Entrar/Registro  
INICIO ENGLISH
 
Gaceta Médica de México
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Gaceta Médica de México >Año 2015, No. 1


Roblero-Bartolón GV, Ramón-Gallegos E
Uso de nanopartículas (NP) en la terapia fotodinámica (photodynamic therapy [PDT]) contra el cáncer
Gac Med Mex 2015; 151 (1)

Idioma: Español
Referencias bibliográficas: 102
Paginas: 85-98
Archivo PDF: 442.35 Kb.


Texto completo




RESUMEN

La nanotecnología es un campo interdisciplinario prometedor en el desarrollo de mejores métodos de diagnóstico y tratamiento en diferentes enfermedades, entre ellas el cáncer. Debido a las propiedades ópticas, magnéticas y estructurales de las NP, se ha propuesto su uso en el desarrollo de tratamientos no convencionales contra el cáncer, como la PDT. En la PDT se utiliza un agente fotosensibilizador (PS) que se acumula en las células tumorales y causa la muerte de las células malignas después de la irradiación con luz a una determinada longitud de onda. Sin embargo, el uso de la PDT presenta diferentes problemas en su aplicación debido a las características de hidrofobicidad de los PS que dificultan la administración y eficiencia del tratamiento, razón por la cual se propone el uso de NP como vehículos de transporte y su acoplamiento a PS para optimizar la aplicación del tratamiento. En esta revisión se describe el uso de las NP en la PDT en el tratamiento contra el cáncer, sus características y su mecanismo de acción molecular al ser acopladas a un PS.


Palabras clave: Nanopartículas, Terapia fotodinámica, Cáncer.


REFERENCIAS

  1. Dothager RS, Piwnica-Worms D. Nano in cancer: linking chemistry, biology, and clinical applications in vivo. Cancer Res. 2011; 71(17):5611-5.

  2. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5(3):161-71.

  3. Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther. 2006;5(8):1909-17.

  4. Ding H, Mora R, Gao J, Sumer BD. Characterization and optimization of mTHPP nanoparticles for photodynamic therapy of head and neck cancer. Otolaryngol Head Neck Surg. 2011;145(4):612-7.

  5. Praetorius NP, Mandal TK. Engineered nanoparticles in cancer therapy. Recent Pat Drug Deliv Formul. 2007;1(1):37-51.

  6. Mrózek E, Rhoades CA, Allen J, Hade EM, Shapiro CL. Phase I trial of liposomal encapsulated doxorubicin (Myocet; D-99) and weekly docetaxel in advanced breast cancer patients. Ann Oncol. 2005; 16(7):1087-93.

  7. Jain KK. Advances in the field of nanooncology. BMC Med. 2010;8:83.

  8. Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics. 2012;2(1):3-44.

  9. Peer D KJ, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnot. 2007; 2(12):751-60.

  10. Shi J, Xiao Z, Kamaly N, Farokhzad OC. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc Chem Res. 2011;44(10):1123-34.

  11. Pastan I, Hassan R, Fitzgerald DJ, Kreitman RJ. Immunotoxin therapy of cancer. Nat Rev Cancer. 2006;6(7):559-65.

  12. Bechet D, Couleaud P, Frochot C, Viriot ML, Guillemin F, Barberi-Heyob M. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol. 2008;26(11):612-21.

  13. Sinha R, Kim G, Nie S, Shin DM. Nanotechnology: a novel approach to drug delivery in cancer therapeutics. Mol Cancer Ther. 2006;5(8): 1909-17.

  14. Heidel JD, Davis ME. Clinical developments in nanotechnology for cancer therapy. Pharmaceut Res. 2011;28(2):187-99.

  15. Harris TJ, Maltzahn G, Bhatia SN. Multifunctional Nanoparticles for Cancer Therapy. En: Amiji MM, ed. Nanotechnology for Cancer Therapy. Taylor & Francis Group L; 2007. p. 50-74.

  16. Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev. 2003;3(5):380-7.

  17. Celli JP, Spring BQ, Rizvi I, et al. Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization. Chem Rev. 2010;110 (5):2795-838.

  18. Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. J Natl Cancer Inst. 1998;90(12):889-905.

  19. Foote CS. Definition of type I and type II photosensitized oxidation. Photochem Photobiol. 1991;54(5):659.

  20. Hillemanns P, Pretty KU, Soergel P, et al. Efficacy and safety of hexaminolevulinate photodynamic therapy in patients with low-grade cervical intraepithelial neoplasia. Lasers Surg Med. 2014;44(6):468-74.

