medigraphic.com
ENGLISH

16 de abril

ISSN 1729-6935 (Digital)
16 de abril
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • Políticas
  • NOSOTROS
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2015, Número 259

<< Anterior Siguiente >>

16 de abril 2015; 54 (259)


Ciliopatías: bases moleculares y celulares en enfermedades del sistema nervioso

Francis ZD, Ramírez CZ, González NL
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 60
Paginas: 61-74
Archivo PDF: 114.48 Kb.


PALABRAS CLAVE

enfermedades del sistema nervioso, sistema nervioso, obesidad.

RESUMEN

Durante mucho tiempo se descartó la importancia estructural y funcional del cilio primario. El avance tecnológico a inicios del presente siglo ha propiciado la comprensión de su relevancia. Debido a su amplia distribución celular, su papel emergente en la transducción de importantes vías de señalización y sus disfunciones, se ha visto implicada en un amplio espectro de enfermedades humanas denominadas ciliopatías, en la que son hallazgos comunes los defectos neurológicos. Reconocer cómo están involucrados los genes asociados a los cilios en diversos síndromes neurológicos ha mejorado el entendimiento de las funciones del cilio primario en el SNC. De acuerdo con lo que se viene diciendo, luego de la revisión de 61 referencias bibliográficas, este análisis pretende describir la relación molecular y morfofuncional de las ciliopatías en el organismo. El conocimiento del cilio primario y del desempeño que se le ha adscrito, permitirá la elucidación de un número importante de enfermedades genéticas asociadas a su disfunción.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Bloodgood, R. Sensory reception is an attribute of both primary cilia and motile cilia. Journal of Cell Science. 2010; 123 (4), 505-509. 2.Ward CJ, Yuan D, Masyuk TV, Wang X, Punyashthiti R, Whelan S et al. Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum Mol Genet. 2003; 12(20):2703–2710

  2. Li JB, Gerdes JM, Haycraft CJ, Fan Y, Teslovich TM, May-Simera H et al. Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 2004; 117:541–52.

  3. Gherman A, Davis EE, Katsanis N. The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nat Genet 2006; 38:961–2

  4. Kavita P, Davis E, Katsanis N. Unique among ciliopathies: primary ciliary dyskinesia, a motile cilia disorder. F1000Prime Reports 2015; 7:36

  5. Satir P, Søre T. Christensen. Structure and function of mammalian cilia. Histochemistry and Cell Biology. 2009; 129 (6): 687–693

  6. Lancaster MA, Gleeson JG. The primary cilium as a cellular signaling center: lessons from disease. Curr. Opin. Genet. Dev. 2009; 19 (3):220–9

  7. Cardenas-Rodríguez M, Badano JL. Ciliary biology: Understanding the cellular and genetic basis of human ciliopathies. Am J Med Genet Part C Semin Med Genet. 2009. 151C:263–280

  8. Hurd TW, Hildebrandt F. Mechanisms of Nephronophthisis and Related Ciliopathies. Nephron Exp. Nephrol. 2011; 118 (1): e9–e14

  9. Davenport JR. An incredible decade for the primary cilium: A look at a once-forgotten organelle. AJP: Renal Physiology. 2005; 289 (6): F1159–F1169

  10. Badano JL, Leitch CC, Ansley SJ, May-Simera H, Lawson S, Lewis RA, et al. Dissection of epistasis in oligogenic Bardet-Biedl syndrome. Nature. 2006; 439:326–30

  11. Sharma N, Berbari NF, Yoder BK. Ciliary dysfunction in developmental abnormalities and diseases. Curr Top Dev Biol. 2008; 85:371–427

  12. Badano JL, Mitsuma N, Beales PL, Katsanis N. The ciliopathies: An emergin class of human genetic disorders. Annu Rev Genomics Hum Genet. 2006; 7:125–148

  13. Adams M, Smith CV, Logan C. Recent advances in the molecular pathology, cell biology and genetics of ciliopathies. J Med Genet. 2008; 45:257–267

  14. Davis EE, Katsanis N. The ciliopathies: A transitional model into systems biology ofhuman genetic disease. Curr Opin Genet Dev. 2012; 22(3): 290–303

  15. Valente EM, Rasim O, Gibbs E, Gleeson J. Primary cilia in neurodevelopmental disorders. Nature Reviews Neurology. 2014; 10, 27-36

  16. Atkinson KF, Kathem SH, Jin X, Muntean BS, Abou-Alaiwi WA, Nauli AM, et al. Dopaminergic signaling within the primary cilia in the renovascular system. Front. Physiol 2015; 6:103

