Entrar/Registro  
INICIO ENGLISH
 
Gaceta Médica de México
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Gaceta Médica de México >Año 2013, No. 2


Monroy-Muñoz IE, Pérez-Hernández N, Vargas-Alarcón G, Ortiz-San Juan G, Buendía-Hernández A, Calderón-Colmenero J, Ramírez-Marroquín S, Cervantes-Salazar JL, Curi-Curi P, Martínez-Rodríguez N, Rodríguez PJM
Cambiando el paradigma en las cardiopatías congénitas: de la anatomía a la etiología molecular
Gac Med Mex 2013; 149 (2)

Idioma: Español
Referencias bibliográficas: 53
Paginas: 212-219
Archivo PDF: 678.27 Kb.


Texto completo




RESUMEN

El desarrollo embrionario del corazón consiste en una serie de interacciones morfogenéticas complejas y específicas, que requieren del correcto funcionamiento de cada uno de los factores implicados en la cardiogénesis. Las cardiopatías congénitas (CC) son enfermedades complejas y multifactoriales, en las que el factor ambiental y el genético son de gran relevancia. No existe una correlación exacta entre los mecanismos moleculares y los defectos morfológicos de las CC, ya que en la mayoría de los casos la formación adecuada de una estructura anatómica implica el correcto funcionamiento de varias vías, las cuales pueden involucrar el producto de distintos genes. En este artículo se resumen los diferentes factores genéticos implicados en el desarrollo normal del corazón, así como las alteraciones más frecuentes que se han asociado con el desarrollo de las cardiopatías congénitas.


Palabras clave: Cardiopatías congénitas, Factores de transcripción, Mutaciones, Polimorfismos.


REFERENCIAS

  1. Marelli AJ, Mackie AS, Ionescu-Ittu R, Rahme E, Pilote L. Congenital heart disease in the general population: changing prevalence and age distribution. Circulation. 2007;115:163-72.

  2. Samanek M. Congenital heart malformations: prevalence, severity, survival, and quality of life. Cardiol Young. 2000;10:179-85.

  3. Mitchell SC, Korones SB, Berendes HW. Congenital heart disease in 56,109 births. Incidence and natural history. Circulation. 1971;43:323-32.

  4. Report of the New England Regional Infant Cardiac Program. Pediatrics. 1980;65:375-461.

  5. Martínez OP, Romero IC, Alzina AV. Incidence of congenital heart disease in Navarra (1989-1998). Rev Esp Cardiol. 2005;58:1428-34.

  6. Sistema Nacional de Información en Salud. www.sinais.salud.gob.mx/ mortalidad/index.html. 1-5-0012. Ref type: online source.

  7. Dearani JA, Connolly HM, Martínez R, Fontanet H, Webb GD. Caring for adults with congenital cardiac disease: successes and challenges for 2007 and beyond. Cardiol Young. 2007;17:87-96.

  8. Sander TL, Klinkner DB, Tomita-Mitchell A, Mitchell ME. Molecular and cellular basis of congenital heart disease. Pediatr Clin North Am. 2006;53:989-1009.

  9. Huang JB, Liu YL, Sun PW, Lv XD, Du M, Fan XM. Molecular mechanisms of congenital heart disease. Cardiovasc Pathol. 2010;19:e183-93.

  10. Srivastava D. Genetic regulation of cardiogenesis and congenital heart disease. Annu Rev Pathol. 2006;1:199-213.

  11. Alsan BH, Schultheiss TM. Regulation of avian cardiogenesis by Fgf8 signaling. Development. 2002;129:1935-43.

  12. Laverriere AC, Macneill C, Mueller C, Poelmann RE, Burch JB, Evans T. GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J Biol Chem. 1994;269:23177-84.

  13. Hoffman JI, Kaplan S, Liberthson RR. Prevalence of congenital heart disease. Am Heart J. 2004;147:425-39.

  14. Marín-García J. Advances in molecular genetics of congenital heart disease. Rev Esp Cardiol. 2009;62:242-5.

  15. Garg V. Insights into the genetic basis of congenital heart disease. Cell Mol Life Sci. 2006;63:1141-8.

  16. Greulich F, Rudat C, Kispert A. Mechanisms of T-box gene function in the developing heart. Cardiovasc Res. 2011;91:212-22.

  17. Nemer M. Genetic insights into normal and abnormal heart development. Cardiovasc Pathol. 2008;17:48-54.

  18. Bajolle F, Zaffran S, Bonnet D. Genetics and embryological mechanisms of congenital heart diseases. Arch Cardiovasc Dis. 2009;102:59-63.

  19. Bruneau BG. The developmental genetics of congenital heart disease. Nature. 2008;451:943-8.

  20. Biben C, Weber R, Kesteven S, et al. Cardiac septal and valvular dysmorphogenesis in mice heterozygous for mutations in the homeobox gene Nkx2-5. Circ Res. 2000;87:888-95.