  21. Nann T. Nanoparticles in Photodynamic Therapy. Nano Biomed Eng. 2011;3(2):137-43.

  22. Allison RR, Downie GH, Cuenca R, Hu XH, Childs CJH, Sibata CH. Photosensitizers in clinical PDT. Photodiagn Photodyn Ther. 2004; 1(1):27-42.

  23. Allison RR, Mota HC, Bagnato VS, Sibata CH. Bio-nanotechnology and photodynamic therapy-state of the art review. Photodiagn Photodyn Ther. 2008;5(1):19-28.

  24. Paszko E, Ehrhardt C, Senge MO, Kelleher DP, Reynolds JV. Nanodrug applications in photodynamic therapy. Photodiagn Photodyn Ther. 2011;8(1):14-29.

  25. Russell D. Photosensitiser-nanoparticle conjugates for targeted PDT. Photodiagn Photodyn Ther. 2011;8(2):158.

  26. Derycke AS, de Witte PA. Liposomes for photodynamic therapy. Adv Drug Deliv Rev. 2004;56(1):17-30.

  27. Li B, Moriyama EH, Li F, Jarvi MT, Allen C, Wilson BC. Diblock copolymer micelles deliver hydrophobic protoporphyrin IX for photodynamic therapy. Photochem Photobiol. 2007;83(6):1505-12.

  28. Nishiyama N, Morimoto Y, Jang WD, Kataoka K. Design and development of dendrimer photosensitizer-incorporated polymeric micelles for enhanced photodynamic therapy. Adv Drug Deliv Rev. 2009;61(4): 327-38.

  29. van Nostrum CF. Polymeric micelles to deliver photosensitizers for photodynamic therapy. Adv Drug Deliv Rev. 2004;56 (1):9-16.

  30. Zhang GD, Harada A, Nishiyama N, et al. Polyion complex micelles entrapping cationic dendrimer porphyrin: effective photosensitizer for photodynamic therapy of cancer. J Control Release. 2003;93(2):141-50.

  31. Roy I, Ohulchanskyy TY, Pudavar HE et al. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc. 2003;125(26):7860-5.

  32. Wieder ME, Hone DC, Cook MJ, Handsley MM, Gavrilovic J, Russell DA. Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a ‘Trojan horse’. Photochem Photobiol Sci. 2006;5(8):727-34.

  33. Ricci-Junior E, Marchetti JM. Preparation, characterization, photocytotoxicity assay of PLGA nanoparticles containing zinc (II) phthalocyanine for photodynamic therapy use. J Microencapsul. 2006;23(5):523-38.

  34. Olivo M, Bhuvaneswari R, Lucky S, Dendukuri N, Soo-Ping Thong P. Targeted therapy of cancer using photodynamic therapy in combination with multi-faceted anti-tumor modalities. Pharm J. 2010;3(5): 1507-29.

  35. Qian J, Gharibi A, He S. Colloidal mesoporous silica nanoparticles with protoporphyrin IX encapsulated for photodynamic therapy. J Biomed Opt. 2009;14(1):014012.

  36. Simon V, Devaux C, Darmon A, et al. Pp IX silica nanoparticles demonstrate differential interactions with in vitro tumor cell lines and in vivo mouse models of human cancers. Photochem Photobiol. 2010; 86(1):213-22.

  37. Brasseur N, Brault D, Couvreur P. Adsorption of hematoporphyrin onto polyalkylcyanoacrylate nanoparticles: carrier capacity and drug release. Int J Pharm. 1991;70(1-2):129-35.

  38. Oo MK, Yang X, Du H, Wang H. 5-aminolevulinic acid-conjugated gold nanoparticles for photodynamic therapy of cancer. Nanomedicine. 2008;3(6):777-86.

  39. Yang SJ, Lin FH, Tsai HM, et al. Alginate-folic acid-modified chitosan nanoparticles for photodynamic detection of intestinal neoplasms. Biomaterials. 2011;32(8):2174-82.

  40. Compagnin C, Baù L, Mognato M, et al. The cellular uptake of meta- tetra(hydroxyphenyl)chlorin entrapped in organically modified silica nanoparticles is mediated by serum proteins. Nanotechnology. 2009;20(34):345101.

  41. Gomes AJ, Lunardi CN, Tedesco AC. Characterization of biodegradable poly(D,L-lactide-co-glycolide) nanoparticles loaded with bacteriochlorophyll- a for photodynamic therapy. Photomed Laser Surg. 2007; 25(5):428-35.

