. Sugiyama M, Tanaka Y, Wakita T, Nakanishi M, Mizokami M. Genetic variation of the IL-28B promoter affecting gene expression. PLoS One. 2011;6:e26620.

  44. Um JY, Rim HK, Kim SJ, Kim HL, Hong SH. Functional polymorphism of IL-1 alpha and its potential role in obesity in humans and mice. PLoS One. 2011;6:e29524.

  45. Qin C, Cao Q, Li P, et al. Functional promoter -31G > C variant in survivin gene is associated with risk and progression of renal cell cancer in a Chinese population. PLoS One. 2012;7:e28829.

  46. Mignone F, Gissi C, Liuni S, Pesole G. Untranslated regions of mRNAs. Genome Biol. 2002;3:3.

  47. Cazzola M, Skoda RC. Translational pathophysiology: a novel molecular mechanism of human disease. Blood. 2000;95:3280-8.

  48. Bevilacqua A, Ceriani MC, Capaccioli S, Nocolin A. Post-transcriptional regulation of gene expression by degradation of messenger RNAs. J Cell Physiol. 2003;195:356-72.

  49. Miller GM, Madras BK. Polymorphisms in the 3’-untranslated region of human and monkey dopamine transporter genes affect reporter gene expression. Mol Psychiatry. 2002;7:44-55.

  50. Di Paola R, Frittitta L, Miscion G, et al. A variation in 3’UTR of hPTP1B increases specific gene expression and associates with insulin resistence. Am J Hum Genet. 2002;70:806-12.

  51. Huang JL, Gao PS, Mathias RA, et al. Sequence variants of the gene encoding chemoattractant receptor expressed on Th2 cells (CRTH2) are associated with asthma and differentially influence mRNA stability. Hum Mol Genet. 2004;13:2691-7.

  52. Fernández-Real JM, Vendrell J, Ricart W, et al. Polymorphism of the tumor necrosis factor alpha receptor 2 gene in associated with obesity, leptin levels, and insulin resistance in young subjects and diet-treated type 2 diabetic patients. Diabetes Care. 2000;23:831-7.

  53. Puga I, Lainez B, Fernández-Real JM, et al. A polymorphism in the 3’ untranslated region of the gene for tumor necrosis factor receptor 2 modulates reporter gene expression. Endocrinology. 2005;146: 2210-20.

  54. Chen M, Manley JL. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat Rev Mol Cell Biol. 2009;10:741-54.

  55. Hui J. Regulation of mammalian pre-mRNA splicing. Sci China Ser C Life Sci. 2009;52:253-60.

  56. Hsu SN, Hertel KJ. Spliceosoma walk the line: splicing errors and their impact on cellular function. RNA Biology. 2009;6:526-30.

  57. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40:1413-5.

  58. Warf MB, Berglund JA. The role of RNA structure in regulating pre-mRNA splicing. Trends Biochem Sci. 2010;35:169-78.

  59. Tress ML, Martelli PL, Frankish A, et al. The implications of alternative splicing in the encode protein complement. Proc Nat Acad Sci USA. 2007;104:5495-500.

  60. Baralle D, Baralle M. Splicing in action: assessing disease causing sequence changes. J Med Genet. 2005;42:737-48.

  61. Burkhardt R, Kenny EE, Lowe JK, et al. Common SNPs in HMGCR in micronesians and whites associated with LDL-cholesterol levels affect alternative splicing of exon 13. Arterioscler Thromb Vasc Biol. 2008;28:2078-84.

  62. Douglas KB, Windels DC, Zhao J, et al. Complement receptor 2 polymorhisms associated with systemic lupus erythematosus modulate alternative splicing. Genes Immun. 2009;10:457-69.

  63. Hansson O, Zhou Y, Renstrom E, Osmark P. Molecular function of TCF7L2: consequences of TCF7L2 splicing for molecular function and risk for type 2 diabetes. Curr Diab Rep. 2010;10:444-51.

  64. Nakata K, Lipska BK, Hyde TM, et al. DISC1 splice variants are upregulated in schizophrenia and associated with risk polymorphisms. Proc Natl Acad Sci USA. 2009;106:15873-8.

  65. Cagliani R, Fumagalli M, Riva S, N et al. Polymorphisms in the CPB2 gene are maintained by balancing selection and resulat in haplotypepreferential splicing of exon 7. Mol Biol Evol. 2010;27:1945-54.

  66. Lalonde E, Ha KC, Wang Z, et al. RNA sequencing reveals the role of splicing polymorphisms in regulating human gene expression. Genome Res. 2011;21:545-54.

  67. Hunt R, Sauna ZE, Ambudkar SV, Gottesman MM, Kimchi-Sarfaty C. Silent (synonimous) SNPs: should we care about them? Methods Mol Biol. 2009;578:23-39.

  68. Niemi M, Arnold KA, Backman JT, et al. Association of genetic polymorhism in ABCC2 with hepatic multidrug resistence-associated protein 2 expression and pravastatin pharmacogenetics. Pharmacogenet Genomics. 2006;16:801-8.

  69. Shen LX, Basilion JP, Stanton VP Jr. Single-nucleotide polymorphisms can cause different structural folds of mRNA. Proc Nat Acad Sci USA. 1999;96:7871-6.

  70. Kimchi-Sarfaty C, Oh JM, Kim IW, et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science. 2007;315:525-8.

  71. Komar AA. Genetics. SNPs, silent but not invisible. Science. 2007;315: 466-7.



>Revistas >Gaceta Médica de México >Año2013, No. 2
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019