  17. Tomer A, Andreia MM, Edmund K, Thomas K, Shankar S. Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis. Cell. 2004; 117, 527–539

  18. Sarmed K, Ashraf M, Surya M. The Roles of Primary cilia in Polycystic Kidney Disease. AIMS Mol Sci. 2014; 1(1): 27–46

  19. Kleene S, Van Houten J. Electrical Signaling in Motile and Primary Cilia. Bioscience. 2014 64(12): 1092–1102

  20. Jeong ho L, Silhavy J, Eun Lee, Al-Gazali L, Tomas S, Davis E et al. Evolutionarily Assembled cis- Regulatory Module at a Human Ciliopathy Locus. Science 2012; 335(6071): 966–969

  21. Kasahara K, Kawakami Y, Kiyono T, Yonemra S, Kawamura Y, Era S, et al. Ubiquitin-proteasome system controls ciliogenesis at the initial step of axoneme extension. Nat. Commun. 2014; 5:5081

  22. Miyamoto T. et al. The Microtubule-Depolymerizing Activity of a Mitotic Kinesin Protein KIF2A Drives Primary Cilia Disassembly Coupled with Cell Proliferation. Cell Reports 2015; 10, 664–673

  23. Nigg EA, Stearns T. The centrosome cycle: Centriole biogen-esis, duplication and inherent asymmetries. Nat. Cell Biol. 2011; 13, 1154–1160

  24. Kobayashi T, Dynlacht BD. Regulating the transition from centriole to basal body. J. Cell Biol. 2011; 193, 435–444

  25. Breunig JJ, Sarkisian MR, Arellano JI, Morozov YM, Ayoub AE, Sojitra S, et al. Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling. Proc Natl Acad Sci 2008; 105:13127–13132

  26. Danilov AI, Gomes-Leal W, Ahlenius H, Kokaia Z, Carlemalm E, Lindvall O. Ultrastructural and antigenic properties of neural stem cells and their progeny in adult rat subventricular zone. Glia 2009; 57:136–152

  27. Moser J, Fritzler M, Rattner J. Ultrastructural characterization of primary cilia inpathologically characterized human glioblastomamultiforme (GBM) tumors. BMC Clinical Pathology 2014; 14:40

  28. Badano JL, Mitsuma N, Beales PL, Katsanis N. The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 2006; 7:125–148

  29. Wong SY, Seol AD, So PL, Ermilov AN, Bichakjian CK, Epstein EH, et al. Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat Med 2009; 15:1055–1061

  30. Jeong Ho L, Gleeson J. The role of primary cilia in neuronal function. Neurobiol Dis. 2010; 38(2): 167–172

  31. Aoife M, Philip L. Ciliopathies: an expanding disease spectrum. Pediatr Nephrol 2011; 26(7): 1039– 1056

  32. Radheshyam P, Ajarshi B, Ituparna D, Uttara C. Association of Joubert Syndrome and Hirschsprung Disease. Indian Pediatric 2015; 61 (52)

  33. Romani M, Micalizzi A, Valente E. Joubert syndrome: congenital cerebellar ataxia with the molar tooth. Lancet Neurol 2013;12: 894–905

  34. Keppler-Noreuil K. Brain tissue- and region-specific abnormalities on volumetric MRI scans in 21 patients with Bardet–Biedl syndrome (BBS). BMC Med. Genet. 2011; 12, 101

  35. Bennouna-Greene V, Kremer S, Stoetzel C, Christman D, Schuster C, Durand M, et al. Hippocampal dysgenesis and variable neuropsychiatric phenotypes in patients with Bardet–Biedl syndrome underline complex CNS impact of primary cilia. Clin. Genet 2011; 80(6): 523–531

  36. Baker K, Northam GB, Chong WK, Banks T, Beales P, Baldeweg T. Neocortical and hippocampal volume loss in a human ciliopathy: a quantitative MRI study in Bardet–Biedl syndrome. Am. J. Med. Genet 2011; 155(1), 1–8

  37. Carter C, Vogel TW, Zhang Q, Seo S, Swiderski RE, Moninger TO et al. Abnormal development of NG2+PDGFR-α+ neural progenitor cells leads to neonatal hydrocephalus in a ciliopathy mouse model. Nat. Med 2012; 18(12):1797–1804

  38. Zhang Q, Nishimura D, Seo S, Vogel T, Morgan D, Searby C, et al. Bardet–Biedl syndrome 3 (Bbs3) knockout mouse model reveals common BBS-associated phenotypes and Bbs3 unique phenotypes. Proc. Natl Acad. Sci 2012; 108: 20678–20683