  42. Lee SJ, Koo H, Jeong H, et al. Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy. J Control Release. 2011;152(1):21-9.

  43. Masilela N, Nyokong T. Conjugates of low-symmetry Ge, Sn and Ti carboxy phthalocyanines with glutathione caped gold nanoparticles: An investigation of photophysical behaviour. J. Photochem. Photobiol A-Chem. 2011;223(2):124-31.

  44. Nombona N, Maduray K, Antunes E, Karsten A, Nyokong T. Synthesis of phthalocyanine conjugates with gold nanoparticles and liposomes for photodynamic therapy. J Photochem Photobiol B. 2012;107:35-44.

  45. Master AM, Rodriguez ME, Kenney ME, Oleinick NL, Gupta AS. Delivery of the photosensitizer Pc 4 in PEG-PCL micelles for in vitro PDT studies. J Pharm Sci. 2010;99(5):2386-98.

  46. Zhao B, Yin JJ, Bilski PJ, Chignell CF, Roberts JE, He YY. Enhanced photodynamic efficacy towards melanoma cells by encapsulation of Pc4 in silica nanoparticles. Toxicol Appl Pharmacol. 2009;241(2):163-72.

  47. Fadel M, Kassab K, Fadeel DA. Zinc phthalocyanine-loaded PLGA biodegradable nanoparticles for photodynamic therapy in tumor-bearing mice. Laser Med Sci. 2010;25(2):283-72.

  48. Ricci-Junior E, Marchetti JM. Zinc(II) phthalocyanine loaded PLGA nanoparticles for photodynamic therapy use. Int J Pharm. 2006;310(1- 2):187-95.

  49. Duygu Aydın Tekda,s MD, Hülya Yanık, Vefa Ahsen. Photodynamic therapy potential of thiol-stabilized CdTe quantum dot-group 3A phthalocyanine conjugates (QD-Pc). Spectrochim Acta Mol Biomol Spectros. 2012;93:313-20.

  50. D’Souza S, Nyokong T. Synthesis and photophysical studies of CdTe quantum dot-monosubstituted zinc phthalocyanine conjugates. Inorg Chim Acta. 2010;367(1):173-81.

  51. Salud CLydCdIeCdl. BIREME. [Internet] Consultado el 2014. Disponible en: .

  52. Médicas AdB. LILACS. Brasil, 1988. [Internet] Consultado el 2014. Disponible en: .

  53. (CONICYT). Scientific Electronic Library Online. Chile. [Internet] Consultado el 2014. Disponible en: .

  54. Elsevier. SCOPUS. [Internet] Consultado el 2014. Disponible en: .

  55. Elsevier. SCIENCEDIRECT. [Internet] Consultado el 2014. Disponible en: .

  56. NCBI. PUBMED. [Internet] Consultado el 2014. Disponible en: .

  57. United States Patent and Trademark Office. Patent Full-Text Database. [Internet] Consultado el 2014. Disponible en: .

  58. Konan YN, Cerny R, Favet J, Berton M, Gurny R, Allemann E. Preparation and characterization of sterile sub-200 nm meso-tetra(4-hydroxylphenyl) porphyrin-loaded nanoparticles for photodynamic therapy. Eur J Pharm Biopharm. 2003;55(1):115-24.

  59. Konan YN, Berton M, Gurny R, Allémann E. Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles. Eur J Pharm Sci. 2003;18(3-4):241-9.

  60. Prasad PN. Polymer science and technology for new generation photonics and biophotonics. Curr Opin Solid State Mater Sci. 2004;8(1):11-9.

  61. Konan YN, Gurny R, Allemann E. State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol. 2002;66(2):89-106.

  62. Chatterjee DK, Fong LS, Zhang Y. Nanoparticles in photodynamic therapy:an emerging paradigm. Adv Drug Deliv Rev. 2008;60(15): 1627-37.

  63. Buchholz J, Kaser-Hotz B, Khan T, et al. Optimizing photodynamic therapy: in vivo pharmacokinetics of liposomal meta-(tetrahydroxyphenyl) chlorin in feline squamous cell carcinoma. Clin Cancer Res. 2005; 11(20):7538-44.

  64. Kiesslich T, Berlanda J, Plaetzer K, Krammer B, Berr F. Comparative characterization of the efficiency and cellular pharmacokinetics of Foscan- and Foslip-based photodynamic treatment in human biliary tract cancer cell lines. Photochem Photobiol Sci. 2007;(6):619-27.