  21. Schott JJ, Benson DW, Basson CT, et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science. 1998;281:108-11.

  22. Clark KL, Yutzey KE, Benson DW. Transcription factors and congenital heart defects. Annu Rev Physiol. 2006;68:97-121.

  23. Basson CT, Bachinsky DR, Lin RC, et al. Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet. 1997;15:30-5.

  24. Li QY, Newbury-Ecob RA, Terrett JA, et al. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet. 1997;15:21-9.

  25. Bruneau BG, Nemer G, Schmitt JP, et al. A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell. 2001;106:709-21.

  26. Stennard FA, Harvey RP. T-box transcription factors and their roles in regulatory hierarchies in the developing heart. Development. 2005;132:4897-910.

  27. Kirk EP, Sunde M, Costa MW, et al. Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet. 2007;81:280-91.

  28. Liu C, Shen A, Li X, Jiao W, Zhang X, Li Z. T-box transcription factor TBX20 mutations in Chinese patients with congenital heart disease. Eur J Med Genet. 2008;51:580-7.

  29. Lindsay EA, Vitelli F, Su H, et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature. 2001;410:97-101.

  30. Merscher S, Funke B, Epstein JA, et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell. 2001;104:619-29.

  31. Xu H, Morishima M, Wylie JN, et al. Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract. Development. 2004;131:3217-27.

  32. Kodo K, Nishizawa T, Furutani M, et al. GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling. Proc Natl Acad Sci USA. 2009;106:13933-8.

  33. Maitra M, Koenig SN, Srivastava D, Garg V. Identification of GATA6 sequence variants in patients with congenital heart defects. Pediatr Res. 2010;68:281-5.

  34. Lin X, Huo Z, Liu X, et al. A novel GATA6 mutation in patients with tetralogy of Fallot or atrial septal defect. J Hum Genet. 2010;55:662-7.

  35. Kodo K, Yamagishi H. GATA transcription factors in congenital heart defects: a commentary on a novel GATA6 mutation in patients with tetralogy of Fallot or atrial septal defect. J Hum Genet. 2010;55:637-8.

  36. Satoda M, Zhao F, Díaz GA, et al. Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus. Nat Genet. 2000;25:42-6.

  37. Kirby ML, Gale TF, Stewart DE. Neural crest cells contribute to normal aorticopulmonary septation. Science. 1983;220:1059-61.

  38. Khetyar M, Syrris P, Tinworth L, Abushaban L, Carter N. Novel TFAP2B mutation in nonsyndromic patent ductus arteriosus. Genet Test. 2008;12:457-9.

  39. Sperling S, Grimm CH, Dunkel I, et al. Identification and functional analysis of CITED2 mutations in patients with congenital heart defects. Hum Mutat. 2005;26:575-82.

  40. Tartaglia M, Kalidas K, Shaw A, et al. PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet. 2002;70:1555-63.

  41. Li L, Krantz ID, Deng Y, et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet. 1997;16:243-51.

  42. Oda T, Elkahloun AG, Pike BL, et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet. 1997;16:235-42.

  43. Bauer RC, Laney AO, Smith R, et al. Jagged1 (JAG1) mutations in patients with tetralogy of Fallot or pulmonic stenosis. Hum Mutat. 2010;31:594-601.

  44. Garg V, Muth AN, Ransom JF, et al. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005;437:270-4.

  45. McDaniell R, Warthen DM, Sánchez-Lara PA, et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet. 2006;79:169-73.

  46. High FA, Jain R, Stoller JZ, et al. Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8 expression and tissue-tissue interactions during outflow tract development. J Clin Invest. 2009;119:1986-96.

  47. Jain R, Engleka KA, Rentschler SL, et al. Cardiac neural crest orchestrates remodeling and functional maturation of mouse semilunar valves. J Clin Invest. 2011;121:422-30.

  48. Jain R, Rentschler S, Epstein JA. Notch and cardiac outflow tract development. Ann NY Acad Sci. 2010;1188:184-90.

  49. Rentschler S, Jain R, Epstein JA. Tissue-tissue interactions during morphogenesis of the outflow tract. Pediatr Cardiol. 2010;31:408-13.

  50. Departamento de Cirugía Pediátrica y Cardiopatías Congénitas (INCICH). www.bdccpcc.net. 1-5 2012. Ref type: online source.

  51. Benson DW, Silberbach GM, Kavanaugh-McHugh A, et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest. 1999;104:1567-73.

  52. Garg V, Kathiriya IS, Barnes R, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003;424:443-7.

  53. Yagi H, Furutani Y, Hamada H, et al. Role of TBX1 in human del22q11.2 syndrome. Lancet. 2003;362:1366-73.



>Revistas >Gaceta Médica de México >Año2013, No. 2
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019