  39. Zhang Q, Nishimura D, Vogel T, Shao J, Swiderski R, Yin T, et al. BBS7 is required for BBSome formation and its absence in mice results in Bardet–Biedl syndrome phenotypes and selective abnormalities in membrane protein trafficking. J Cell Sc. 2013; 126: 2372–2380

  40. Poretti A, Vitiello G, Hennekam RC, Arrigoni F, Bertini E, Borgatti R, et al. Delineation and diagnostic criteria of oral–facial–digital syndrome type VI. Orphanet J. 2012; Rare Dis. 7(4)

  41. Bisschoff I, Zeschnigk C, Horn D, Wellek B, Rieß A, Wessels M, et al. Novel mutations including deletions of the entire OFD1 gene in 30 families with type 1 orofaciodigital syndrome: a study of the extensive clinical variability. Hum. Mutat. 2013; 34, 237–247

  42. Thomas S, Legendre M, Saunier S, Bessières B, Alby C, Bonnière M, et al. TCTN3 mutations cause Mohr–Majewski syndrome. Am. J. Hum. Genet. 2012;91, 372–378

  43. Honkala H, Lahtela J, Fox H, Gentile M, Pakkasjärvi N, Salonen R, et al. Unraveling the disease pathogenesis behind lethal hydrolethalus syndrome revealed multiple changes in molecular and cellular level. Pathogenetics. 2009. 2

  44. Dammermann A, Pemble H, Mitchell BJ, McLeod I, Yates JR, Kintner C, et al. The hydrolethalus syndrome protein HYLS-1 links core centriole structure to cilia formation. Genes Dev. 2009; 23: 2046– 2059

  45. Jamsheer A, Sowińska A, Trzeciak T, Jamsheer-Bratkowska M, Geppert A, Latos-Bieleńska A. Expanded mutational spectrum of the GLI3 gene substantiates genotype–phenotype correlations. J. Appl. Genet. 2012; 53, 415–422

  46. Breunig JJ, Sarkisian MR, Arellano JI, Morozov YM, Ayoub AE, Sojitra S, et al. Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling. Proc. Natl. Acad. Sci. 2008; 105:13127–13132

  47. Giordano L, Vignoli A, Pinelli L, Brancati F, Accorsi P, Faravelli F, et al. Joubert syndrome with bilateral polymicrogyria: clinical and neuropathological findings in two brothers. Am. J. Med. Genet 2009; 149(7):1511–1515

  48. Spampinato MV, Kraas J, Maria BL, Walton ZJ, Rumboldt Z, et al. Absence of decussation of the superior cerebellar peduncles in patients with Joubert syndrome. Am. J. Med. Genet., A. 2008; 146A:1389–1394

  49. Mandl L, Megele R. Primary cilia in normal human neocortical neurons. Z. Mikrosk. Anat. Forsch. 1989; 103:425–430

  50. Davenport JR, Watts AJ, Roper VC, Croyle MJ, van Groen T, Wyss JM, et al. Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease. Curr Biol 2007; 17:1586–1594

  51. Satir P. Cilia biology: stop overeating now! Curr Biol. 2007; 17:R963–R965

  52. Tang Z, Lin MG, Stowe TR, Che S, Zhu M, Stearns T, et al. Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature 2013; 502, 254–257

  53. Pampliega O, Orhon I, Patel B, Sridhan S, Díaz-Cantero A, Beau I, et al. Functional interaction between autophagy and ciliogenesis. Nature 2013; 502, 194–200

  54. Pedersen LB, Rosenbaum JL. Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr. Top. Dev. Biol. 2008; 85, 23–61

  55. Lim Y, Tang B. Getting into the cilia: Nature of the barrier(s). Mol. Membr. Biol. 2013; 30, 350–354

  56. Szymanska K, Johnson CA. The transition zone: an essential functional compartment of cilia. Cilia 2012; 1, 10

  57. Garcia-Gonzalo FR, et al. A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat. Genet. 2011; 43, 776–784

  58. Chih B, Liu P, Chinn Y, Chalouni C, Komuves LG, Hass PE, et al. A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat. Cell Biol. 2012; 14, 61–72

  59. Wei Q, Zhang Y, Li Y, Zhang Q, Ling K, Hu J. The BBSome controls IFT assembly and turnaround in cilia. Nat. Cell Biol. 2012; 14, 950–957

  60. Zhang Q, Seo S, Bugge K, Stone EM, Sheffield VC. BBS proteins interact genetically with the IFT pathway to influence SHH-related phenotypes. Hum. Mol. Genet. 2012; 21, 1945–1953




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

16 de abril. 2015;54

ARTíCULOS SIMILARES

CARGANDO ...