  65. Lassalle HP, Dumas D, Grafe S, D’Hallewin MA, Guillemin F, Bezdetnaya L. Correlation between in vivo pharmacokinetics, intratumoral distribution and photodynamic efficiency of liposomal mTHPC. J Control Release. 2009;134(2):118-24.

  66. Svensson J, Johansson A, Gräfe S, et al. Tumor selectivity at short times following systemic administration of a liposomal temoporfin formulation in a murine tumor model. Photochem Photobiol. 2007;83(5):1211-9.

  67. Dragicevic-Curic N, Scheglmann D, Albrecht V, Fahr A. Development of liposomes containing ethanol for skin delivery of temoporfin: characterization and in vitro penetration studies. Colloids Surf. 2009; 74(1):114-22.

  68. D’Hallewin MA, Kochetkov D, Viry-Babel Y, et al. Photodynamic therapy with intratumoral administration of Lipid-Based mTHPC in a model of breast cancer recurrence. Lasers Surg Med. 2008;40(8):543-9.

  69. Anderson CY, Freye K, Tubesing KA, et al. A comparative analysis of silicon phthalocyanine photosensitizers for in vivo photodynamic therapy of RIF-1 tumors in C3H mice. Photochem Photobiol. 1998;67(3):332-6.

  70. Yang Y, Song W, Wang A, Zhu P, Fei J, Li J. Lipid coated mesoporous silica nanoparticles as photosensitive drug carriers. Phys Chem Chem Phys. 2010;12(17):4418-22.

  71. Demberelnyamba D, Ariunaa M, Shim YK. Newly synthesized water soluble cholinium-purpurin photosensitizers and their stabilized gold nanoparticles as promising anticancer agents. Int J Mol Sci. 2008; 9(5):864-71.

  72. Kuruppuarachchi M, Savoie H, Lowry A, Alonso C, Boyle RW. Polyacrylamide nanoparticles as a delivery system in photodynamic therapy. Mol Pharmacol. 2011;8(3):920-31.

  73. Pathak P, Katiyar VK. Multi-Functional Nanoparticles and Their Role in Cancer Drug Delivery – A Review. J Nanopart Online. 2007;3:1-17.

  74. Magadala P, Vlerken LE, Shahiwala A, Amiji MM. Multifunctional Polymeric Nanosystems for Tumor-Targeted Delivery Multifunctional Pharmaceutical Nanocarriers. En: Torchilin V, ed. Volume 4. Nueva York: Springer; 2008. p. 33-66.

  75. Gary-Bobo M, Hocine O, Brevet D, et al. Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT. Int J Pharm. 2011;423(2):509-15.

  76. Hocine O, Gary-Bobo M, Brevet D, et al. Silicalites and Mesoporous Silica Nanoparticles for photodynamic therapy. Int J Pharm. 2010; 402(2):221-30.

  77. Gary-Bobo M, Hocine O, Brevet D, et al. Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT. Int J Pharm. 2012;423(2):509-15.

  78. Bakalova R, Ohba H, Zhelev Z, Ishikawa M, Baba Y. Quantum dots as photosensitizers? Nat Biotech. 2004;22(11):1360-1.

  79. Geszke-Moritz M, Moritz M. Quantum dots as versatile probes in medical sciences: synthesis, modification and properties. Mater Sci Eng Mater Biol Appl. 2013;33(3):1008-21.

  80. Rico-Moctezuma A, Vilchis-Nestor AR, Sanchez-Mendieta V. Biosíntesis de nanopartículas de oro mediante el extracto de Opuntia ficus-indica. Superficies y Vacío. 2010;23(S):94-7.

  81. Cai W, Gao T, Hong H, Sun J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl. 2008;1(1):17-32.

  82. Cheng Y, A CS, Meyers JD, Panagopoulos I, Fei B, Burda C. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J Am Chem Soc. 2008;130(32):10643-7.

  83. Jelveh S, Chithrani DB. Gold nanostructures as a platform for combinational therapy in future cancer therapeutics. Cancers (Basel). 2011; 3(1):1081-110.

  84. Cheng Y, Meyers JD, Broome AM, Kenney ME, Basilion JP, Burda C. Deep penetration of a PDT drug into tumors by noncovalent drug-gold nanoparticle conjugates. J Am Chem Soc. 2011;133(8):2583-91.

  85. Nishiyama N, Nakagishi Y, Morimoto Y, et al. Enhanced photodynamic cancer treatment by supramolecular nanocarriers charged with dendrimer phthalocyanine. J Control Release. 2009;133(3):245-51.

  86. Ohulchanskyy TY, Roy I, Goswami LN, et al. Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer. Nano Lett. 2007; 7(9):2835-42.

  87. Chen ZL, Sun Y, Huang P, Yang XX, Zhou XP. Studies on Preparation of Photosensitizer Loaded Magnetic Silica Nanoparticles and Their Anti- Tumor Effects for Targeting Photodynamic Therapy. Nanoscale Res Lett. 2009;4(5):400-8.

  88. McCarthy JR, Perez JM, Brückner C, Weissleder R. Polymeric nanoparticle preparation that eradicates tumors. Nano Lett. 2005;5(12):2552-6.

  89. Jeong H, Huh M, Lee SJ, et al. Photosensitizer-conjugated human serum albumin nanoparticles for effective photodynamic therapy. Theranostics. 2011;1:230-9.

  90. Huang P, Lin J, Wang X, et al. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv Mater. 2012;24(37):5104-10.

  91. Maldonado-Alvarado E. Determinación de la actividad biológica de nanopartículas de oro acopladas a la protoporfirina IX en la terapia fotodinámica. Tesis dirigida por Ramón-Gallegos E. México, D.F.: Instituto Politécnico Nacional; 2010. p. 57.

  92. Eshghi H, Sazgarnia A, Rahimizadeh M, Attaran N, Bakavoli M, Soudmand S. Protoporphyrin IX-gold nanoparticle conjugates as an efficient photosensitizer in cervical cancer therapy. Photodiagnosis Photodyn Ther. 2013;10(3):304-12.

  93. Kim JY, Choi WI, Kim M, Tae G. Tumor-targeting nanogel that can function independently for both photodynamic and photothermal therapy and its synergy from the procedure of PDT followed by PTT. J Control Release. 2013;171(2):113-21.

  94. Cooper K. Silicon Phthalocyanine 4 and Photodynamic Therapy in Stage IA-IIA Cutaneous T-Cell Non-Hodgkin Lymphoma. En: ClinicalTrials.gov, 2013.

  95. Ramón-Gallegos E. Eficiencia de la terapia fotodinámica utilizando nanopartículas en la eliminación de células cancerosas. Proyecto n.o 20070480, financiado por la Secretaría de Investigación y Posgrado del Instituto Politécnico Nacional. México; 2007. [Internet] Disponible en: http://www.sappi.ipn.mx/cgpi/informes/reporteHTML.jsp?anho_inicio= 2007&folio=480&idp=228&cveInfo=4842&tipo_inf=F.

  96. Maldonado-Alvarado E, Ramón-Gallegos E, Tánori-Córdova J, et al. Efficiency Of The Photodynamic Therapy Using Gold Nanoparticles (npAu) And PpIX Induced And Not Induced. AIP Conf Proc. 2008;1032:295-8.

  97. Gutiérrez-Fuentes R, Sánchez-Ramírez J, Jiménez-Pérez J, Pescador- Rojas J, Ramón-Gallegos E, Cruz-Orea A. Thermal Diffusivity Determination of Protoporphyrin IX Solution Mixed with Gold Metallic Nanoparticles. Int J Thermophys. 2007;28(3):1048-55.

  98. Jiménez-Pérez JL, Fuentes RG, Alvarado EM, et al. Enhancement of the thermal transport in a culture medium with Au nanoparticles. Appl Surf Sci. 2008;255(3):701-2.

  99. Jiménez-Pérez JL, Cruz-Orea A, Alvarado EM, Ramirez JFS, Ramón-Gallegos E, Mendoza-Alvarez JG. Monitoring the non-radiative relaxation time of PpIX solution with Au nanoparticles using Photoacoustic Spectroscopy. Appl Surf Sci. 2008;255(3):643-5.

  100. Maldonado-Alvarado E, Ramón-Gallegos E, Jiménez Pérez J, Cruz-Orea A, Hernández Rosas J. Photothermal Techniques Applied to the Thermal Characterization of L-Cysteine Nanofluids. Int J Thermophys. 2012; 27(3):1-7.

  101. Roblero-Bartolón G, Maldonado-Alvarado E, Galván-Mendoza JI, Ramón-Gallegos E. Intracellular localization analysis of npAu-PpIX in HeLa cells using specific dyes and confocal microscopy. In: Physics AIo (ed). AIP Conference Proceedings. 2012;137-9.

  102. Lopez T, Ortiz E, Alvarez M, et al. Study of the stabilization of zinc phthalocyanine in sol-gel TiO2 for photodynamic therapy applications. Nanomedicine. 2010;6(6):777-85.



>Revistas >Gaceta Médica de México >Año2015, No. 1
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019